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Abstract

Numerical analysis applied to the Beznar dam accelerograms (longitudinal and

transversal components) shows that the Fourier amplitude spectrum is a good
approximation to the pseudo-velocity spectra. This fact makes possible to use
displacement or velocity seismograms to generate acceleration of the ground in places
where acceleration data are not available.

Maximae accelerations determined near and at the Beznar dam are compared with the
predicted acceleration values for the region compressed by the Pyrenees Mountains, the
Iberic System and the Catalonia Coastal Mountains using a established theoretical formula
for this region. Theoretical and observed values are consistent among them.

1- Introduction

The computation of structures subjected to seismic ground motions requires decisions of
the structural engineer on the definition of the action to be considered in the analysis. This
operation is conditioned by the quantity and quality of the seismological data available for a
given area and, at the same time, by the way in which the seismic response of the analysed
structure is expressed. This one can be characterized as a time history, through its maximum
value, in the complex frequency domain or by means of a stochastic formulation. The type of
definition used for the response has to be capable of considering the possible nonlinear
structural behaviour under seismic actions. Consequently, it results the necessity of using
analysis procedures adequate to solve both linear and nonlinear structural models.

An "ideal" seimic zone from the point of view of the definition of the seismic action, is one
for which reliable models of the characteristics of the ground motion at the epicenter can be
developed and for which high quality data on the expected amplitude, frequency and
duration of the seismic ground motion are available. The existing data also include
mechanical characteristics of the soil layers at a given site. If in such a zone strong ground
motion accelerograms are also available, these can be used directly in the computation of the
seismic response of structures. Numerical step-by-step integration procedures of the
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equations of motion can be performed to compute the time-history of the structural
response, in the linear or in the non-linear ficld. The same acceleration records could be
used to calculate seismic response spectra, case in which only the maximum response of
structures is computed, by means of a modal analysis. :

If for the same seismic zone ground acceleration records are not available, artificial
accelerograms can be generated. These are accelerograms simulated by using mathematical
models based on the theory of the stochastic process and can be generated by starting from
the above mentioned data. Seismic response spectra corresponding to the simulated
accelerograms can be also computed. Consequently, the same structural analysis procedures
mentioned above can be applied to this case.

In the case of seismic areas with low seismicity, with poor or with a complete lack of
instrumental acceleration data, the numerical definition of the seismic action to be used in
earthquake engineering computations has to be perfomed in a completly different way. Thus,
in a deterministic analysis, approximate response spectra can be estimated, by starting from
some general data like the maximum ground acceleration and the predominant frequency of
the expected earthquake.

In regions of moderate seismicity or regions with poor or none accelerograph distribution it
is quite impossible to obtain acceleration data. One possibility to solve the problem is to
work with  displacement or velocity seismograms. A procedure which perniits the
determination of maximum acceleration and predominant frequency using such kind of
seismograms is reviewed.

Problems involving seismic wave attenuation due to anelastic effects -directly related to the
different kinds of grounds- are also discussed in the text.

In earthquake engineering applications the most important magnitudes are the maximum
displacement, velocity or acceleration responses, because these allow the computation of the
maximum response for structure experiments.

The purposes of this paper are: 1) to present the methodology to determine ground
pseudo-acceleration in regions with poor or none acceleration data, and 2) to apply the
methodology to the June 24/1984 earthquake located near the Beznar dam (Granada).

This paper is based on previous work carried out by Barbat et al. (1988) and Sarrate et al.
(1988). Some of the comments and results obtained by the mentioned authors are shortly
.presented in the text.

2- Fourier amplitude spectrum.

2.1 Fourier response spectrum definition.

Usually a seismogram is represented as a real function of the time t. The Fourier analysis
of these functions is a useful tool in seismology and earthquake engineering.

The Fourier Transform of a general function f(t) which is square integrable is defined as
(Plancherel’s theorem)
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Taking the real and imaginary part of the Fourier Transform (1) (R[F(G)] and g[p(a)])
the Fourier amplitude spectrum is defined by

o] = | (slre]) + (sl o

Since in seismology and earthquake engincering problems the signals are always finite,
continuous and bounded, the integral of Fourier transforms definition (1) ever exists and can
be evaluated. Therefore, the amplitude Fourier spectrum exists too and gives information
about the energy contained in each signal frequency component.

