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1 Introduction 

The increasing global warming and pollution in our world concerns the population about the 

necessity to reduce the consumption of natural resources. In the last years the automobile 

industry has focused in reducing the consumption of their vehicles. Beside the improvement 

of the motors, an important aspect is the reduction of the total weight of the vehicle. The 

introduction of light-weight materials contributes to this aim. The use of these materials 

fosters novel joining technologies. Traditionally, the main joining technology in automotive 

industry is welding. Low cost and fast application for joining metallic components are the 

main benefits. 

The lightweight materials, such as fibre reinforced plastics, cannot be welded and alternative 

joining techniques are necessary. In this way, adhesive joints are becoming more important to 

and complement classic joining technologies such as welding, riveting or clinching. There are 

several advantages of its use. One advantage is the increase of the total stiffness of the body-

in-white structure. Another advantage is the improvement of crash energy absorption. The 

most important is the possibility to join materials that cannot be welded, as for example 

metallic plates with glass or carbon fibre materials. 

The increasing use of structural adhesive opens a new investigation field. To develop an 

optimum design of adhesive joints it is necessary to understand the connection behaviour and 

derive design allowable for quasi-static dynamic and fatigue loading. 

The behaviour of adhesives submitted to variable amplitude loading and proper 

computational fatigue analysis is not yet state of art and concern of ongoing research [Sch14]. 

The methods applied to analyse the behaviour of adhesive are based mainly on the methods 

used to evaluate welded joints. They should be analysed to evaluate if they describe properly 

the behaviour and failure of the modern adhesive bonds. Otherwise, new methods based on 

the adhesive characteristics should be developed. 
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2 State of the art 

An introduction of the specific aspects, in order to evaluate properly the fatigue life of 

adhesive joints, is the first point of this report. This chapter starts with a definition of 

structural adhesive joints followed by the definition of fatigue for materials. 

2.1 Structural adhesive joints 

Adhesive joints are one of the oldest joining techniques, even before screwing, riveting or 

welding. In 5.000 Year B.C., the human being used resins to join the parts of their first tools 

and weapons, as spears or harpoons [Sta98].  

The norm DIN EN 923 defines an adhesive as a non-metallic material, which can join through 

surface bonding (adhesion), and which gives sufficient internal strength (cohesion) to 

maintain the joint. That means that there are two types of forces, adhesive and cohesive, that 

ensure a proper connection between the substrates. 

 

Figure 2-1: Adhesion and cohesion 

Adhesion involves all the connection forces that guarantee the union between the adhesive 

and the adherent or substrate. They also determine the strength of the boundary layer. Some 

factors, as the stress state of the substrate or the pre-treatment of the substrate surface, affect 

the maximal strength of these forces. To obtain higher forces, the surface should be prepared 

in advance before application of the adhesive. The stress state of the substrate should not 

exceed the allowable value. Two different types of adhesion are considered: specific adhesion 

and mechanic adhesion. Mechanic adhesion is the mechanical bracing of the cured adhesive 

in the pores of the surface. In a macroscopic view of smooth surfaces, as the metal plates used 
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in automobiles, this type of adhesion is almost insignificant. Specific adhesion is based on the 

interaction of intermolecular forces at the borders of the joint, with chemical links between 

the molecules of the adhesive and the substrates and the interlinking of polymeric molecules 

with the surface of the substrate. Modern adhesives have been developed to produce a 

diffusion process between the molecules of the adhesive and the atoms of the substrate, 

increasing this adhesive force [Sta98]. 

The internal strength of the adhesive is based on the cohesive forces. These forces are 

produced by the attractions between atoms and molecules of a material. They strongly 

depend on the temperature and the state of the adhesive, which reaches its maximum when it 

is completely cured. 

The first adhesives were based on plant resins, animal blood, egg proteins or asphalt [Sta98]. 

Currently, adhesives are composed of bulking agent and an additive. There are diverse 

classifications to determinate the type of adhesive, the most common classifications are based 

on their composition. A major distinction of adhesives is one component and two component 

adhesives. The latter one cures with a chemical reaction mixing the components in a well-

defined proportion. Typical examples of these adhesives are: Epoxy resins, polyurethanes, 

methacrylates and silicones. One component adhesives can be classified according to their 

curing process. These curing processes are: chemical curing (Epoxies, Polyurethane, 

Cyanacrylate, Silicone), physical curing (coupling agents, Plastisol), chemical-physical curing 

(Dispersion adhesives) and pressure sensitive adhesives (Acrylates, natural or synthetic 

rubbers). A more specific differentiation can be done for the chemical curing adhesives 

according to the temperature of this process, cold or warm curing. Furthermore, another 

distinction is the chemical curing process which can be classified as polymerization, 

polyaddition and polycondensation [Sch14]. 

Nowadays, the use of adhesive joints is widely used in different fields, such as medicine, 

mechanical engineering, aerospace and electronic engineering. The implementation of this 

joining technique in automotive industry is increasing mainly due to the possibility to join 

different materials. Other benefits of adhesive connections are the process automation of 

adhesive lines application and corrosive protection [Sta98]. The advantages and 

disadvantages of their use are, according to [Gei12], [Hen11] and [Tre12]: 

Advantages: 

 Possibility to join different materials 

 Substrates are not harmed by holes 
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 Continuous surface connection, beside the non-uniform stress distribution that 

produces stress peaks on some specific points 

 Smaller heat stresses due to the joining process, smaller pre-stress 

 No electrical conductivity, thermal isolation and reduced contact corrosion 

 Possibility to join thin substrates 

 Greater geometrical tolerance allowable for part connection 

 Good damping properties (NVH) 

 Gas and liquid sealing of the joint, reduced corrosion 

 High fatigue resistance 

 Improvement of stiffness and crash properties of the car 

Disadvantages: 

 High influence of temperature and humidity 

 Cleaning and pre-treatment of substrate surfaces essential 

 Necessity of continuous quality control of the joining processes 

 The shear strength is usually higher than the tensile strength. Because of that special 

design of the methods are used to reduce the tensile stresses in the adhesive. 

 Limited demountability 

 Difficult recycling 

The adhesive can be classified according to their use, which is influenced by the mechanical 

properties of the adhesives (e.g. the stiffness or the ultimate elongation), in: structural 

adhesives, elastic adhesives or sealant adhesives. The division is given in more detail in the 

table 2-1, according to [Hab06] and [Sch07]: 
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Table 2-1: Classification according to the application of adhesives 

Application Strength 
Shear Modulus GK 

[N/mm
2
] 

Ultimate elongation eK 

[%] 

Structural Adhesive High >10 Up to 70 

Elastic Adhesive Medium 1-10 70-300 

Sealant Adhesive Low 0.1-1 300-700 

 

2.1.1 Determination of the adhesive properties 

Frequently, the substance samples are not considered appropriate to determine the 

mechanical properties of adhesives, such as the elastic modulus, shear modulus, yield strength 

and elongation at failure (specified in DIN EN ISO 527 for plastics). To obtain these 

mechanical properties of the bonded joints, other specific tests are realized, as the tensile test 

method using thick adherends that is described in the norm ISO 11003-2 or the determination 

of tensile lap-shear strength on bonded assemblies described in DIN EN 1465. Another 

common test to determinate the mechanical properties is to use bonded tubes loaded with an 

axial force, a twisting moment (torsion) or a combination of them. 

The main properties of adhesive are explained below. 

 Shear modulus 

Nominal shear strength is usually higher than tensile strength. Because of that, the typical 

mechanical property measured to define the stiffness of the adhesive is the shear modulus (G) 

rather than the elastic modulus (E), which is used more often for other types of materials. The 

variable G relates the stress with the strain or deformation of the material. Figure 2-2 shows 

the shear deformation in an adhesive joint with a pure shear stress state: 
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Figure 2-2: Shear Deformation in an adhesive joint [Hab06] 

The shear modulus, also known as modulus of rigidity, is defined as: 

𝐺 =  
𝜏

𝑡𝑎𝑛 𝛾
 (2.1) 

The relation between the force and the stress is: 

𝜏 =  
𝐹

𝐴
 (2.2) 

Where A is the surface in contact between the adhesive and adherent. 

Another definition of Shear modulus based on the relation: 

tan 𝛾 =  
𝑣

𝑑
 (2.3) 

𝐺 =  
𝜏

𝑣
 𝑑 (2.4) 

v represents the lateral displacement of the substrate and d the thickness of the adhesive 

layer. 

The deformation of the adhesive is elastic for low stresses but becomes plastic behaviour for 

higher stresses. 

 Poisson ratio 

The Poisson ratio of a material is the negative ratio of transverse to axial strain. When a 

material is stretched, it usually tends to contract in the directions transverse to the direction 

of stretching. This phenomenon is called Poisson effect. The Poisson ratio is defined with the 

Greek letter ν (nu). 
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𝜈 =  −
𝑑𝜀𝑡𝑟𝑎𝑛𝑠

𝑑𝜀𝑎𝑥𝑖𝑎𝑙
 (2.5) 

The Poisson’s ratio is an important property of an adhesive due to its relatively high value. A 

common value of passion ratio for adhesives is between 0.3 and 0.5.  

To determinate this ratio with tests, the following equation can be used: 

𝜈 =  
2(1 −

𝐺
𝐸

)

1 − 2
𝐺
𝐸

 (2.6) 

 Creep 

Creep is the tendency of a material to reversibly deform under a constant load for viscoelastic 

materials [Hab06]. The creep effect can be classified in three phases. Figure 2-3 shows these 

phases: 

 

Figure 2-3: a) Typical creep curve in creeping tests and the response of a rheological Burgers-Model [Mat12] 

b) Scheme of a rheological Burgers-Model [Mat12] 

c) Scheme of a mechanical equivalent 2-chained Maxwell-Model [Mat12] 

The primary phase is a quick deformation of the material. Then the secondary phase starts, 

which denotes a constant slope for the strain. The tertiary phase consists of a quick 

deformation and final failure of the specimen. 

Adhesives submitted to cyclic loading show a pronounced creep effect. The creep influence 

increases with higher mean stresses and with lower frequencies [Har11]. Testing with high 

frequencies increases the temperature of the adhesive significantly. This effect harms the 

adhesive properties and introduces a higher damage in the material. In [P653] the influence 

of the frequency is studied and in it was determined a maximum frequency of 10 Hz to reduce 
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the increase of temperature during the test. According to the norm DIN EN 9664 the 

maximum test frequency is limited to 30 Hz for high-strength structural adhesives. For other 

adhesive the frequency is recommended to be between 1 Hz and 10 Hz. 

2.1.2 Fundamentals of continuum mechanics for adhesive joints 

The stress state of an element can be represented by the stress tensor. According to [Gro07] 

the stress tensor can be divided in the hydrostatic component and the deviatoric component 

(eq. (2.7) and figure 2-4). The hydrostatic component is an isotropic stress that represents the 

change in volume (figure 2-4b). The deviatoric component is the stress tensor rest after 

subtracting out the hydrostatic component. The deviatoric stress tensor describes the 

deformation of the volume under consideration. 

