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Abstract

In this paper, we proposed a new parallel algorithm: Parallel Regularized Multiple-Criteria Linear Programming (PRMCLP) to

overcome the computing and storage requirements increased rapidly with the number of training samples. Firstly, we convert

RMCLP model into a unconstrained optimization problem, and then split it into several parts, and each part is computed by a

single processor. After that, we analyze each part’s result for next cycle going. By doing this, we are be able to obtain the final

optimization solution of the whole classification problem. All experiments in public datasets show that our method greatly increases

the training speed of RMCLP in the help of multiple processors.
c© 2014 The Authors. Published by Elsevier B.V.
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1. Introduction

Nowadays, the coming of Big Data bring us unprecedented opportunities and challenges. On the one hand, Data is

becoming the larger and more complex, which causes us to be puzzled facing the vast ocean of information. However,

on the other hand, in order to solve the important management problem, I usually do not gain enough knowledge

to support our decision. One of the most important reason is that we still do not have the capabilities to extract

useful knowledge from Big Data. As a result, more and more people begin to research new data mining methods

and technology to deal with the increasing complex data. In this paper, we focuss on the the research of parallel

algorithm based on Regularized Multiple-Criteria Linear Programming (RMCLP)1 to further accelerate the training

speed, which will provide a possible way in order to the big data problem.

Classification is one of the most basic and key problem in machine learning and data mining field, and various

classification algorithm have been developed in the last few years2,3,4,5,6. Support Vector Machine(SVM)7,8,9 is one of

the most popular methods. However, the idea of applying optimization techniques to solve classification problem can

be dated back to more than 70 years ago when linear discriminant analysis (LDA)10 was first proposed in 1936.11 has

proposed a similar model with SVM using the large margin idea in 1960’s. From 1980s to 1990s, Glover proposed
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a number of linear programming models to solve discriminant problems with a small sample size of data12,13. Other

classification models also can found in14,15,16,17,18. Recently, Shi and his colleagues19 extend Glover’s method into

classification via multiple criteria linear programming (MCLP), and then various improved algorithms were proposed

one after the other1,20,21,22. These mathematical programming approaches to classification have been applied to handle

many real world data mining problems, such as credit card portfolio management23,24,25, bioinformatics26, information

intrusion and detection27, firm bankruptcy28,29, and etc.

In order to realize the classification algorithm parallelization, there are usually two strategies as follows: 1) the

parallel algorithm is designed by the divide-and-rule tactics. For a large scale problem, we can divide it into several

sub-problem, which is mutually independent and have same form with the primal problem. And then, these sub-

problems are solved by the recursion way. At last, combining these results, we can obtain the solution of primal

problem. We can find typical methods in30,31,32. 2) parallelling the serial algorithm. This strategy tries to find the

parallel nature of the algorithm itself, and finally finish the classification’s parallelization. several typical methods

include33,34,35,36.

In this paper, we focus on the research of RMCLP, and propose a Parallel version of RMCLP algorithm (PRMCLP)

in order to overcome the compute and storage requirements increase rapidly with the number of training sample.

Inspire by37, we adopt the second strategy to parallelize our algorithm.

Firstly, we convert RMCLP model into a unconstrained optimization problem, and then split it into several parts,

which is performed in p processors at the same time. After that, we summarize and analyze the results obtained by

each processors, and take them as the parameter input of each sub-problem in next step. Keeping the cycle going,

we will obtain the optimization solution of the whole classification problem until satisfying the terminal condition.

Experiments in public datasets show that our method greatly increases the training speed of RMCLP in the help of p
processors.

The remaining parts of the paper are organized as follows. Section 2 introduces the basic formulation of MCLP

and RMCLP; Section 3 describes in detail our proposed Algorithms PRMCLP; All experiment results are shown in

the section 4; Last section gives the conclusions.

2. Regularized MCLP for Machine Learning

We give a brief introduction of MCLP in the following. For classification about the training data

T = {(x1, y1), · · · , (xl, yl)} ∈ (�n × Y)l, (1)
where xi ∈ �n, yi ∈ Y = {1,−1}, i = 1, · · · , l, data separation can be achieved by two opposite objectives. The first

objective separates the observations by minimizing the sum of the deviations (MSD) among the observations. The

second maximizes the minimum distances (MMD) of observations from the critical value13. The overlapping of data