2.2 Numerical computation of Fourier response spectrum.

In civil engineering applications the most important time functions f(t) are accelerograms.
However in geophysical problems this functions could be displacegrams, velocigrams or
accelerograms. In any case, they should be given in analogical or digital format. Thus, the
analytical procedures are not avalaible and a numerical method has to be used to calculate
the Fourier response spectrum. The computation is performed through the discrete Fourier
Transform
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where the input signal f(t) is sampled at regulars intervals 7. The seismic signals are finite,
thus 0<t<T. If f(t) is sampled in N regulars points, the limited discret Fourier transform is
defined as

N
FN(kZ—") = Y fr) e ¥ | k=0,... ,N-1 @)
0

It can be pointed out that the value of Fy(k2x/T) is equal to the value of FN correspon-
ding at the negative frequency (k — N)2x/T when k is larger than N/2. Therefore, only N/2
terms are needed to compute the amplitude Fourier spectrum. The Fourier transform (1)
may be approximately computed through the limited discrete Fourier transform as follows:

-

F(}sz) =~ TNZ— f(j'r) e_‘:tV"‘j = TFN(kz—ﬂ:) , k=0,...,n< E— 5)
T = T -2

The sampling theorem (Tretter, 1976) shows that (5) is exactly true when f(t) is a band
limited function in (—6.,6.] ,thatis, F(8) = 0if |8] > 6c. This method gives a good
procedure to evaluate the Fourier transform of a general finite signal. There are many
methods to calculate a limited discret Fourier transform, but the most common is the Fast
Fourier Transform (FFT). They have been discused by many authors and extensive
explanations can be found in Tretter (1976), Singleton (1969) and Brigham (1974), and in
many computacional libraries (Cooley et al., 1967).
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3- Seismic response spectra.

3.1 Seismic response spectra.

Consider a single degree of freedom oscillator, whose motion is governed by the second
order differential equation

P4+ vwe + wiz = —aft) 6)

where o is the natural frequency of the system, v is the damping ratio and w, = w+/1-— 2
is the frequency of the damping system. The solution of this motion equation is expressed in
the form:

z(t) = 1 a(r) g~ vw(t=7) sin(wq(t — 7))dr )]

we Jo

The solution x(t) provided by (7) is a function of v, w and a(t) where the well known
Duhamel’s integral appears. Time differenciation of this equation yields an expression of the
history of the velocity response

t
&(t) = —/ a(r) e~ve(t-m) cos(wa(t — 7))dT + vwz(t) 8)
0
Differenciating again, the absolute acceleration of the oscillator is obtained
t -
£(t) +a(t) = wa/ a(r) e V0T sin(we(t — 7))dr — 2vwi(t) - (vw)iz(t) )
0

The displacement, velocity and acceleration spectra are defined as functions of w for fixed
damping ratio v as

Sa(w;v) = |z(t) = ‘ = w—]-[] a(r) e~vw(t=r) sin(wg(t — 7))dr a0
So{w;v) = |z(t) = '—/ a(r) e~vwlt-r) cos(wq(t — 7))dr + vwz(t)
mazxT 0
mazx (11)
Salw;v) = |Z(t) + a(t) =
wu/ a(r) e sin(wa(t — 7))dr — 2wwz(t) ~ (vw)iz(t) 12
0

mazx
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It is worth to point out that Sqand S, are respectively the maximum values of the relative
displacement and velocity responses, while S, is the maximum value of the absolute
acceleration response of the single-degree-of-freedom oscillator.

3.2 Seismic response pseudo-spectra.

In order to obtain more simple expressions of the seismic response spectra, (10), (11) and
(12), some approximations have been introduced. As the damping ratio is small in civil
engineering applications (2% < v < 20%), w, has been substituted by » and the second
non-integrals terms of the right hand side member of (11) and (12) equations have been
neglected. Moreover, in the computation of the velocity response spectrum (11) the cosinus
function has been approximated by a sinus function. Thus, three new quantities, defined as
displacement, velocity and acceleration pseudo-response spectra have been introduced
(Hudson, 1962). Their expresions are

) 1 (13)
Si(wiv) = |- w—/ a(r) emve(t=r) sin(we(t — 7))dr
a Jo
‘ ™TMaz
Si(wiv) = -/ a(r) emvw(t-7) sin(wq(t — 7))dr (14
0 .
¢ .
Si(w;v) = wa/(; a(r) e~velt=7) sin(wq(t — 7))dr - 15)

These approximations allow to compute S; and S; from S}, by using the relationship

S = waS] (16)

- 2 o

From the equations (16) and (17), the three pseudo-response spectra can be plotted in the
same three-logaritmic scale, as it is shown in figure 1.