 

 

Figure 2-4: Description of the stress components [Men11] 

 

[

𝜎11 𝜏12 𝜏13

𝜏21 𝜎22 𝜏23

𝜏31 𝜏32 𝜎33

]   =    [
𝜎𝑚 0 0
0 𝜎𝑚 0
0 0 𝜎𝑚

] +  [

𝜎11 − 𝜎𝑚 𝜏12 𝜏13

𝜏21 𝜎22 − 𝜎𝑚 𝜏23

𝜏13 𝜏32 𝜎33 − 𝜎𝑚

] 

 

 
(2.7) 

with 

𝜎𝑚 =  𝑝 =  
𝜎11 + 𝜎22 + 𝜎33

3
 (2.8) 

The components of the deviatoric tensor can also be written with the Kronecker-delta δij: 

𝑠𝑖𝑗 =  𝜎𝑖𝑗 −
1

3
𝜎𝑘𝑘𝛿𝑖𝑗                  (i, j, k = 1,2,3) (2.9) 

Stress tensor σij Hydrostatic component Deviatoric component sij 

a 

Total component:  

volume and shape change 

Hydrostatic component: only 

volume change 

Deviatoric component: only 

shape change 
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The hydrostatic component is invariant to coordinate transformation and can be represented 

by the first invariant I1 of the hydrostatic tensor. 

𝐼1 =  𝜎11 + 𝜎22 + 𝜎33 =  𝜎𝑖𝑖 = 3𝑝 (2.10) 

The deviatoric component can be described by the second invariant J2. This invariant is also 

known as quadratic invariant, due to its quadratic terms: 

𝐽2 =  
1

6
[(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
+ (𝜎𝑧 − 𝜎𝑥)2 ] +  𝜏𝑥𝑦

2 + 𝜏𝑦𝑧
2 + 𝜏𝑥𝑧

2 =  
1

2
𝑠𝑖𝑗𝑠𝑖𝑗 (2.11) 

The second invariant can also be described through the VON MISES stress: 

𝜎𝑉𝑀 = √3 ∙ 𝐽2  (2.12) 

The equations and information are according to [Bet04], [Gro07] and [Men11]. 

2.1.3 Description and behaviour of elasto-plastic adhesives 

In this master thesis, the failure is considered exclusively cohesive (inside the adhesive layer). 

Another assumption is that the adhesive possesses linear-elastic material behaviour. For the 

fatigue tests considered, the applied load is well below the yield strength of the adhesive. The 

simplification of linear-elastic material behaviour can be considered valid 

The maximum principal stress and the equivalent elliptic stress are evaluated for failure 

assessment. 

 Maximum principal stress 

The maximum principal stress is an equivalent stress from the stress tensor that can be used 

as a reference. The definition of this stress is the maximum normal stress in a specific 

direction. This stress is based on the stress tensor. It is always a positive-defined matrix, which 

means that through a coordinate transformation it is possible to transform the stress tensor in 

a diagonal matrix (eq. (2.13)).  

[𝜎∗] = [S]T[𝜎][S] = [S]T [

𝜎11 𝜏12 𝜏13

𝜏21 𝜎22 𝜏23

𝜏31 𝜏32 𝜎33

] [S] =  [

𝜎1
∗ 0 0

0 𝜎2
∗ 0

0 0 𝜎3
∗
] (2.13) 
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considering [S] the matrix of the principal direction vectors and σ*1, σ*2 and σ*3 the principal 

stresses. The maximum principal stress is the highest value of these three stresses. The 

principal stresses are the eigenvalues of the stress tensor and their directions are the 

eigenvectors. These directions are always perpendicular toward each other and form a tripod 

coordinate base system. The method to calculate them is based equations (2.14) and (2.15): 

[𝜎]v =  λv (2.14) 

det  ([𝜎] − 𝜎∗ [I]) =  0 (2.15) 

Herein, v is a principal direction and σ* is a principal stress and [I] the identity matrix. 

 Equivalent elliptic stress 

The equivalent elliptic stress is a combination of the invariants of the stress tensor. This 

equivalent stress showed good results in other investigations [Her14], [Sch05], [Tre12]. It is 

based on the following assumptions and findings. 

In an isotropic continuum material, it is possible to determine the deformation through a 

combination of stresses σij. With an appropriate coordinate transformation, the combination of 

stresses can be substituted by the three invariants of the stress tensor, I1, I2 and I3. 

𝐹 = 𝐹(𝐼1, 𝐼2, 𝐼3) (2.16) 

For an incompressible material, the hydrostatic component has no influence and the 

invariants of eq. (2.16) can be substituted by the invariants of the deviatoric component J1, J2, 

J3.  

𝐽1 = 𝑠𝑖𝑗𝛿𝑖𝑗 = 0 

𝐽2 =
1

2
𝑠𝑖𝑗𝑠𝑖𝑗 

𝐽3 = det (𝑠𝑖𝑗𝑠𝑖𝑗) 

(2.17) 

For a compressible material, the hydrostatic component I1 is considered and the stress can be 

considered as a function of I1, J2, J3. The third invariant of the stress tensor can be neglected 

and the equation can be described as [Sch74]: 



 

2. State of the art 11 

𝐹 = 𝐹(𝐼1, 𝐽2) = 𝐽2 + 𝑎 𝐼1 + 𝑏 𝐼1
2 (2.18) 

The equation (2.18) is a variation of the yield function of Beltrami (1885): 

𝐹 = 𝐽2 + 𝑏 𝐼1
2 (2.19) 

The equation used in this case is an adaptation of eq (2.19): 

𝜏𝐹
2 = 𝐽2 + 𝑎 𝐼1 + 𝑏 𝐼1

2 (2.20) 

The parameters are determined according to [Tre12]: 

𝑏 =  
1

6
 
1 − 2𝜈

1 + 𝜈
 (2.21) 

where ν is the Poisson ratio. 

𝑎 =   
𝐸𝛼

1 + ν
 (2.22) 

where E is the elastic modulus of the adhesive and α an influence parameter of the hydrostatic 

component that is experimentally determined. For detailed information about these 

parameters, see [Sch74], [Tre12]. 

The sign of the first invariant (I1) determinates the type of normal stress. If it is positive 

(I1>0), the normal stress is a tensile stress. If it is negative (I1<0) then the normal stress is a 

compressive stress. For adhesives, the tensile stress causes higher damage than the 

compressive stress [Tre12]. 

 Determination of the hydrostatic coefficient a 

Equations (2.19) and (2.20) are used to determine the coefficient a: 

𝜏𝑉,𝐵𝑒𝑙𝑡
2 = 𝜏𝐹

2 − 𝑎 𝐼1 (2.23) 

where τF is the equivalent elliptic stress and τV,Belt the equivalent stress according to Beltrami 

(eq (2.19)). The parameter a is the slope of the line between two different stresses of 

Beltrami’s equivalent stress. 
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Figure 2-5: Method to determinate the hydrostatic coefficient a 

This slope can be experimentally determined by a linear regression between two loading 

types. 

The method to calculate the coefficients and apply the equivalent elliptic stress works as 

follows: 

1. Experimental determination of the maximum load for at least two loading types (for 

example pure tension and pure shear). 

2. Calculate the stress tensor through FE-Simulation 

3. Determination of τV,Belt through the invariants I1 and J2 using equation (2.19). 

4. Represent the reference points of the two different loading types in a yield diagram 

(figure 2-5). 

5. Calculate the linear regression of the reference points to obtain the hydrostatic 

coefficient a. This value does strongly depend on the point stress evaluation (e.g. 

which node is the FE representation of the loading layer). 

2.2 Fatigue fundamentals 

Fatigue, as it was defined by Ernst GASSNER in 1939 [Gas39], is defined as the fatigue 

strength of the component under realistic working conditions with a modern, lifetime-

oriented interpretation of the cyclic loaded components and assemblies. It correlates the 

lifetime to the magnitude of the cyclic loading amplitudes [Hai98]. Nowadays this definition 

also includes other loads (Overloading, bumping, bending and impact loads), creeping loads 

and wears [Son05, Son08].  
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An appropriate stress analysis in fatigue tests can be based on different concepts. The most 

common ones are [Vor00]: 

 pure experimental determination 

 nominal stress concept 

 structural stress concept 

 the concept of local elastic load 

 the concept of local load (local concept) and 

 the crack propagation concept 

Table 2-2: Advantages and disadvantages of basic concepts for fatigue analysis according to [Vor03] and [Kre99] 

Concept Advantages Disadvantages/Limitations 

Experimental determination  High accuracy of results  higher requirements of time 

and money 

 Real components and loads 

necessary 

 difficult to generalize  

Nominal stress concept  satisfactory to good result 

accuracy 

 low requirements  

 difficult to determinate 

combined load cases  

 limited applicability or high 

requirements of time and 

money in order to use the SN 

curve of the component that 

was experimentally determined 

as a basis 

Local concept  Low experimental 

requirements of time and 

money 

 Information about demands 

and crack initiation 

 Combined loads and order 

effect are considered 

 elastic local stresses have to be 

known 

 Occasionally higher numeric 

requirements 

 Crack initiation definition 

necessary 

Crack propagation concept  Analogously as in local concept 

Mixed Concepts  Combining the elements of the four basic concepts for 

appropriate adjustment of the advantages and  disadvantages 

 

Further information can be found in the literature, as in [See96], [Hai06], and [Rad07]. The 

next chapters explain the structural stress concept and local elastic stress concept, which are 

the ones applied to evaluate the tests of this master thesis. 
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2.2.1 Experimental fatigue analysis 

Despite of the advances in computational life analysis of components submitted to cyclic 

loading, the experimental determination of the fatigue strength properties is still essential. 

The fatigue strength test can be separated in two groups depending on the amplitude of the 

cyclic load applied, which can be constant or variable, figure 2-6. Subgroups are classified 

through the number of cycles and the stress that the component can support, which are low 

cycle fatigue (<5·104), finite-life fatigue (5·104 -2·106) and high cycle fatigue (>2·106). The 

tests with a constant amplitude load are easier and faster to realize than tests with a 

multistage loads. However, constant amplitude loading cannot properly describe the real 

working conditions of the component. In general, the operational loads are varying over time. 

Simplifications in testing can lead to false evaluation of local failures, the damage, the lifetime 

estimation and finally the dimensioning of the components [Son11]. 

 

Figure 2-6: Division of fatigue strength according to [Son08] 

For each stress ratio (R = σmin/ σmax) or rather mean stress (σm) there are some particular 

stress states [Hai06]: 

 Fully reversed loading with σm = 0 and R = -1 (σmin = -σmax) 

 Tensile stress state with σm = σa and R = 0 
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 Pressure stress state with σm = -σa and R = -∞ 

 Static stress with σm = σmax and R = 1 

The S-N curve describes the supportable stress state during a determined number of cycles 

correlated to failure of the component. It is experimentally obtained or estimated from other 

test data. Because of this reason, the basic fatigue strength experiments are the test with 

constant amplitude and mean stress to obtain S-N curves [Hol04]. Characteristic values of an 

S-N curve depend on: 

 the material (heat treatment and state) 

 the geometry and dimensions of the component 

 the properties of the component surface 

 the environmental conditions (temperature, humidity, etc.) 

 the loading type [Hai06] 

There are several estimations to describe the S-N curve [Hai06] according to: 

 WÖHLER (1870)  𝑙𝑔𝑁 = 𝑎 − 𝑏 𝜎 

 BASQUIN (1910)  𝑙𝑔𝑁 = 𝑎 − 𝑏 𝑙𝑔𝜎 

 STROMEYER (1914) 𝑙𝑔𝑁 = 𝑎 − 𝑏 𝑙𝑔 (𝜎 − 𝜎𝑘) 

 PALMGREN (1924)  𝑙𝑔 (𝑁 + 𝐵) = 𝑎 − 𝑏 k (𝜎 − 𝜎𝑘) 

 WEIBULL (1949)  𝑙𝑔(𝑁 + 𝐵) = 𝑎 − 𝑏 𝑙𝑔 [(𝜎 − 𝜎𝑘) /(𝑅𝑚 − 𝜎𝑘)] 

 STÜSSI (1955)  𝑙𝑔𝑁 = 𝑎 − 𝑏 𝑙𝑔 [(𝜎 − 𝜎𝑘) /(𝑅𝑚 − 𝜎𝑘)] 

 BASTENAIRE (1963) 𝑙𝑔𝑁 = 𝑎 − 𝑏 𝑙𝑔(𝜎 − 𝜎𝑘) − 𝑏(𝜎 − 𝜎𝑘)𝑐 

Both semi and double logarithmic curves converge to an asymptotic point called threshold 

fatigue limit [Hai06]. At present, S-N curves are commonly double logarithmic represented by 

a straight line with a slope k up to the threshold fatigue limit point (σk), where the vertical 

axis describes the stress amplitude and the horizontal axis the number of cycles [Hai06, 

Vor00]. A threshold fatigue limit stress, which can be applied to the component for an infinite 

cycle number does not exist [Son05, Son08]. 