ξ(1) should be minimized while the distance ξ(2) has to be maximized. However, it is difficult for traditional linear

programming to optimize MMD and MSD simultaneously. According to the concept of Pareto optimality, we can

seek the best trade-off of the two measurements24,25. So MCLP model can be described as follows:

min
ξ(1)

e�ξ(1) & max
ξ(2)

e�ξ(2)

s.t. (w · xi) + (ξ(1)
i − ξ(2)

i ) = b, for {i|yi = 1},
(w · xi) − (ξ(1)

i − ξ(2)
i ) = b, for {i|yi = −1},

ξ(1), ξ(2) ≥ 0,

(2)

where e ∈ Rl be vector whose all elements are 1, w and b are unrestricted, ξ(1)
i is the overlapping and ξ(2)

i the distance

from the training sample xi to the discriminator (w · xi) = b (classification separating hyperplane). By introducing

penalty parameter C,D > 0, MCLP has the following version

min
ξ(1),ξ(2)

Ce�ξ(1) − De�ξ(2),

s.t. (w · xi) + (ξ(1)
i − ξ(2)

i ) = b, for {i|yi = 1},
(w · xi) − (ξ(1)

i − ξ(2)
i ) = b, for {i|yi = −1},

ξ(1), ξ(2) ≥ 0,

(3)

A lot of empirical studies have shown that MCLP is a powerful tool for classification. However, we cannot ensure

this model always has a solution under different kinds of training samples. To ensure the existence of solution,
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recently, Shi et.al proposed a RMCLP model by adding two regularized items 1
2
w�Hw and 1

2
ξ(1)�Qξ(1) on MCLP as

follows (more theoretical explanation of this model can be found in1:

min
z

1
2
w�Hw + 1

2
ξ(1)�Qξ(1) + 1

2
b2 +Ce�ξ(1) − De�ξ(2),

s.t. (w · xi) + (ξ(1)
i − ξ(2)

i ) = b, for {i|yi = 1},
(w · xi) − (ξ(1)

i − ξ(2)
i ) = b, for {i|yi = −1},

ξ(1), ξ(2) ≥ 0,

(4)

where z = (w�, ξ(1)�, ξ(2)�, b)� ∈ Rn+l+l+1, H ∈ Rn×n, is symmetric positive definite matrices. Obviously, the regular-

ized MCLP is a convex quadratic programming. According to dual theorem, (4)∼(4) can be turned into

min
α, ξ(1)

1
2
α�(K(A, A�) + ee�)α + 1

2
ξ(1)�Qξ(1),

s.t. −Qξ(1) −Ce ≤ Eα ≤ −De,
(5)

where A = [x�1 , · · · , x�l ]� ∈ Rl×n, E = diag{y1, · · · , yl}, and K(A, A�) = Φ(A)Φ(A)� = (Φ(A) · Φ(A))l×l, and Φ is a

mapping from the input space Rn to some Hilbert spaceH 38.

Compared with traditional SVM , we can find that the RMCLP model is similar to the Support Vector Machine

SVM model in terms of the formation by considering minimization of overlapping of the data. However, RMCLP

tries to measure all possible distances ξ(2) from the training samples xi to the separating hyperplane, while SVM fixes

the distance as 1 (through bounding planes (w · x) − b = ±1) from the support vectors. Although the interpretation

can vary, RMCLP addresses more control parameters than the SVM, which may provide more flexibility for better

separation of data under the framework of the mathematical programming. In addition, different from the traditional

SVM, the RMCLP considers all the samples to solve the classification problem and thus is insensitive to outliers.

3. Parallel RMCLP

3.1. Algorithm Structure

In order to realize the parallelization of RMCLP, we firstly translate RMCLP into a unconstrained optimization

problem. To simplify, (5) can be rewritten as

min
π

1
2
π�Λπ,

s.t. Gπ −Ce ≤ 0,
Hπ + De ≤ 0,

(6)

where π = [α�, ξ(1)�]�, and G = [−Q, − E], H = [E, O], O ∈ Rl×l is a null matrix, Λ is written as(
K(A, A�) + ee� 0

0 Q

)
. (7)

Next, we turn the objective (5) into the following unconstrained optimization problem

minπ f (π) = 1
2
π�Λπ + λ�max{Gπ −Ce, 0}2 + μ�max{Hπ + De, 0}2, (8)

where C,D ∈ R are the artificial parameters, and λ = {λ1, · · · , λl}, μ = {μ1, · · · , μl}. Define d is the search direction of

the optimization problem (8), here, we choose the negative gradient direction as the feasible direction:

d = −∇ f (π)/‖∇ f (π)‖, (9)

where

∇ f (π) = Λπ + 2λ�diag(G�max{Gπ −Ce, 0}) + 2μ�diag(H�max{Hπ + De, 0}). (10)

Now, we use PVD idea to split our model37. Suppose we can use p processor, the variable π of the unconstrained

optimization problem (8) can be divided into p chunks: {π1, · · · , πp}, where the dimension of the ith chunk is mi, i.e.,