3.3. Numerical computation of the response and pseudo-response spectra.

In order to compute the seismic response spectra, and pseudo-response spectra an
evaluation of Duhamel’s integral is required. The computational cost of this evaluation can
be significantively reduced if a suitable transformation is performed in equation (10).
Different numerical procedures can be developed to carry out the integration. The following
transformation of (10) should be used

|z(t) e ui/‘ a(r) et sin(wy(t — 7))dr o
lu 0 18)
=|- w—a[A(t) sin(wgt) — B() cos(w.,t)”"mz

where the exponential has been written explicitly and the sinus function has been
developed by using standard trigonometric expresion. The A(t) and B(t) in (18) are functions
defined by
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At) = /(; a(T)va cos(wgT) dr 1)

4 vwT
B(t) = / a(T)Z"“‘ sin(w,T) dr
0

These new integrals can be calculated efficiently by using computational methods such as
simple sumation method, trapezoidal quadrature, Simpson’s method (Clough and Penzien,
1975). A good approximation based on a simple sumation method has been proposed by
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Figure 1 Three-logaritmic representation of a generic response
spectra {from Hudson, 1979).

Clough (1972), according to which the dynamic response is computed at equal intervals Ar.

Values of the functions (19) are computed at a time ¢ by starting from the values at the |
previus time £ — Ar.

A(t) = A(t—AT) + Arta(t— AT)cos [(wa(t - A-r)] 0 |

o
—~
o~
o
il

B(t — A1) + Ara(t — AT)sin [w.,(t - AT)]

It is worth to point out that the same transformation can be used to evaluate the
acceleration response spectrum, because the same integrants appears in both equations (10)
and (12). In order to evaluate the velocity response spectrum, the presence of cos | wq(t — -r))
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in the integral of equation (11) does not imply important numerical changes of the
computational procedure, due to the fact that the integral can be calculated by performing
similar operations as in (18).

Thus, to compute the seismic response spectra (10), (11) and (12), the functions A(t) and
B(t) (19) have to be evaluated only once, and then the cross products with the trigonometric
functions have to be performed,as it is shown in (18).

In order to compute the seismic pseudo-response spectra (13), (14) and (15) the
computation of Sjcan be performed trough the evaluation of A(t) and B(t) functions. S and
57 can be then calculated by using (16) and (17).

Other numerical methods to compute the seismic response spectra are based on solving the
diferential equation (6) through direct integration methods (Clough and Penzien, 1975).

3.4 Numerical comparison between response spectra and pseudo-response specira.
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Figure 2 (a) Synthetic accelerogram of predominant period 2m/w=1.25s. (b)Synthetic accelerogram of
predominant period 27/w=0.4s.

In order to compare the pseudo-respose spectra and the response spectra two synthetic
accelerogram have been generated . A plot of each one can be seen in figure 2.

The response spectra and pseudo-response spectra have been evaluated for a given
damping ratio v= 0.05 and regular sampled periods of 0.05s between Qs and Ss. The
discrepancies in velocigram and accelerogram spectra and pseudo-spectra are very small as
it should be expected, but the the maximum values coincide while the differences are not
larger than 15% (figures 3 and 4).
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Figure 3 Differences between velocigram response spectrum and velocigram pseudo-spectrum. (a) Input
synthetic accelerogram of predominant period 2mw/w=1.25s. (b} Input synthetic accelerogram of
predominant period 21/« = 0.4s.
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Figure 4 Differences between velocigram response spectrum and accelerogram pseudo-spectrum. (a) Input
synthetic accelerogram of predominant period 2w/w=1.25s. (b) Input synthetic accelerogram of
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4- Conparison between amplitude fourier spectrum and
seismic velocity response spectrum

4.1 Theoretical comparison,

In this section, the seismic velocity response spectrum with null damping ratio, v= 0
and w, = w,is compared with the amplitude Fourier spectrum of the input accelerationa(t).