𝑁 = 𝑁𝑘  ∙ (
σa

σk
)

−𝑘

for σk ≤ σa ≤ σa,Re
 (2.24) 

Equation (2.24) is used to determinate the lifetime for a determined stress amplitude 

[Hol04]. The exponent k describes the slope of the S-N curve between two points, the plastic 

stress limit (σa,Re), for low number of cycles, and the threshold fatigue limit. The parameters 
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σk, Nk and k are dependent on the stress ratio R, the lifetime probability Pl, the component 

factors and the failure criterion (for example crack initiation or failure) according to [Vor00]. 

To compare the influence of the stress ratio or mean stress of the S-N curves, the stress values 

are represented in a SMITH or HAIGH diagram. The stress ratio defined as: 

𝑅 =  
σmin

σmax
 (2.25) 

 

Figure 2-7: Haigh diagram [Hai03] 

The above showed S-N curve is valid for constant amplitude fatigue loads. To study loads with 

variable amplitudes another curve is used, called Gassner curve. The fatigue test with variable 

amplitude to obtain this curve is based on the highest value of the sequence 𝜎𝑎 and the 

number of repetitions of the sequence 𝑁̅ [Son05, Son07, Son08] 

 

Figure 2-8: S-N and Gassner curves by [Son05] 
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2.2.2 Nominal stress concept 

The nominal stress concept is also known as “global concept”, to discriminate it from the local 

concept. A first conceptual disadvantage is that the specific S-N curve of the component is 

needed. Another disadvantage is that the nominal stress is not always possible to define (for 

example a valid definition of the nominal shear stress for shell structures [Hai89]) 

The necessary nominal stress S is with a normal force F and a surface A generally defined 

[Hai06] as: 

𝑆 =  
𝐹

𝐴
 (2.26) 

for bending with a bending moment Mb and a resistance moment Wb as: 

𝑆 =  
𝑀𝑏

𝑊𝑏
 (2.27) 

for shear the nominal shear stress T is dependent on the shear  force Q and the surface A and 

defined as: 

𝑇 =  
𝑄

𝐴
 (2.28) 

and for torsion with the torsion moment Mt and the resistance moment against rotation of the 

nominal cross-section Wt as: 

𝑇 =  
𝑀𝑡

𝑊𝑡
 (2.29) 

Due to the notch from the geometry of the component and the loading type appears a stress 

concentration or peak σe,max. The relation between the stress peak and the nominal stress is 

established by the (elastic) concentration factor Kt [Hai06]: 

𝐾𝑡 =  
𝜎𝑒,𝑚𝑎𝑥

𝑆
 (2.30) 

for a nominal tensile stress S. 
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𝐾𝑡 =  
𝜏𝑒,𝑚𝑎𝑥

𝑇
 (2.31) 

for a nominal shear stress T. 

For the pure plastic concentration factor Kp is the same equation (2.30) with Sp instead of S 

(for equation (2.31) Tp instead T respectively). The Sp is the nominal stress in the cross-

section for a pure plastic state and Tp the shear stress for a pure plastic state. 

In the case of a cyclic load and a small notch radius or a steep stress gradient the 

concentration factor Kt do not reduce the lifetime [Hai06]. Due to the local flow in the area of 

the notch the notch stress cannot be considered as a static load. The reduction of the lifetime 

is done in proportion to the fatigue strength reduction factor Kf. Kf is the known fatigue 

strength (stress amplitude at the drop-off point of the S-N curve), defined from the relation 

between an unnotched polished sample σk and that from a notched sample or the according 

component Sk [Rad03]: 

𝐾𝑓 =  
𝜎𝑘  (𝐾𝑡 = 1)

𝑆𝑘 (𝐾𝑡 > 1)
 (2.32) 

for R = -1. 

This method gives a range of tolerable stresses or amplitudes for a determined lifetime 

according to the S-N curve of the component [Her96]. 

2.2.3 Structural stress concept 

Structural stresses are usually obtained from finite element calculation and obtain the 

geometric influences on the global stress [Hai06]. They can be considered as an improvement 

of the nominal stress. On the underlying linear-elastic behaviour, the method to calculate the 

fatigue strength based on the collective stresses sequences and the damage accumulation is 

the same as the one used for nominal stress concept [Hai06]. Frequently this concept is 

applied to evaluate welding joints, for example the hot-spot stress evaluation by FRICKE, figure 

2-9 [Rad07]. 
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Figure 2-9: Definition of hotspot-stress σhs for welding joints by FRICKE [Rad07] 

The selection of a proper hypothesis to describe properly the local multiaxiality depends on 

the loading type. For a proportional cyclic load, the stress condition can be properly described 

by the maximum principal stress at any time of the cycle. From experience it can be affirmed, 

that in these cases, the classic strength hypotheses reach a sufficient accuracy. Hence the 

classic strength hypotheses can be applied on these cases [Hai06]. 

The classic strength hypotheses for ductile materials are based on the shape modification 

energy and on the shear stress hypotheses [Hai89]. The reference stress (called von MISES) for 

the shape modification energy is defined as: 

𝜎𝑣,𝑀𝑖𝑠𝑒𝑠 =  √σ11
2 + σ22

2 + σ33
2 − σ11σ22 − σ11σ33 − σ22σ33 +  3 ∙ (τ12

2 + τ13
2 + τ23

2 )  (2.33) 

(based on coordinates: 1 = x, 2 = y, 3 = z) 

In the case of a plane stress state, the equation is simplified to: 

𝜎𝑣,𝑀𝑖𝑠𝑒𝑠 =  √σ11
2 + σ22

2 + σ33
2 − σ11σ22 +  3 ∙ τ12

2   (2.34) 

The shear stress hypothesis according to TRESCA differs usually up to 15% of the values from 

equation (2.33) or (2.34). It is defined for a plane stress state as: 

𝜎𝑣,𝑇𝑟𝑒𝑠𝑐𝑎 =  √(σ1 − σ2)2 + 4 ∙ τ12
2   (2.35) 

For brittle materials tensile stress hypothesis is usually applied [Hai06]: 
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𝜎𝑣,𝑇𝐻 =  
1

2
[σ1 + σ2 + √(σ1 − σ2)2 + 4 ∙ τ12

2  ] (2.36) 

In the case of non-proportional loads the equivalent stresses mentioned cannot be used. In 

this case the components of the multi-axial cyclic load may have different mean stress, 

frequencies or amplitude characteristics [Hai06]. The maximum principal stress is also not 

valid as reference because its direction can vary over time and position. Because of this reason 

the classical strength hypothesis are not considered when there is a non-proportional cyclic 

loading state. Critical stress plane is a valid applicable method in these cases. In it instead the 

maximum principal stress is considered the stresses from a cutting plane of the component 

[Hai06]. For each plane, the damage is calculated and the highest one is selected as reference. 

2.2.4 Damage accumulation 

The damage accumulation hypothesis was developed to estimate the service lifetime under a 

multi-stage load based on the results of a single-stage loading state [Hai03], [Son05], 

[Gas67]. The linear damage accumulation hypothesis from PALMGREN [Pal24] and MINER 

[Min45] provides the easiest, well-known and most frequently used method for a lifetime 

assessment of a component under a cyclic load with variable amplitude [Hai06]. This lifetime 

prediction hypothesis is known as PALMGREN-MINER rule. 

The load is generally measured by time series, in particular by Rainflow matrices or spectrums 

described by amplitude and frequency. The information about the order of the cycles with the 

spectrum description is lost and the order influence is not considered. 
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Figure 2-10: Lifetime prediction under load with variable amplitude by [Son05] 

The basic concept of linear damage accumulation is that the cyclic load causes a damage D of 

the component. The theoretical failure occurs when a critical value of the total damage D is 

reached. The theoretical value is Dth = 1. However, the damage accumulation in the reality is 

more complex and non-linear [Wal03]. Approximately 90% of the experiments that apply this 

method have a total damage below D = 1 [Son11] and can sometimes reach values three 

decades below [Sch73], [Eul00], [Eul99]. For example, the total damage of the forged steel is 

in an experimental range between D = 0.01 and D = 10 [Son05]. For unwelded aluminium 

the total damage between D = 0.3 and D = 0.1 for medium load fluctuations. For welded 

aluminium joints the total damage is between D = 0.5 and D = 0.2 [Son12]. Under corrosive 

condition the total damage can reach higher values, see [Son12]. 

The total damage sum is: 

𝐷𝑡𝑜𝑡𝑎𝑙 =  
𝑁𝑒𝑥𝑝

𝑁𝑟𝑒𝑐ℎ,𝐷=1
 (2.37) 

is one of the key indicators in a fatigue strength analysis [Bac08]. The fractional damage ΔDi 

of a cycle is defined as [Hai06]: 

∆𝐷𝑖 =  
1

𝑁𝑖
 (2.38) 

with Ni = N(σa,i, σm,i). 
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Ni is the maximum number of cycles according to the stress amplitude σa,i and the mean stress 

σm,i, based on the single-stage S-N curve. The damage D is the sum from the fractional 

damages: 

𝐷 = ∑ ∆𝐷𝑖

𝑖

 (2.39) 

The cycles loaded with stress amplitude below the drop-off point may cause damage to the 

component (high-cycle fatigue). In this case some variants of the PALMGREN-MINER rule exist 

(figure 2-11) [Sch14],[Vor00]: 

 

Figure 2-11: Variants of the linear damage accumulation 

Actually the adhesive does not have a drop-off point. So in this thesis the variant applied is 

the elementary, without any change in the slope of the S-N curve after the drop-off point. For 

further information about other variants, see [Sch14]. 