π = {π1, · · · , πm}, πi ∈ Rmi , i = 1, · · · , p,
p∑

i=1

mi = 2l. (11)
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In the next step, we allocate the p variable to p processor, and decompose the problem (8) into the subproblem with mi

dimension. Each processor solves one corresponding subproblem, which update other variables on the basis of some

rules except for computing the mi variables itself. After each processor finishes updating, we will perform a quick

synchronous step: searching the results obtained by each computing unit and compute the current solution. Repeating

the course, our algorithm can be described as

Algorithm 1 Parallel RMCLP

step 1: Given the initial point π0, and penalty factors λ, μ > 0. k = 0, and let π0 = {π0
1
, · · · , π0

p}, λ = {λ1, · · · , λp},
μ = {μ1, · · · , μp}, kernel matrix Λ is divided into {Λ1, · · · ,Λp}, similarly G = {G1, · · · ,Gp}, H = {H1, · · · ,Hp},
and storage πk

i , λi, μi in the ith processor, i = 1, · · · , p.

Step 2: Computing for each processor, i = 1, · · · , p:

p1
i = Λiπ

k
i ,

p2
i = λ

�
i diag(G�i max{Giπ

k
i −Ce, 0}),

p3
i = μ

�diag(H�i max{Hiπ
k
i + De, 0}).

Step 3: Computing:

dk =

p∑
i=1

p1
i + 2

p∑
i=1

p2
i + 2

p∑
i=1

p3
i ,

If dk = 0, the optimization solution is πk, go to Step 5, else dk = dk/‖dk‖.
Step 4: Computing for each processor, i = 1, · · · , p:

min
πi ,νi
ωk

i (πi, νi) = f (πi, π
k
ī + diag(dk

ī )νi), where ī is the complementary set of i, and the approximate solution

(πk
i , ν

k
i ) ∈ Rmi × Rp−1, let πki = {πk

i , π
k
ī + νidiag(dk

ī )}.
Step 5: compute τ0, τ1, · · · , τp, and solve

min
τ0 ,τ1 ,···,τp

f (τ0π
k +

p∑
i=1

τiπ
ki ), s.t.

p∑
i=0

τi = 1,

let πk+1 = τ0π
k +

∑p
i=1
τiπ

ki , k = k + 1, if ∇ f (πk+1) < ε, terminate the algorithm, else go to step 2, where ε is small

enough positive number.

3.2. Convergence Analysis

Theorem 3.1. The sequence generated by {πk} of Algorithm 1 either terminates at a stationary point {πk̄}, or is an
infinite sequence, whose accumulation point is stationary and lim

k→∞
∇ f (πk) = 0.

Proof. For ∀π, π′ ∈ R2l, we have

∇ f (π) = Λπ + 2λ�diag(G�max{Gπ −Ce, 0})
+2μ�diag(H�max{Hπ + De, 0}). (12)

So

‖∇ f (π) − ∇ f (π
′
)‖

= ‖Λ(π − π′ ) + 2λ�diag(G�(max{Gπ −Ce, 0} −max{Gπ′ −Ce, 0}))
+2μ�diag(H�(max{Hπ + De, 0} −max{Hπ′ + De, 0}))‖
≤ ‖Λ‖‖(π − π′ )‖ + 2‖λ�‖‖diag(G�(max{Gπ −Ce, 0} −max{Gπ′ −Ce, 0}))‖
+2‖μ�‖‖diag(H�(max{Hπ + De, 0} −max{Hπ′ + De, 0}))‖.

(13)

We can prove easily

diag(G�(max{Gπ −Ce, 0} −max{Gπ′ −Ce, 0})) ≤ G�(π − π′)
diag(H�(max{Hπ + De, 0} −max{Hπ′ + De, 0})) ≤ H�(π − π′ ). (14)
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Let ‖Λ‖ + 2‖Λ‖‖G�‖ + 2‖μ�‖‖H�‖ = K, we obtain

‖∇ f (π) − ∇ f (π
′
)‖ ≤ K(π − π′). (15)

As the result, according to the Theorem 2.2 in39, {πk} either terminates at a stationary point πk̄, or is an infinite

sequence, whose accumulation point is stationary and lim
k→∞
∇ f (πk) = 0. �

Theorem 3.2. If Λ of Algorithm 1 is positive definite, then the sequence of iterates {πk} generated by the subproblem
of (8)converges linearly to the unique solution π̄ , and the rate of convergence is

‖πk − π̄‖ ≤ (
2

γ
( f (πk) − f (π̄)))

1
2 (1 − 1

p
(
γ

K
)2)

1
2 , (16)

where γ,K > 0 are the constants.
Proof. For ∀π, π′ ∈ R2l, we have

(∇ f (π) − ∇ f (π
′
))(π − π′)

= (π − π′ )�Λ(π − π′ ) + (2λ�diag(G�(max{Gπ −Ce, 0} −max{Gπ′ −Ce, 0}))
+2μ�diag(H�(max{Hπ + De, 0} −max{Hπ′ + De, 0}))))(π − π′ ).