By assuming zero damping ratio, v= 0 equation (11) is rewritten

¢
Sy(w;v =0) = ‘ - /D a(r) cos(w(t — 7))dr 21

In civil engineering applications, it is worth to assume that the the signal a(¢) (e. g. the time
history of the ground wmotion acceleration) has a finite duration 7, and that it can be
expressed trough a zero mean Fourier series. Thusa(t) can be expressed as follows

. s ] 2mk
a(t) = :;ak cos(fit) + Zbk sin(fgt) , 6 = T (22)
=1 k=1
where
2 /T 2 [T
ar = — / a(r) COS(@):T) dr y bk = — / a(‘T) sin(BkT) dr (23)
T Jo T Jo

By substituting the Fourier Series in £(¢) and using standard trigonometrics relation, a new
expression for z(t)is obtained.

i(t) = ‘g/; {cos(wt)[ak cos(8kT) cos(wr) + by sin(@k‘r)cos(wr)] +

sin(wt)[ ar cos(B7)sin(wr) + by sin(0x7) sin (w7) J }
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Using standard trigonometric expressions the previous equation can be rewritten as

(XN

£(t) = — g { cos(wt) [ak /: %[cos ((6x —w)T) + cos ((6x +w)r) ]d‘r + |
b /0t % [sin ((6x —w)T) + Asin (6 + w)T) ]dr + . i

AL S o A A~

sin(wt) [ak /0‘ %[—sin (0 —w)7) + sin (6 +w)7) ]dT + |

by /: —;—[cos (8 —w)T) — cos ((8x +w)T) ]dr]}

it The integrals in (24) are evaluated in two different cases: the first one for 6= w and the
second one for 8x= w. All terms with 6x= ® are bounded in ¢ because the integrals are
sinus and cosinus functions. The terms with 6= @ comming from the second and fourth
integrals are also bounded in ¢ due to the same reason. However, when 8, = o the first and
third integrals give an unbonded term in . As it can be shown, these last integrals have two
components: one of them is a sinus-cosinus function of ¢ and the other one is linear in ¢.
Taking into account that the predominant period of the seismic event is very small compared
with his time duration 7, all bounded terms can be dropped. Thus, only the terms with
Bk = w are important and equation (24) can be approximated by

(t) = —%t {acos(wt) + bsin(wt)} (25)

where a and 4 are the Fourier coefficients associated to the term with 8, = . In order to
compute the maximum velocity response the maximum of expression (25) has to be
evaluated. The function

f(t) = {a cos(wt) + bsin(wt)} 26)
and its first derivative |
f(t) = { ~ awsin(wt) + bw COS(“-’t)} @n |[

are considered. Extrema of function (25) can be obtained by equating the first derivative
(26) to zero .

—awsin(wt) + bw cos(wt) = 0 (
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and its relative extrema occurs at

l- arctan (2> (28)
w a

In seismic engineering applications attention is paid to medium and high frequencies. If the
duration of the seismic event is T (approximately from 20s to 200s for strong motion) the
assumption 27 /w « T holds for the medium and high frequencies (approximately from
0.2s < 2w/w<2s). Therefore, From (25) and (26) the absolute extremum of %(t) will be
reached very close to the end of the seismic input (Figure 5) and
x(t) max= |¥(tmax) |, T=fmax. As a consecquence, absolute maximum of x(t) can be
approximately calculated from:

12()Imaz = |2(tmasz)| =~

lT{acos[arcta.n ((—1-)] + asin[arctan <E)]} = -l-Twa.2 + a2
2 a 2

a

Then the velocity response spectrum can be obtained from

= [/:a('r) cos(wr)|? + [/:a("r) sin(w-r):l2 = 'F(G)‘ 29)
g 8 an
o g —

F(t)
Fit)
0 40

T
10

o 20 3 0 200 30 40 ;50
@ Time t (s) ® Time t (s) tmas!

Figure 5 Graphic representation of function 1, {a cos(wt) + bsin(wt)} (@) w=10,T=50s,a=b=2,
(b) w=05T=50s5,a=b=2, 2
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This expression is equal to the amplitude Fourier spectrum (2). Hudson (1979) and
Jennings (1983) showed that for low or non attenuated systems thc maximum response
usually occurs at the end of the vibration; therefore, we can conclude that the acceleration
amplitude Fourier spectrum, for medium and high frequencies, is a good approximation of
the velocity response spectrum when the damping ratio is zero.

4.2 Numerical comparison,

The first accelerogram so far today recorded in Spain will be used to compare the results
obtained by amplitude Fourier spectrum and velocity response spectrum with a null damping
ratio. The both longitudinal and transversal accelerogram’s components are represented in

_
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Figure 6 Beznar dam acceleragram, Juny 24 1984. (Roca and Pérez,

(b) Transversal component.

figure 6.