2.2.5 Critical plane 

The critical stress plane is a method that evaluates the stress state of the material on different 

cutting planes of the component to find which one is most critical. This method is widely 

applied in different fields of research as can be found in the literature, for example by 

[Car00], [Sus10] and [Sus13], or the one used in the FEMFAT program developed by Magna 

[Mag15]. The method is schematized in figure 2-12 and figure 2-13: 
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Figure 2-12: Critical plane method to evaluate fatigue lifetime [Sus11] 

The first step is to obtain the stress tensor of the component. This method is generally applied 

for multi-axial loading state. For this reason the stress tensor is variable and depends on time 

or period inside the cycle (figure 2-12a). Then an iterative algorithm is applied to calculate 

the stress in the cutting planes systematically. The reference to determinate the planes are 

(figure 2-13): 
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Figure 2-13: Angle and vector references to describe the cutting plane [Sus10] 

According to the notation used in figure 2-13, the orientation of a generic material plane, Δ, 

having normal unit vector n can be defined through angles ϕ and θ, where the latter is the 

angle between n and axis z, while ϕ is the angle between axis x and the projection of unit 

vector n on plane x-y. In order to easily calculate the stress components relative to the plane 

under consideration, a new system of coordinates, Onab, can now be introduced. The unit 

vectors defining the orientation of axes n, a and b can be expressed, respectively, as follows 

[Sus10]: 

𝐧 =  [

nx

ny

nz

] =  [

sin(𝜃) cos(𝜙)

sin(𝜃) sin(𝜙)

cos(𝜃)
]; 𝐚 =  [

ax

ay

az

] =  [
sin(𝜙)

−cos(𝜙)
0

] 

𝐛 =  [

nx

ny

nz

] =  [

cos(𝜃) cos(𝜙)

cos(𝜃) sin(𝜙)

−sin(𝜃)
] 

(2.40) 

Consider now a generic direction q lying on plane Δ and passing through point 0. If α is the 

angle between such a direction and axis a, it is straight forward to calculate the components 

of unit vector q, that is [Sus10]: 

𝐪 =  [

qx

qy

qz

] =  [

cos(𝛼) sin(𝜙) + sin(𝛼) cos(𝜃) cos(𝜙)

−cos(𝛼) cos(𝜙) + sin(𝛼) cos(𝜃) sin(𝜙)

−sin(𝛼) sin(𝜃)

] (2.41) 

According to the definition reported above, the instantaneous value of the stress normal to 

plane Δ, σn(t), as well as of the shear stress resolved along direction q, τq(t), can then be 

calculated respectively, as: 
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𝜎𝑛(𝑡) =  [nx ny nz]  [

𝜎𝑥(𝜑) 𝜎𝑥𝑦(𝜑) 𝜎𝑥𝑧(𝜑)

𝜎𝑥𝑦(𝜑) 𝜎𝑦(𝜑) 𝜎𝑦𝑧(𝜑)

𝜎𝑥𝑧(𝜑) 𝜎𝑦𝑧(𝜑) 𝜎𝑧(𝜑)

] [

nx

ny

nz

] (2.42) 

𝜏𝑞(𝑡) =  [qx qy qz]  [

𝜎𝑥(𝜑) 𝜎𝑥𝑦(𝜑) 𝜎𝑥𝑧(𝜑)

𝜎𝑥𝑦(𝜑) 𝜎𝑦(𝜑) 𝜎𝑦𝑧(𝜑)

𝜎𝑥𝑧(𝜑) 𝜎𝑦𝑧(𝜑) 𝜎𝑧(𝜑)

] [

nx

ny

nz

] (2.43) 

According to the instantaneous values of the normal stress and shear stress, the critical plane 

can be calculated. As an example, in [Sus10] is determined as the plane with maximum shear 

stress variability. This critical plane may change depending on the critical stress type of each 

material. 

Once the critical plane is determined, the values along a cycle of normal and shear stress 

(figure 2-12 c and d) are obtained and simplified by an equivalent alternative stress through a 

rain-flow counting or a spectrum distribution (figure 2-12 f and g). The next step is to apply 

the PALMGREN-MINER rule (figure 2-12e) to calculate the damage of normal and shear stress 

respectively. The sum of both damage values is the total accumulative damage (figure 2-12 

h). As it is explained in the previous chapter 2.2.4, generally this total damage is below the 

total damage for a single-step load (see chapter 2.2.4 damage accumulation). 

2.3 Fatigue analysis for structural adhesive joints 

2.3.1 Failure behaviour and criteria 

In a fatigue test of bonded components under variable load different phases can be 

discriminated (see [FAT221]). In [Rad07] die lifetime of a metallic material is divided in two 

phases, the crack initiation and crack propagation. The crack initiation is considered until the 

crack is detectable. This phase include the dislocation, the crack nucleation and the micro 

crack propagation. The other phase, the crack propagation, is subdivided in macro crack 

propagation and remaining fracture. It is important to remark that during the micro and 

macro crack, the crack propagation is stable. 

In the case of adhesive joints, the damage process is more complex and it is not possible to 

differentiate properly the crack initiation and propagation phases [Sil10]. The crack initiation 

of adhesives depends on the adhesive formulation, geometry and environmental conditions. 



 

2. State of the art 26 

Generally the failure is divided based on the failure location or mode in adhesive or cohesive 

failure. The adhesive failure is when the failure is located between the substrate and the 

adhesive. Despite this fracture, it is possible to find adhesive rest on the substrate as well as 

substrate rest on the adhesive layer. The cohesive failure is located in the adhesive and it is 

the failure of the intern strength of the adhesive. In the theory exposed by BIKERMANN [Bik68] 

and confirmed by KÖTTING [Köt84] it is affirmed that the pure adhesion failure is very 

improbable. Instead of that it is possible to have a cohesive failure in a thin layer between 

adhesive and substrate. 

The failure mode is influenced by different factors as the environmental conditions and the 

aging processes. In figure 2-14 the failure modes according to the norm DIN EN ISO 10365 

are displayed. 
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Figure 2-14: Failure mode according to norm DIN EN ISO 10365 

Beside the mean stress, temperature and environmental conditions, the manufacturing 

conditions (geometrical adhesives defects) have a high influence on the fatigue strength 

[Teu12]. Generally, in the fatigue test of adhesive joints there is a high scatter [Gei12]. 

The failure criterion is an important aspect to determine. In some cases it is defined as the 

total failure of the sample (for example [Rut03]) and in another as stiffness decrease of the 

joint [Hah95] and [Sch14]. In this master thesis is determined as the total failure of the 

sample. 
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2.3.2 Fatigue assessment approaches 

To conclude the state of art, a review of the possible approaches applied to evaluate the 

adhesive joints is presented. The two approaches compared in this thesis are: 

 Stress averaging approach (Spannungsmittelungsansatz) 

 Critical distance approach (Spannungsabstandsansatz) 

These two methods are based on the influence of the stress gradient in fatigue test in order to 

avoid the stress singularities. In the case of fatigue evaluation, the stress gradient has a higher 

influence on the failure as the maximum stress value. Because of this reason, the aim of two 

methods is to find a reference point with an equivalent stress that can be used as a reference 

stress to evaluate the fatigue strength of real components. 

 Stress averaging approach 

This theory is similar to the one proposed by NEUBER [Neu61] to evaluate notched or welded 

metallic materials. It is based on the influence for fatigue strength of the stress gradient 

perpendicular to the direction of the welded joint [Sch14]. The reason to apply this method is 

to evaluate the stress gradient taking into account the stress singularities but avoiding them as 

a reference stress. The effective stress is an average of the stress gradient and it is defined as: 

𝜎𝑒𝑓𝑓 =  
1

𝜌∗
∫ 𝜎𝑚𝑎𝑥𝐻𝑆(𝑦)𝑑𝑦

y = 𝜌∗

y=0

 (2.44) 
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An applied view and representation of this theory is in figure 2-15: 

 

Figure 2-15: Example of the NEUBER theory for a notched sample [Neu68] 

This approach was recently applied to study adhesive joints [Sch14]. 

 Critical distance approach 

The critical distance approach is a theory used to evaluate fatigue life of metals and welded 

joints exposed by TAYLOR [Tay07]. Recently, it has been also applied to adhesive joints 

[Sch14]. The aim of the method is to find a reference point, which its stress state is valid to 

evaluate the adhesive fatigue strength. Theoretically this distance is dependent on the 

material, but the geometrical characteristics of the sample are also an influencing factor. This 

theory is similar to the one presented by PETERSON / MOORE [Sch14]. 

 

𝜎𝑒𝑓𝑓 =  𝜎𝑀𝑎𝑥.𝐻𝑆 (r = a∗) (2.45) 
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3 Experimental investigations of bonded specimens 

In order to develop a method to calculate the lifetime of an adhesive joint under cyclic 

loading, three different specimen types were investigated. The tests were realized with the 

same adhesive, same stress ratio (R=0.1) and same thickness of the adhesive layer to achieve 

good comparability. Only the geometry of the samples and the loading type was alternated. 

The three geometries used are: 

 KS-II specimen 

 Cup-shaped specimen 

 Butt-joined cylinder specimen 

3.1 Adhesive 

The Adhesive is a one component, warm application, heat curing, high structural adhesive 

based on Epoxy resin from Firma Sika. With this adhesive high structural joints of different 

types of metals are possible. This adhesive is appropriate to combine its application with other 

joining techniques, as spot welding, riveting, clinching and other mechanical joints or to 

replace them partially. A high integrity of the components is achieved because of its high 

splitting resistance, including extreme deformations (Crash). 

The adhesive thickness is 1.5 mm for all specimens. 

The properties and advantages of this adhesive are [Sik09]: 

 One component adhesive (no mixing prior to application needed) 

 High strength 

 Adhesion to oiled surfaces possible 

 High wash resistance 

 Adequate to join different metals 

 Spot weldable 

 Corrosion protection 

 No damage on the substrate 

 No solvent, PVC or free Isocyanates in its composition 
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3.2 Substrate 

The adherents used for the specimens are typical automotive steels. 

In the experiments the failure occurred exclusively in the adhesive, because its strength is 

lower than the steel strength. The mechanical strength of steel is several orders of magnitude 

higher than those of adhesive. The steel is loaded only in its elastic regimen during the test of 

adhesive joints. Therefore, only elastic properties of steel are used for simulation. Beside the 

use of different steels for the substrate, their elastic properties are the same, avoiding any 

different behaviour between them during the different experiments. Table 3-1 contains the 

elastic properties of the steel: 

Table 3-1: Elastic mechanical properties of steel 

 
E-Modul [MPa] ν 

Steel 210 000 0,3 

 

The differences on the steels are in the yield strength or ultimate strength. 

The steel types of the experiments are: 

Table 3-2: Type of substrate steel for every test 

 

3.3 KS-II specimen 

The KS-2 (Kopfzug-Scherzug) specimen was developed by the Lehrstuhl für Werkstoff und 

Fügetechnik (LWF) Padeborn. The specimen consists of two U-profiles bonded on the middle 

face. It is possible to change the inclination of the force applied, allowing to load the joint 

with pure tension, pure shear or a combination of the two. This test is suitable to determine 

the properties of the joint for thin adhesive layers, submitted to cyclic and quasi-static loads. 

Finite-Element-Analysis is used to calculate the stress in the adhesive layer. The characteristics 

of the KS-II geometry are [Hah00]: 

 Easy construction 

 Easy fastening 

KS-II specimen HC420LAD 

Cup-Shaped specimen DP-K 34/60+ZE75/75 

Butt-joined cylinder specimen 1.0036 (S235) 
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 Low deformability demand of the material 

 Joining surface similar to a joint flange 

 Possibility to adjust the loading angle with respect to the joining surface 

 Application of the load direct to the joining plane 

 Suitable to evaluate the characteristics of point, line or planar connecting joints 

 Possible to combine different joining techniques 

In figure 3-1, the angle reference is determined. The nomenclature determinates that a 

loading angle of 0° is a pure shear load to the joint material, an angle of 90° a pure tension, 

and in the middle a combination of both. 