(17)

We easily know that

diag(G�(max{Gπ −Ce, 0} −max{Gπ′ −Ce, 0}))(π − π′ ) ≥ 0,
diag(G�(max{Gπ −Ce, 0} −max{Gπ′ −Ce, 0}))(π − π′ ) ≥ 0.

(18)

Since Λ is a positive definite matrix, we have

(∇ f (π) − ∇ f (π
′
))(π − π′) ≥ (π − π′ )�Λ(π − π′ ) ≥ γ

2
‖π − π′ ‖2,∀π ∈ R2l, (19)

where γ is a constant. As the result, subproblem of (8)converges linearly to the unique solution π̄ , and the rate of
convergence is

‖πk − π̄‖ ≤ (
2

γ
( f (πk) − f (π̄)))

1
2 (1 − 1

p
(
γ

K
)2)

1
2 , (20)

�

4. Numerical Experiment

Our algorithm code was programmed in MATLAB 2010. The experiment environment: Intel Core I5 CPU, 2

GB memory. The ”fminbnd” and ”quadprog” function with MATLAB is employed to solve quadratic programming

problem related to this paper.

To demonstrate the capabilities of our algorithm, we report results on MNIST data sets and UCI data sets, respec-

tively. In all experiments, our method is compared under different CPU processors.

The testing accuracies are computed using standard 10-fold cross validation (8). The parameter C and the RBF

kernel parameter σ are selected from the set {2i|i = −7, · · · , 7}((C,D) cross validation on the tuning set comprising of

random 10% of the training data. Once the parameters are selected, the tuning set was returned to the training set to

learn the final decision function.

4.1. MNIST Dataset

MNIST Dataset is a handwritten digit dataset with samples from ‘0’ to ‘9’. The size of each sample is 16 × 16

pixels. The same as the literature40, we test on the ‘5’ vs ‘8’ classification problem in the case of linear kernel. The

results are showed in Table 1.

From Table 1, we can find that the accuracy about handwritten digit dataset is the same in the case of different

processors, and the training time is greatly deduced with the increase of processors. This shows that our parallel

algorithm is very effective.
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Table 1. PRMCLP’s Training time for ‘5’ and ‘8’ datasets on different sample numbers and processors.

Method
Training subset size

200 400 600 800 1000

accuracy 96.17± 1.27 400 96.28±1.02 97.13 ± 1.34 97.56±1.69 98.24±0.89

1 procs(second) 8.21 28.49 43.20 67.21 76.38

2 procs 4.39 14.58 22.12 34.65 40.45

4 procs 2.14 7.24 13.33 18.89 22.43

6 procs 1.44 4.92 6.90 11.32 14.17

4.2. UCI Datasets

In the section, we use respectively Sonar, Ionosphere, Australian, Pima-Indian, CMC, Votes, WPBC to estimate

our methods(Table 2 give the description about these data sets).

Table 2. Description of UCI data sets

datasets � examples (L) � dimension (N)

Sonar 208 60

Ionosphere 351 34

Australian 690 14

Pima-Indian 768 8

CMC 1473 9

Votes 435 16

WPBC 110 32

The Table 3 give the experiments results in the case of RBF kernel.

Table 3. PRMCLP’s training time on UCI data sets

Dataset accuracy 1 procs 2 procs 4 procs 6 procs

Sonar 78.21± 4.46 46.35 24.18 13.62 14.12

Ionosphere 87.22± 6.45 148.12 76.54 38.75 25.34

Australian 86.34 ± 4.23 284.76 143.52 72.32 49.77

Pima-Indian 78.12 ± 5.45 331.34 169.31 87.62 56.61

CMC 70.18 ± 3.69 605.17 310.28 160.23 108.12

Votes 95.54 ± 3.48 198.23 101.01 54.29 34.52

WPBC 82.75 ± 2.92 22.25 11.57 5.76 3.43

From Table 3, we can find that PRMCLP’s the training time in the condition of 10-fold cross validation consumed

based on multiple processors is much less than ones based on single processor while their accuracy are in the same

level. with the increase of processors, the computing speed has a great improvement, which fully shows our algorithm

has a good parallelism.

5. Conclusion

In this paper, a new parallel algorithm: Parallel Regularized Multiple-Criteria Linear Programming (PRMCLP)

was proposed. With the help of multiple processors, the performance of PRMCLP in public datasets has a great

improvement. All experiments show our method’s effectiveness, In the future work, in order to deal with big data, how

to further accelerate our algorithm is under our consideration.In addition,the extension to semi-supervised learning

and multi-class classification is also interesting.
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