As it was commented, the approximation between amplitude F
velocity-response spectrum with a null damping ratio -expression (29)-,

J

1986). (a) Longitudinal component.

ourier spectrum and
is valid only when

the predominant period of a seismic input signal is quite small as compared with the time
seismic signal duration. As it can be seen in figure 7, where the velocity pseudo-response
spectrum are shown, the three cases corresponding to|F(8)| -expression 2) S,
-expression (11)- and  S; -expression (14)-, agree quite well for low periods (high
frequencies) and do not coincide for high periods (low frequencies). Therefore, it seems that
the use of the amplitude Fourier spectrum is a good approximation to the velocity-response
spectrum with null damping. This fact makes possible to use the approximation explained in

the next chapter.
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Figure 7 Numerical comparison between amplitude Fourier spectrum, velocity response spectrum with

damping ratio null, and velocity pseudo-response spectrum. (a) Longitudinal component. (b) Transversal
component.

S5- Estimation of seismic response spectra using
seismograms

For seismic zones for which only seismograms are available, it is necessary to obtain
approximate values of the maximum spectral accelerations and, at the same time, to perform
a study on the frequency content of the seismic signal. With this data, it is possible to make
an approximate definition of the seismic response spectra to be used in the structural
response computations.

Results obtained at the end of part 4 are basic to develope formulas which permit to
calculate pseudo-acceleration response spectra ordinates. This kind of formulae should be
particularized for the seismic zones in which response spectra have to be estimated, and
used to calculate the maximum ground accelerations. It has to be emphasized that such
formulae, useful for seismic zones of low seismicity, are approximate, due to the incomplete
instrumental data generally available for such zones. Moreaver, the formulas do not provide
the complete information necessary to obtain seismic spectra, as these require the definition
of spectral ordinates for each frequency. The frequency content of the ground motion can be
studied by using the Fourier amplitude spectra obtained by starting from available
displacement or velocity seismograms (e. g. Fig. 8). The analysis of the envelopes of the
amplitude spectrae allows to obtain predominant frequencies.

A short review of the methodology to obtain pseudo-acceleration data for regions whithout
acelerograms is given now. First of all it is necessary to determine the anelastic attenuation
coefficient -y, associated to the region of study. There are two possible ways. The first one is
using coda waves, and the second one using L4 waves.
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Figure 8 Example of displacement (bottom), velocity (middie) and
acceleration (top) Fourier amplitude spectra of the digitized seismogram
{right). The recording station belongs to the Cartuja Observatory, Spain.

Coda waves are presented in the seismograms as waves with exponential decrease after the
L, arrivals. The peak-to-peak amplitude of coda waves may be expressed as (e. g. Pujades et
al., 1990)

A 5 pY -
Sg) = Q7 MoB(fp) C(fp:t") 30

where t*=¢/Q.t being the lapsed time from the origin time of the earthquake and for the
predominant frequency observed on the seismogram.is Q is the anelastic attenuation factor,
M, is the seismic moment, and B(f,) is the coda excitation factor. The coda shape [unction,
C(fm t*), is given by:

NIRY :
ClUpt) = 15) (0)7F (52)" eoplm fp 0) Gy

where I(f,) is the instrument magnification for the predominant frequency f,. The Q values
are obtained by matching the theoretical f,—t* curves, corresponding to the seismographic
stations used in the study, with the observed f,—¢ data determined for each station. The
anelastic attenuation coefficients, v, can be determined using the well-known expression
(Nuttli, 1973)

™

TTQUT (32)
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where U is the group velocity of L, waves and T is the period. The determined v value,
using this method, is one aproach to the true + value of the Ly waves.

If there are enough Ly amplitude data, it is recomended to determine + values using the
sustained maximum amplitude of L, waves by means of the expression:

A = AO 7‘—5 e T (33)

where A4 is the maximum sustained amplitude, 4, is the amplitude at the epicenter, and r is
the epicentral distance.

Using espectral amplitudes, determined from Fourier analysis, expression (33) must be
written as:

(33bis)

By knowing the attenuation effect as a function of frequency, observed amplitude Fourier
spectrum at the sites can then be corrected by the anelastic attenuation effect. The
application of this correction together with the correction due to geometrical spreading of
the energy will yield the amplitude spectra at the epicenters.