 

Figure 3-1: Possible loading direction of KS-II specimens [Hah00] 

Because of its possibility to apply different loading types, the specimen is used to determine S-

N curves for adhesive joints. For further information, as technical drawings, see [Hah00] or 

Annex. 

In this thesis, three different loading angles were investigated: a pure shear stress (0°), a pure 

tension stress (90°) and a mixed-mode with a resultant angle of 45°. 
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3.4 Cup-shaped specimen 

This test specimen represents a part-like specimen for adhesive connection in automotive 

industry. It is formed by a steel bowl piece with flat ends, which are joined to a steel plate, as 

can be seen in figure 3-2: 

 

Figure 3-2: Cup-shaped specimen (left), Possible setting up of Cup-shaped specimen (right) 

Cup-shaped specimen is a specimen innovated by Fraunhofer-Institut für Betriebsfestigkeit und 

Systemzuverlässigkeit (LBF). The plate is fixed and the bowl is loaded by a uniaxial force. The 

clamping system is used to adjust the load direction.  

In this master thesis, one load direction of the force is investigated. The load direction can be 

seen in figure 3-2. For detailed information of the specimen, such as the direction of the force, 

the area and dimension of the adhesive layer see Annex A.2. 

3.5 Butt-joined cylinder specimen 

This specimen consists in two solid cylinders joined at the flat ends. Figure 3-3 shows a 

representation: 
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Figure 3-3: Butt-joined cylinder specimen 

In this test the specimens are loaded in pure tension, pure torsion and a combination of both. 

Specimens were tested in four different cyclic tests: 

 Pure tension 

 Pure torsion 

 Combination of tension and torsion with the same ratio but without phase shift 

 Combination of tension and torsion with the same ratio but with phase shift (90°) 

Steel cylinder Adhesive 
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4 Numerical investigations 

This chapter explains the work with finite elements modelling with a Finite Element Software. 

The result of a simulation strongly depends on the joint modelling. The simulation is an 

approximation of the real behaviour under loading conditions. The idea is to simplify the 

model as much as possible to reduce the calculating time on the cost of decreased accuracy. 

The error should not exceed a permitted tolerance. 

This thesis investigates the stress distribution of the adhesive layer. A very fine discretisation 

is used for this reason. 

The software used is Abaqus version 6.12, Finite Element Analysis (FEA) Software from 

Dassault Systèmes. The pre-processing, solving and post-processing is entirely realized with 

Abaqus software.   

The adhesive layers of KS-II and cup-shaped specimen models consist of 3-D elements, type 

C3D8R, linear elements with 8 nodes and reduced integration. The use of this element type is 

based on the good relation between results and computational time [Sch14]. The substrates 

are modelled with 2-D Elements, using S4R elements, a four node element with reduced 

integration. Both element types are considered as deformable solids [Aba10]. 

In the butt-joined cylinder specimens, due to their symmetry, an axis-symmetric model space 

is used to create the simulation. In this case, both adherent and adhesive, are 2-D deformable 

solids, discretised with CG4X4R element type, a four-node generalized bilinear axis-symmetric 

quadrilateral with reduced integration [Aba10]. 

The contacts used to impose a joint between the adhesive and the adherents are tie contacts, 

which permit joining different element types. This constraint imposes that the surface of the 

adhesive and the adherent are tied during the simulation. The material properties of substrate 

and adhesive are very different. This leads to singularities in the simulation near the contact 

surface. The adhesive layer is therefore discretised with four elements in thickness direction. 

The middle plane of the adhesive is studied in order to minimize singular effects [Sch14]. 

A fine discretization of the adhesive layer is used. Hence, the element length of the adhesive 

elements is 0.1 mm in the three models. The requirement in the steel is not critical and 

according to that, its discretization is coarse. The KS-II adherents have an element length of 2 

mm, in the cup-shaped specimen of 1 mm and in the butt-joined cylinder specimen 0.5 mm. 

The boundary conditions of the models are comparable common: the models contain one 

reference point (RP) for each of the substrates to apply the boundary conditions. These 
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reference points are constrained to the clamping surface of the adherends. One of this 

reference points is fixed (all six degrees of freedom are restrained in the FEM). The other 

reference point serves as load introduction point. No displacement restrictions in the direction 

of a force or moment applicate are applied for the latter reference point. 

In the area of solver options, the FEA realized is an implicit solver (Static, General) [Aba10]. 

During the whole simulation, both adhesive and adherents deformations are considered as 

linear-elastic. This assumption is suitable for the substrates because the loading is well below 

their yield strength. Adhesives suffer plastic deformation before failure. Adhesives deform 

elastically until a certain stress value, where a crack initiates and local non-linear plastic 

deformation appears. After this crack, the supported stress of the adhesive is near the crack 

initiations stress. In fatigue testing, the applied stress is much lower than the yield strength 

value. Hence, elastic properties of the materials are sufficient to model the specimens. The 

elastic mechanical properties needed; Young’s modulus and Poisson’s ratio [Aba10], are 

specified in chapters 3.2 and 3.3, in table 3-1 and table 3-2. Due to this linear elastic 

assumption, the simulations are generated with a nominal load of 1kN and afterward scaled 

with the real load applied. 
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5 Evaluation of experimental and numerical investigations 

Experimental investigations are evaluated and presented. The first step is an evaluation of the 

obtained results to have an overview of the behaviour of the specimen under cyclic loading. It 

is an important input to determinate the accuracy of the simulation. The determination of the 

adhesive properties, for example creeping, is valuable information. The finite element models 

are developed in order to obtain the stress distribution in the adhesive layer. A validation of 

these FE-models is needed to ensure that the simulated system properly describes the real test 

and that the obtained stresses from the simulation are realistic. In the next chapter there is an 

explanation and comparison of stress-based failure criteria to investigate the suitability of 

these methods for the lifetime analysis of bonded joints. 

5.1 Analysis of the test results 

S-N curves for each test scenario are derived, using force amplitude or the nominal stress 

amplitude as the dependent variable. Scatter slope and position of the S-N curve are derived. 

The determination of S-N curves from test data is based on an in-house Matlab-tool named 

BMW Wöhlerlinie-tool version 1.2b using the maximum likelihood algorithm. 

Additionally, a further study of creep effects of the joint under cyclic loading is realized. 

5.1.1 Analysis of KS-II specimen 

The derived S-N curves of the three different cyclic loading experiments for the KS-II 

geometry probes are presented. The three different loadings are: pure tension (Kopfzug, KZ), 

pure shear (Shearzug, SZ) and Mixed-Mode 45°, a combination of tension and shear load with 

a resultant angle of 45° (45°). The S-N curve values are summarized in table 2-1: 

Table 5-1: No. of samples for each loading type 

Type of Load No. of samples 
No. valid tests Not valid 

Failure Run out 

Pure tension (KZ) 19 9 2 

7 

(6 Different frequency) 

(1 Slipped test) 

Mixed mode 45° 14 10 2 1 Slipped test 

Pure shear (SZ) 16 15 1 0 

 

In figure 5-1 it is possible to observe the scatter of each loading type in the test (TS), the slope 

of the curve (k), the drop-off point (y(NK)) and the cycle where this drop-off is considered 
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(NK)1. For further information of these variables, see chapter 2.3 and 2.4. The probes that are 

considered not valid are because of the slip of samples (2), not complete failure of the 

adhesive (1) or change of test conditions (test frequency) (5). 

                                                
1
 As explained in the chapter 2, there is any drop-off point for the adhesives that determine an infinite lifetime, but 

calculations are realized for two million cycles 
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Figure 5-1: S-N curves for KS-II test, pure tension (KZ), pure shear (SZ) and Mixed Mode with 45° resultant force angle (45°) 
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Figure 5-1 shows that failure of adhesives submitted to fatigue loadings studies strongly does 

depend on the loading type. The slopes of the pure shear and the pure tension stress state 

have a very high difference. That means that a smaller variation on the tension stress would 

affect the joint lifetime to a greater extent than a variation the shear stress. As a conclusion of 

this study, it is possible to affirm that the loads that cause a tensile stress would be more 

significant for the strength of the joint than the ones that introduce shear stress. Because of 

that, the design of adhesive joints should try to avoid, as much as possible, tensile stresses. 

Another remarkable point of this figure is the scatter of the tests. For pure tension or pure 

shear state, this scatter is smaller than for the mixed-mode load. This high scatter could create 

lower accuracy on the proposed methods. 

5.1.2 Analysis of cup-shaped specimen 

For this specimen there is only one type of load, which is a combination of forces in the three 

directions. To find the direction, the components of the unit force are explained in detail in 

Annex A.2. The orientation of it is 60° with respect to the x direction in x-y plane and 20.35° 

with respect to the x-y plane. The reference is shown in the figure 5-2: 

 

Figure 5-2: Reference components for cup-shaped adhesive layer specimen 

Positive z-coordinate orientated towards the bowl substrate, negative z-coordinate towards 

the plate substrate. 

9 samples were tested, which resulted in 8 failed samples and 1 runout. 

Figure 5-3 exposes the S-N curve of this specimen. 
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Figure 5-3: S-N curve for Cup-shaped specimen 
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The nomenclature to describe the S-N curve is the same as in figure 5-1. The scatter of this 

samples is much lower than for KS-II samples, TS = 1:1.10 in comparison with TS = 1:1.22 

or 1:1.50. A lower scatter in test data is a vital basis to achieve a higher grade of accuracy in 

latter simulation. 

5.1.3 Analysis of butt-joined cylinder specimens 

Four different types of load for this specimen were experimentally investigated: pure torsion, 

pure tension, and a combination of the two with and without phase shift. The tested samples 

for each type are specified in table 5-2: 

Table 5-2: No. of samples for each loading type for the butt-joined cylinder specimens 

Type of Load No. 

No. Valid test 
No. Not Valid 

test Failure 
Runout  

(non-failure) 

Pure tension 15 15 0 0 

Pure torsion 15 15 0 0 

Combination without 

phase shift 
18 16 2 0 

Combination with 

phase shift 
16 16 0 0 

 

In this case the dependent variable to determinate the S-N curves is the nominal stress for 

axial load and the nominal shear stress at the border for torsional load. The ratio between the 

nominal tension stress and the nominal shear stress is always constant between the tests with 

a combined load. This ratio is: 

𝑟𝜎/𝜏 =  
𝜎

𝜏
 (5.1) 

𝑟𝜎/𝜏 =  1.39 (5.2) 

Equations (5.1) and (5.2) give the correlation between force and stress for the tested samples: 

𝜎 =  
𝐹

𝜋𝑅2
 (5.3) 

𝜏 =  
2𝑀

𝜋𝑅3
 (5.4) 

𝑟𝑀/𝐹 =  
𝑀

𝐹
=  

τ

σ
 
𝑅

2
= 3.6 mm (5.5) 
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The ratio rM/F is used in this master thesis to scale unit force simulations. In the case of the 

combined torsion and tension loads, the ratio is used for moment-force scaling. 

The S-N curves of this test are exposed in figure 5-4: 
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Figure 5-4: S-N curve 50% survival probability lifetime curve for butt-joined cylinder specimens 
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The scatter in the experiments is low, TS = 1:1.15. The slope is flatter than for other 

specimen tests. That means that a variation in the testing force affects the lifetime of the 

adhesive joints strongly. 

The comparison of the combined loads with and without phase shift shows that for a 

combined load with phase shift the lifetime is shorter than without phase shift. The tested 

adhesive denotes a very small difference between concerning phase shift. It is possible to 

observe, that the highest difference of stress for the same number of cycles is lower than 10%. 

It can be observed that the difference decreases with an increase of cycle number. 

A study of the creep behaviour of these samples under cyclic loading is presented. This study 

is needed to evaluate the possible damage and creep behaviour of the joints. Displacement 

sensors were used during testing in order to systematically detect the creep effects. The 

sensors recorded the rotation and the axial displacement of the samples. Figure 5-5 shows 

exemplarily the behaviour of the samples. 

 

Figure 5-5: Average displacement of samples under pure torsion load before failure 

Figure 5-5 shows that the displacement has 3 phases for all the tests. The first phase covers 

the first 5% of the lifetime. In this phase the rotation increases quickly. The second phase lasts 

between 5% and the 98% of the lifetime cycles. The increase of the rotation is linear in this 

phase. The last phase consists of crack initiation and quick propagation until failure of the 

joint.  
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The deformation can originate from creep effects of the adhesive, since test were performed at 

an R=0.1. That means that a constant mean stress affects the sample. Alternatively the 

stiffness loss of the adhesive could originate from crack propagation.  

In this case, as it is shown in literature of the creep behaviour (2.1.1 Determination of the 

adhesive properties), it is considered as creep behaviour.  

This can also be affirmed with figure 5-6: 

 

Figure 5-6: Stiffness trends of the adhesive joint during pure torsion load 

Figure 5-6 illustrates the difference between the maximal and minimal displacement during a 

cycle, corresponding to the values of maximal and minimal load. With this variable it is 

possible to determine the stiffness evolution of the adhesive joint. Up to a lifetime of 95% the 

stiffness remains constant, no stiffness degradation of the joint is visible. At the end of the test 

a quick stiffness degradation occurs due to the creation and propagation of cracks. 

In the case of axial loads, the results are confusing, because not all the experiments show the 

same behaviour, possibly due to movements of the sensor during fatigue testing. One sensor is 

placed arbitrarily around the steel cylinder. This set up only records properly if the crack or 

failure of the adhesive is placed in the vicinity of the sensor. In the case of failure at a 

different position, the cylinder can flex and the sensor cannot properly record the axial 

displacement. This is denoted in figure 5-7: 
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Figure 5-7: Stiffness trends of adhesive joint during axial load 

Some of the samples show a high decrease of stiffness and others an increase. A measured 

increase in stiffness does not seem to be coherent. 

5.2 Validation of the Finite Element Models 

In this chapter the results of the finite elements models created are compared with the test 

data, in order to verify their suitability and validate the modelling data. The use of the finite 

element models (FEM) is necessary to obtain the stress distribution on the adhesive layer. 

The validation is based on three different specimen types. The KS-II model used was 

previously validated with other test in [Her14]. The cup-shaped specimen, during the testing, 

the samples had strain gauges in some points of the substrate, in order to properly compare 

the real test with the simulated results. In the case of the butt-joined cylinder specimens, the 

force-displacement or moment-tangential displacement curves obtained from quasi-static test 

are compared with the curves obtained from simulation. 
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5.2.1 Cup-shaped specimen validation 

This model is validated by the comparison of the measured strain (strain gauge on the 

samples) and the strain data from simulation. The strain gauges can be seen in figure 5-8: 

 

Figure 5-8: Location of the strain gauges on cup-shaped specimens 

All the gauges are unidirectional except for the gauge 4 that features two in-plane strains and 

the interaction between them. The gauges 2 and 5 are placed in a 15° line with respect to the 

front line as depicted in figure 5-8, are placed in a 30° in a line with respect to the front line. 

The comparison between the measured and the obtained values from the simulation are 

displayed in figure 5-9: 

 

Figure 5-9: Validation of the measured and the simulated strain 

Figure 5-9 affirms that the behaviour of the simulation compares well to the test 

measurements. Hence, the simulation describes the behaviour of the joint properly. 
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5.2.2 Butt-joined cylinder specimen validation 

To realize this validation, the load-displacement curve of the quasi-static test is used. 

 

Figure 5-10: Stiffness behaviour of the quasi-static tests; a) pure torsion, b) pure tension 

  

Figure 5-11: Comparison between the elastic stiffness of the simulation and the tests; a) pure torsion, b) pure 

tension 

Figure 5-10 illustrates that adhesive joints have two different material behaviour zones, the 

linear-elastic material behaviour and a zone of non-linear behaviour. In fatigue simulations 

the linear-elastic behaviour is the zone considered for the simulation, because during the 

fatigue test, the force applied to the joint is significantly lower than the yield strength. 
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Because of this reason, the validation was done in the linear-elastic behaviour of the test. 

Figure 5-11 shows the good correlation between test and simulation, validating the FE model 

of the butt-joined cylinder specimens. The y-axis is not represented with quantitative values 

due to confidentiality terms. 
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6 Application of stress approaches 

The approaches explained in the state of art (chapter 2.3.2) are elaborated in this chapter, 

using the stress distribution of the adhesive layer obtained from the FEA. 

Approaches are based on a maximal stress criterion. The butt-joined cylinder specimens with a 

phase shift of 90° are not considered in these approaches. They are studied with another 

approach in a separate chapter. 

The two failure criteria based on stress approaches considered in this work are: 

 Critical distance approach (Spannungsabstandsansatz) 

 Stress averaging approach (Spannungsmittelungsansatz) 

These methods are compared using the stress state of the specimens modelled with CAE 

software Abaqus in a quasi-static load state. The hypothesis of using the quasi-static stresses 

to calculate the lifetime of the joints is based on the elastic behaviour of the adhesive and the 

adherend before the fatigue failure and on the generic process of fatigue simulation using unit 

load cases in combination with load-time-history signals. During the testing the behaviour of 

the bonded joint can be considered linear-elastic.  

The investigation consists of two parts. The first one consists of the comparison of the two 

methods using two different types of reference stresses, the principal stress and the equivalent 

elliptic stress. The stresses are evaluated for two million cycles (N=2·106) and a 50% survival 

probability.  

The second part derives master S-N curves with different approaches and reference stresses, 

taking all fatigue testing specimens’ results into consideration. In order to compare the 

different methods, the scatter of the master S-N curve and the robustness of the methods are 

considered as the reference. 

As it is explained on the state of art, these two methods are widely used in lifetime calculation 

for metallic materials. The main objective from this thesis is to analyse the suitability of these 

methods for adhesive materials and joints similar to published work [Sch14]. The stress 

distribution is always taken from the middle plane of the adhesive to avoid the contact 

singularities that appear in the FEA due to the contacts between two materials with a big 

stiffness difference (chapter 4). A more detailed explanation can be found in the doctoral 

thesis about fatigue calculation of adhesive joints of H. Schmidt [Sch14]. 
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6.1 Comparison of stress approaches for a lifetime of two million cycles 

The two stress approaches are compared at the point of two million cycles (N=2·106). With 

the according stress distribution the strength and lifetime of adhesive joints is evaluated. Two 

types of stresses are considered: the principal stress, because it represents the maximal 

tension stress in the adhesive, and an equivalent stress named equivalent elliptic stress, which 

gives high accuracy results in stress-based methods for quasi-static loads [Tre12][Sch05]. 

The idea of these approaches is to find a point at a certain edge distance of the piece, which 

can be used as a reference stress value to calculate properly the lifetime of the joint. 

6.1.1 Critical distance approach 

The aim of this approach is to find a point, which can be used as a reference stress point. To 

find it, the discretization of the adhesive layer is very fine (0.1 mm).  

 Critical distance approach evaluation with KS-II specimens 

First of all, the KS-II tests have been studied to have a general view of the results. Several 

paths have been studied for the KS-II tests in order to compare the results and find which one 

has a better relation between accuracy and easiness. The three directions studied are: 

 Path 1, z = 1.7 mm: Transverse direction with respect to the shear load, which passes 

through the highest maximum principal stress for pure tension and mixed-mode 45° 

loading state. 

 Path 2, z = 22 mm: Transverse direction with respect to the shear load, which passes 

through the highest maximum principal stress for pure shear stress loading state. 

 Path 3, x = 1.3 mm: Parallel direction with respect to the shear load, which passes 

through the highest maximum principal stress for pure tension and mixed-mode 45° 

loading state. 
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Figure 6-1: Middle plane of the adhesive with the three paths studied in KS-II specimen 
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 Path 1, z = 1.7 mm 

 

Figure 6-2: Stress distribution along path 1 for critical distance approach 

Figure 6-2 shows the stress distribution of the three different load cases along the first path 

studied (z = 1.7 mm, figure 6-1). 

The maximum distance considered is 10 mm, because the width of the adhesive layer is 20 

mm and the stress distribution is symmetric. The standard deviation serves as evaluation 

criteria. There are two points with similar standard deviations, at 0.2 mm and 4.3 mm. In this 

case as a reference the 4.3 mm point would be taken into account because the standard 

deviation of the points close to it has smaller standard deviation, and in 0.2 mm, the points 

next to it have a higher variability. These approaches are not exact and for this reason, it is 

important that the results converge in an interval with a tolerable low standard deviation. 
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 Path 2, z = 22 mm 

 

Figure 6-3: Stress distribution along path 2 for critical distance approach 

In this path, the results are similar to the path 1. In this case at 0.2 mm and at 3.6 mm the 

standard deviation is minimal. As in the last case, the best option is to pick the 4 mm because 

the points close to it have lower standard deviation as in the point at 0.2 mm. 
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 Path 3, x = 1.3 mm 

 

Figure 6-4: Stress distribution along path 3 for critical distance approach 

In this case, any point shows a comparable principal stresses for different loading types. The 

variation along the path is very small. 

Path 3 is completely discarded, because there is any point with a significant low difference 

between the principal stresses of the loading types. Path 1 has a lower minimal standard 

deviation, but direction 2 is easier to use because it represents the middle of the adhesive 

connection. The stress distribution of other specimen geometries is analysed for both paths. 

 Comparison of the critical distance approach between KS-II and cup-shaped specimens 
using the maximum principal stress 

The KS-II and cup-shaped specimens are investigated in conjunction. This decision is based on 

the loading types and geometries of the joint for automotive industry. The adhesive joints of 

automotive industry are loaded mainly with tension and shear stresses at the car body. The 

butt-joined cylinder specimens introduce a torsion load, which represents a rather academic 

stress state. A last step compares the three different geometries. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 5.0 10.0 15.0 20.0

St
an

d
ar

d
 d

e
vi

at
io

n
 

σ
H

S 
/σ

H
S,

 m
ax

 
 

Distance from the border [mm] 

Pure shear max. principal stress

Mixed-mode 45º max. principal stress

Pure tension max. principal stress

Standard deviation



 

6. Application of stress approaches 57 

These specimens are going to be presented and compared with the absolute distance from the 

edge of the adhesive layer as a reference to determine a unique reference point. The direction 

in the adhesive layer of the cup-shaped specimen is determined as the path along their width, 

which passes through the point with its highest value of maximum principal stress. As in the 

KS-II, that is analysed in the middle plane of the adhesive, to avoid contact singularities of the 

FE Model. 