The spectral displacement amplitudes, fd, given by the Fourier transform has the form:

fd = | /_ F()ezp(~i wt) di| 34)

where f(t) is the digitized seismic signal, ¢ is the time, and o the angular frequency.

The spectral acceleration may be obtained from the expression
fs=w’fd (35)
If we start from spectral velocity amplitudes, fv, then fs can be represented as:
fs=ofv (36)

For engineering purposes it is useful to work with pseudo--parameters. The approximate
relationship between pseudo-velocities, psv, and Fourier spectral acceleration, considering
that in psv the damping coefficient is zero, is given by:

psva=fs 37

Therefore, the pseudo-acceleration, psa, can be written as:

psa=qw psv (38)
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Peak values of pseudo-acceleration spectra and its predominant frequencies can now be
obtained using the expression (39).

Experience has shown (e. g. Hasegawa, 1985) that regional peak-acceleration data may be
expressed as a function of magnitude, m, anelastic attenuation coefficient, y, and epicentral
distance, r, in the form:

psa = A exp(Bm) ezp(—yr) r~ 1 39)

where A and B are constants to be determined.

The application of the least-square method to a set of earthquakes with known magnitudes
(m) and epicentral distances (r), recorded at one or more seismographic stations, and
covering a specific area with known anelastic attenuation coefficient (y) leads to the
determination of pseudo-acceleration psa formulae that may be important for regions
without acceleration data.

Expression (39) is applicable to regional studies (e. g. Hasegawa, 1985). For local studies

the local conditions must be taking into account by adding an estra term to the expression
(39).

A bi-linear acceleration response spectrum is thus estimated, by means of the defined
maximum acceleration and predominant frequency.

The method explained was applied by Canas et al. (1988) to seismograms corresponding
to earthquakes located near or in the Pyrennees mountains and recorded at the
seismographic station of Ebro (EBR), located in Roquetas (Tarragona), all the earthquakes
having duration magnitude between 2.8 and 5.6 (Penuelas, 1985). Since the study was a
regional one no local conditions were taken into account; therefore, expression (39) was
applied. The short-period vertical seismometer of EBR has a seismometer natural frequency
of 1 Hz; therefore, pseudo-acceleration data were obtained for frequencies about 5 Hz. For
frequencies higher than 5 Hz, the 1 Hz short-period seismometer of EBR station limits the
fiability of any calculated pseudo-acceleration data.

The pseudo-acceleration formula for the region compressed by the Pyrenees Mountains,
The Iberic System and the Catalonia Coastal Mountains-region located in the northeastern
part of Spain- is the following:

psa = —1.980 (+0.986) + 0.880 (£0.211)m — 0.5 logio 7 — 0.013 (log1o e) v (40)

Results obtained from expression (40) for different magnitudes and epicentral distances
are shown in Figure 9. Expression (40) has been obtained, as mentioned before, using a
short--period instrument (vertical component) having similar characteristics as those of the
WWSSN system. Therefore, a refined formula may be obtained if a higher frequency
instrument than the one used here becomes available. Due to the lack of acceleration data in
the region under consideration, expression (40) can be considered as a satisfactory approach
to the real accelerations expected in the region. Figure 10 shows the comparison between
the pseudo-acceleration values -determined using expression 40- and the peak acceleration
values corresponding to the earthquake of June 24/1984, with body wave magnitude about 5,
and located near the Beznar dam (Carreiio et al., 1988; Pérez et al., 1988).

It can be seen that the approach between the theoretical and the observed peak
acceleration values is really good. Although a better approach may be expected using a
formula developed for the same region were the acceleration data is collected, the
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.

comparison shows that this may be one way to work in places where accelerograms are not
available

6- Conclusions

By using spectral analysis, it has been possible to show that the Fourier spectra of the
Beznar dam accelerograms are very similar to their velocity response spectra.

The definition of the seismic response by using deterministically estimated response spectra
has the following advantages in regions with lack of acceleration data:

a) The starting data, necessary in the simulation, can be obtained from displacement or
velocity seismograms.

b) The seismic response spectra are obtained in a simple way. Nevertheless they are
reliable, due to the conservative manner in which the maximum acceleration has been
computed and due to the fact that it considers maximum ordinates in the zone of high
frequencies.

Comparison between theoretical and observed peak acceleration values are quite
satisfactory, indicating that the use of short-period displacement or velocity seismograms
may be a possible approach to infer acceleration data in the Iberian Peninsula.

The methodology explained in this work may be of interest for other regions of the world
without acceleration records.
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