 

Figure 6-5: Path of the stress distribution (red line) for the cup-shaped specimen 
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 Absolute distance 

The next figures show the stress distribution of the KS-II and cup-shaped specimens along the 

path: 

 

Figure 6-6: Maximum principal stress distribution of KS-II (along path 1) and cup-shaped specimens 

 

Figure 6-7: Comparison of the stress distribution between KS-II at path 1, z = 1.7 mm, and cup-shaped specimen 

using the critical distance approach 
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Figure 6-8: Comparison of stress distribution between KS-II at path 2, z = 22 mm, and cup-shaped specimen using 

the critical distance approach 

In both cases, the standard deviation reaches a minimum in a defined point. However, the 

obtained standard deviation is still very high. Hence, absolute distance from the edge of the 

adhesive is not a good indicator to determine the critical distance. As it is possible to observe 

on figure 6-7 and figure 6-8, the cup-shaped specimen has a qualitative similar stress 

distribution compared to the KS-II specimen loaded with a mixed force, but with a distance 

gap. 

 Introduction to distance hypotheses 

With these results, three hypotheses are proposed to minimize the gap between the two 

different specimens due to their different width: 

 Constant gap: The distance to the point reference is a property of the material, but 

instead from the border this distance is determined from the point with highest value 

of maximum principal stress (hot spot) [Tay00]. 
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 Relative distance: The adhesive joints are continuum joints and the stress distribution 

can be influenced by the total width of the joint. Instead of evaluating this distance in 

absolute terms, a relative term is used based on the total width of the adhesive. 

 Stress scaled relative to the width: With the same base as the relative distance, the 

maximum stress and its distribution can be influenced by the total width of the 

adhesive. Instead of taking the stress values directly, a term with a stress scaled 

through the total width is used. 

The hypotheses are further investigated. The next figures show the stress distributions using 

these hypotheses along path 1: 

 

Figure 6-9: Maximum principal stress distribution of KS-II (along path 1) and cup-shaped specimens with constant 

gap from the point with highest maximal principal stress 

-0.2

0

0.2

0.4

0.6

0.8

1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

σ
H

S 
/σ

H
S,

 m
ax

 

 Distance from the point with highest max. principal stress [mm] 

KS-II Pure shear max. principal stress KS-II Mixed-mode 45º max. principal stress

KS-II Pure tension max. principal stress Cup-shaped specimen max. principal stress



 

6. Application of stress approaches 61 

 

Figure 6-10: Maximum principal stress distribution of KS-II (along path 1) and cup-shaped specimens considering a 

relative distance 

There is also the possibility that the two hypotheses are combined. The next figure shows this 

possibility: 

 

Figure 6-11: Maximum principal stress distribution of KS-II (along the path 1) and cup-shaped specimens with a 

constant gap distance from the point with highest max. principal stress and considering a relative distance 
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Figure 6-12: Maximum principal stress distribution of KS-II (along the path 1) and cup-shaped specimens applying 

the three hypotheses 

It is possible to observe that the best solution is using the three hypotheses together. There it 

is possible to find a point at a relative distance from the maximal stress in each specimen from 

approximately 14%, with respect to the total length (distance = length of the adhesive ∙ 0.14). 

The next figures compare the hypotheses along path 2: 
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Figure 6-13: Maximum principal stress distribution of KS-II (along path 2) and cup-shaped specimens considering a 

relative distance 

 

Figure 6-14: Maximum principal stress distribution of KS-II (along the path 2) and cup-shaped specimens with a 

constant gap distance from the point with highest max. principal stress and considering a relative distance 
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Figure 6-15: Maximum principal stress distribution of KS-II (along the path 2) and cup-shaped specimens with a 

constant gap distance from the point with highest max. principal stress and considering a relative distance 

 

Figure 6-16: Maximum principal stress distribution of KS-II (along the path 2) and cup-shaped specimens with 

applying the three hypotheses 

The application of the three hypotheses gives the best result, as in path 1, but with lower 

convergence of the loading cases. The optimal reference point in this case is approximately 

around 12% of the total length from the point with highest maximum principal stress. 
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The solution is better for the path 1 of the KS-II specimens than for the path 2. Because of this 

reason only the best solution is showed. Moreover, the path 1 is the path which passes 

through the point with highest maximum principal stress for pure tension and mixed mode. 

That correlates with the stress distribution path of cup-shaped specimen. 

 Comparison of the critical distance approach between KS-II, cup-shaped and butt-joined 
specimens using the maximum principal stress 

In the chapters before, the stress distribution of the KS-II and the cup-shaped specimens were 

illustrated. Due to their similar geometries and loading types, the curve of maximum principal 

stress distribution is similar. Both start with an increase in the value until they reach a 

maximum, and then they decrease until almost zero. They are compared with the stress 

distribution of the butt-joined specimens. The first important difference between them is that 

the butt-joined specimens are loaded with tensile, torsion loads and a combination of them. 

The other specimens are loaded with tensile, shear and a combination of them. The second 

difference is the geometry of the specimen. In KS-II and cup-shaped specimens, the adhesive 

layer has a rectangular plan section and butt-joined specimens have a round section. The 

figure 6-17 shows the maximum principal stress distribution of the butt-joined specimen along 

the middle layer: 

 

Figure 6-17: Max. principal stress distribution of the butt-joined specimen along the middle layer 
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Figure 6-17 illustrates the stress distributions of the butt-joined specimens.  The torsion stress 

has a linear distribution. The maximum lies at the border of the adhesive layer and decreases 

to zero in the middle. The pure tension stress has a low value at the border and then it 

converges to a maximum in the middle of the adhesive. The stress distribution of the 

combined load case results in a distribution with low values that reach a maximum around 3 

mm from the border and then decrease to a lower value than the pure tensile stress. 

Figure 6-18 exposes the stress distributions of the three specimens: 

 

Figure 6-18: Maximum principal stress distribution of the three specimen types along the middle layer 

In figure 6-18, all maximum principal stress distributions are shown. The different behaviour 

of the butt-joined specimens compared to the KS-II and the cup-shaped specimens is obvious. 

Because of the different distributions, it is not possible to find a common distance for 

evaluating. Figure 6-18 shows that the stress distribution highly depends on the geometry of 

the piece and the type of applied load. The butt-joined specimen is an academic geometry and 

its stress distribution differs from typical automotive components. 
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 Determination of the equivalent elliptic stress parameters 

The equivalent elliptic stress is a combination of the first invariant of the stress tensor (I1) and 

the second invariant (J2) of the deviator tensor. The equation is: 

𝜏𝑒𝑙𝑙 = √ 𝐽2 + 𝑎 ∙ 𝐼1 + 𝑏 ∙ 𝐼1
2 (6.1) 

The parameters a and b have to be determined in order to obtain a proper equivalent stress. 

The method to find these parameters is as follows: 

1. Determine the parameter b through adhesive material constants. 

𝑏 =  
1

6

1 − 2𝜈

1 + 𝜈
=

1

6

1 − 2 ∙ 0.45

1 + 0.45
= 0.0115 (6.2) 

2. Determinate the Beltrami stress in pure shear stress (Scherzug) and pure tension 

(Kopfzug): 

𝜏𝑣,𝐵𝑒𝑙𝑡
2 = 𝐽2 + 𝑏 ∙ 𝐼1

2 (6.3) 

3. The difference between the Beltrami and the equivalent elliptic stress is the parameter 

a. Because of this reason, with a linear regression in a graphic τ2
v,Belt-I1 it is possible to 

find it: 

𝜏𝑣,𝐵𝑒𝑙𝑡
2 =  𝜏𝑒𝑙𝑙 − 𝑎 𝐼1 (6.4) 

 



 

6. Application of stress approaches 68 

 

Figure 6-19: Graphic Beltrami stress- first invariant to find the a parameter [Tre12] 

This method has to be applied in a defined point of a test geometry where both loading states 

are realized. Because of this reason five different points of KS-II specimen’s adhesive layer are 

considered to find a suitable reference point to determine the parameter. The investigated 

points are: 

1. The points, which have the highest stress values of principal stress for pure tension 

and pure shear. (x = 1.2 mm; z = 1.7 mm for pure tension, x = 1.3 mm; z = 22 mm 

for pure shear)(figure 6-22, green) 

2. The point with a maximum principal stress with pure shear stress load. In this case, all 

the stresses to determinate the parameters are extracted from this point (x = 1.3 mm; 

z = 22 mm) (Figure 6-15, red) 

3. The middle point of the adhesive, for all the stresses (x = 10 mm; z = 22 mm)(figure 

6-22, blue) 

4. The point over the line z = 1.7 mm, which the standard deviation of the principal 

stresses is minimum, for all the stresses (x = 4.5 mm)(figure 6-22, purple)(Reference 

figure 6-3) 

5. The point over the line z = 22 mm (middle of the adhesive), which the standard 

deviation of the principal stresses is minimum, for all the stresses(x = 3.6 mm)(figure 

6-22, orange) (Reference figure 6-2) 
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Figure 6-20: Five points to determinate the equivalent elliptic stress parameters 
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The linear regressions of the evaluated points are: 

 

Figure 6-21: Graphic Beltrami tension - first invariant to determinate a parameter. From left to the right the points 

with same colour are from: pure shear, mixed-mode and pure tension 

Figure 6-21 shows that the parameter a is preferably determined from the middle point, with 

a very good linear correlation, or at the point with minimal standard deviation along the 

middle line (x = 3.6 mm; z = 22 mm). 

In this case, to evaluate which one is the best option, a graphic is needed to establish a 

relation between the square root of the second invariant and the first invariant. It shows the 

maximum stress rate before failure [Tre12]. 
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Figure 6-22: Graphic √(J2) – I1 that determines the maximum stress state combination. From left to the right the 

points with same colour are from: pure shear, mixed-mode and pure tension 

Figure 6-22 shows a minimal standard deviation along the middle width. In this case, the 

middle point curve does not represent the real strength of the adhesive, because their 

maximum value of first invariant is very low. 

To conclude this chapter, the parameters determined are: 

Table 6-1: Values of the equivalent elliptic stress parameters 

a [MPa] 2,81 

b [-] 0.0115 

 

 Comparison between KS-II and cup-shaped specimens using the equivalent elliptic stress 

The parameters are determined on a point along the middle width, because of that the 

comparison between the KS-II and cup-shaped is done using the middle path as the reference 

path of the KS-II specimen. For the cup-shaped, the path goes through the maximal principal 

stress, as done for the maximum principal stress comparison (figure 6-5). 
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Figure 6-23: Comparison stress distribution between KS-II and cup-shaped specimens respect equivalent elliptic 

stress 

As it is expected, the three different loading states of the KS-II specimen are passing through 

the same point at a distance of 3.6 mm, because it was used as reference point of the 

equivalent elliptic stress. The standard deviation after 5 mm is relatively slow, but this stress 

cannot be considered as critical because it is a compression stress, which is not critical for the 

adhesive joint. The reference point has to be a point with positive tensile stress with a 

significant lower standard deviation. In this case there is any point that fits with these 

requirements. The same distance appears between the tensile stress distribution of the 

combined load of the cup-shaped specimen and the KS-II distribution. Because of that, the 

same hypotheses proposed for the principal stress are considered (page 59). 

 Introduction of several distance hypotheses for the critical distance approach 

As realized in the previous chapter with the maximum principal stress, two hypotheses are 

applied: 

 Constant gap  

 Relative distance 
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Figure 6-24: Equivalent elliptic stress distribution of KS-II and cup-shaped specimens with constant reference 

distance from their maximal stress point 

 

Figure 6-25: Equivalent elliptic stress distribution of KS-II and cup-shaped specimens with relative distance 
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Figure 6-26: Equivalent elliptic stress distribution of KS-II and cup-shaped specimens with a constant reference 

distance and relative distance 

Figure 6-26 and figure 6-27 shows that both hypotheses could be used, because the best 

solution is when both are taken into account (figure 6-28). The second approach (relative 

distance, figure 6-26) shows a smaller difference between the KS-II specimens and the cup-

shaped specimens. In contrast, figure 6-27 shows a smaller distance and a balanced 

distribution. 

6.1.2 Stress averaging approach 

The stress averaging approach is applied to the samples. The stress averaging approach 

determines an effective stress that is an average stress. The concepts of this approach are 

widely explained in chapter 2.3.1. 

In this section, the comparison is directly done between the KS-II and the cup-shaped 

specimens. In the previous chapter has been seen that the stress distribution of the two 

specimens are qualitatively similar. 
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 Stress averaging approach evaluation with KS-II specimens 

As realized with the critical distance approach, the KS-II specimens are studied firstly to 

obtain an overview of the possible results. KS-II specimens are used because they have similar 

geometry with cup-shaped specimens and they have three different loading types. 

The paths along the adhesive middle layer of the KS-II specimens to study this approach are 

the same as in figure 6-1 (page 53). 

 Path 1, z = 1.7 mm 

 

Figure 6-27: Stress distribution along path 1 for stress averaging approach 

In figure 6-27 it is possible to observe that the point of minimum standard is placed at 0.4 

mm, but the standard deviation of the points around increase strongly. The values do not 

converge in this point. The curves seem to converge in the vicinity of 10 mm. The stress 

distributions are symmetric and because of that this hypothesis cannot be valid. The possible 

solution to apply this approach is that that the figure 6-27 shows the stress distribution on a 

specific point of two million cycles. The distance varies depending on the number of cycles, 

due to the different slopes of the S-N curves for each loading type (figure 5-1, page 39). The 

pure shear loading type has the lowest slope value k, which means that it has the highest 
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increase of stress with a decreasing number of cycles. That means that for other points along 

the S-N curve, the pure shear curve increases more than the pure tension and mixed mode 

curves. In this case, the three curves converge in a point before 10 mm distance (symmetric 

axis distance). With a decrease of the lifetime, the distance from the border of the reference 

point also decreases. 

 Path 2, z = 22 mm 

 

Figure 6-28: Stress distribution along path 2 for stress averaging approach 

In figure 6-28 the three curves of the effective stress average form the maximum principal 

stress converge in a zone where the standard deviation is valid to apply the method. This zone 

is between 7 mm and 10 mm form the border, with a minimum value of standard deviation 

on 8.2 mm. As explained before, due to the difference on the slopes of the S-N curves between 

the loads, this interval depends on the number of cycles. The distance decreases with a 

decrease of lifetime. 

Figure 6-28 shows another point where the three equivalent average stresses cross each other 

with a low standard deviation, at a point 0.5 mm from the border. In this case, the curves only 

cross but there is no convergence of the three curves. The differences with the other point are 
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that the interval reduces to two or three points, making it more difficult to apply a method 

because it strongly depends on the chosen point. On the other hand, when it is an interval, 

the results obtained from this method are robust to the application point. 

 Path 3, x = 1.3 mm 

 

Figure 6-29: Stress distribution along path 3 for stress averaging approach 

Figure 6-29 shows that, similar to the critical distance approach, the path 3 is not valid for the 

stress averaging approach. The effective stress curves do not converge in any point and the 

distance between their values are high, as can be determined from the high value of the 

standard deviation. 
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 Comparison of the stress averaging approach between KS-II and cup-shaped specimens 
using the maximum principal stress 

From the previous comparison of the equivalent stress average along the chosen paths, it is 

possible to determinate that the path 1 and 2 are valid to compare with other specimens. The 

stress distributions on the third path do not converge in any distance between the different 

loading types, a requirement to properly apply this method. 

 

Figure 6-30: Comparison of the stress distribution between KS-II at path 1, z = 1.7 mm, and cup-shaped specimen 

using the stress averaging approach 
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Figure 6-31: Comparison of stress distribution between KS-II at path 2, z = 22 mm, and cup-shaped specimen using 

the stress averaging approach 

Figure 6-30 and figure 6-31 shows that the stress average has a similar distribution. Despite 

that, the stress distributions of the two specimens do not converge. 

As realized with the critical stress approaches, several hypotheses are being compared to 

obtain parameters to converge these similar distributions. 

 Introduction of distance hypotheses for the stress averaging approach 

As applied in previous chapters, three different hypotheses based on the total width of the 

adhesive layer are taken into account: 

 Constant gap 

 Relative distance 

 Stress scaled relative to the width 

The next figures show the stress distribution applying these hypotheses: 
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Figure 6-32: Average of maximum principal stress distribution of KS-II (along path 1) and cup-shaped specimens 

with constant gap from the point with highest maximal principal stress 

 

Figure 6-33: Average of maximum principal stress distribution of KS-II (along path 1) and cup-shaped specimens 

considering a relative distance 

The results of the average stress distribution form figure 6-32 and figure 6-33 show that the 

two hypotheses separately adjust the curves between the both specimens, but they are not 
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close enough to valid the method. The next figure shows the average stress distributions 

applying together the two hypotheses. 

 

Figure 6-34: Average stress distribution of KS-II (along the path 1) and cup-shaped specimens with a constant gap 

distance from the point with highest max. principal stress and considering a relative distance 

Figure 6-34 shows that the curves do not converge in one point, but the distances are 

considerably reduced. 

 

Figure 6-35: Average stress distribution of KS-II (along the path 1) and cup-shaped specimens applying the three 

hypotheses 
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In figure 6-35 it is possible to observe that applying the hypothesis that the peak stress also 

depends on the adhesive layer width, the two mixed-mode loads are almost the same curve. 

That is a very positive results of the hypotheses applied.  
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6.2 Comparison of stress approaches in a master S-N curve 

A master S-N curve for adhesive joints is investigated. 

The function to calculate this master S-N curve is the same that was used previously to 

calculate the S-N curves of the samples in chapter 5.1. The function is developed in Matlab 

software and itis based on a maximum likelihood approach. It is named BMW Wöhlerlinie-

tool version 1.2b. 

The stress values to calculate this S-N curve are obtained from the finite element models 

explained in chapter 4. 

To evaluate the results of the master S-N curves two aspects are evaluated. The first one is the 

minimum scatter of the S-N curve. This value determines the accuracy of the results obtained. 

The second aspect is the interval where this method is valid (robustness). The results of the 

method applied can be strongly influenced by the location where they are applied. 

6.2.1 Critical distance approach 

In this chapter, the critical distance approach is studied based on a master S-N curve. Several 

variants are studied based on the results obtained on the previous chapter 6.1.1. In this case, 

two parameters are varied. One of these parameters is the two different equivalent stresses, 

the maximum principal stress and the equivalent elliptic stress. On the other hand, three 

different hypotheses are also proposed and compared. They were previously explained: 

 Constant gap 

 Relative distance 

 Stress scaled relative to the width 

The next figure 6-36 summarised the results of this variants in a graphic: 
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Figure 6-36: Minimum scatter of the different parameters applying the critical distance approach 

In this case three different types are compared between them, two different paths along the 

KS-II specimen using the maximum principal stress and one using the equivalent elliptic 

stress. The purple bars are used as a reference. They represent the scatter of the KS-II loaded 

with a mixed-mode load with an angle of 45°. This value is obtained from figure 5-1. The 

group only KS-II is the minimum scatter of the master S-N curve using only the values 

obtained from the KS-II simulation. In the rest, the stress-state of the cup-shaped specimen is 

evaluated with the KS-II specimen. 

From figure 6-36 it is possible to observe that the reference stress that changes more with the 

hypotheses is the stress distribution of path 1. Moreover, it is the one with a minimum scatter 

applying all the hypotheses. This result is coherent because the reference stresses of the cup-

shaped specimen are the one along the path with highest value of maximum principal stress 

and path 1 contains the highest value of maximum principal stress for pure tension and 

mixed-mode load.  

Figure 6-37 compares the interval where the method can be used: 
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Figure 6-37: Scatter values along the distance applying the critical stress distance approach 

In figure 6-37 it is possible to observe the robustness of this method. From experience and 

other test realized by BMW Group with adhesive joints, it is considered a reasonable scatter 

until a value of Ts = 1:2. With this limit is possible to observe that this interval is around 1 

mm. This figure is also giving the information that applying the hypotheses does not change 

the reference point. That means that the cup-shaped specimen adapted to the KS-II reference 

curve. Another aspect to remark is that in this case, the equivalent elliptic stress is less 

influenced by the location of this distance due to their flatter curve. 

  

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Sc
at

te
r 

1
:T

s 

rel. distance from the point with highest value of max. principal stress 
 (Distance / Adhesive width) 

Max. principal stress only KS-II (without cup-shaped specimen)
Max. principal stress const. gap & rel. distance
Max. principal stress stress scaled & const. gap & rel. distance
Eq. Elliptic stress constant gap & relative distance
Eq. Elliptic stress stress scaled & constant gap & relative distance



 

6. Application of stress approaches 86 

6.2.2 Stress averaging approach 

In this approach, based on the results obtained by the previous chapters, only the stresses of 

path 1 are taken as reference. With this evaluation it is possible to compare the two methods. 

Figure 6-38 exposes the results of this method: 

 

Figure 6-38: Minimum scatter of the master S-N curve for the several hypotheses using the reference stresses of 

path 1 applying the stress averaging approach 

The minimum scatter is similar to the previous method exposed as well as the results of the 

different hypotheses. The valid results are applying the relative distance and constant gap 

hypotheses and applying the three of them previously mentioned. The interval width is a 

factor in these methods that determinates the reliability of them. Figure 6-39 illustrates that: 

 

Figure 6-39: Scatter values of the master S-N curve along the path 1 applying the stress averaging approach 
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From the figure 6-39 it is possible to observe that the interval valid to apply the method is 

wide. That is a positive aspect of this approach, because it is less influenced by the local point 

chosen (robust). In this case, the best solution with the both specimens (KS-II and cup-

shaped) displaces approximately slightly the optimum point from the single KS-II master S-N 

curve. But the influence of this displacement does not strongly affect the result due to the 

flatness of the scatter curve. 

6.2.3 Comparison of the applied approaches 

To conclude this chapter a comparison between the two approaches is realized. The 

comparison is based on the scatter obtained of the master S-N curves for the three loading 

types of the KS-II specimen and the mixed-mode load of the cup-shaped specimen. In the case 

of the KS-II the reference stresses are the stresses along the path with the highest value of 

maximum principal stress (along path 1). The stresses reference of the cup-shaped specimen 

is also the perpendicular path along the joint with the highest maximum principal stress. This 

comparison is evaluated with the maximum principal stress (HS). 

 

Figure 6-40: Comparison of the minimum scatter between the two approaches 

The figure 6-40 summarise the results of the both approaches. It is possible to observe that the 

single hypotheses cannot improve properly the results, but the combination of the relative 

distance and the constant gap hypotheses reaches reasonable results. Further improvement 

achieved when the hypothesis of scaling the stress is applied. In terms of minimum scatter the 

stress averaging approach may give smoother results, but in absolute terms they are very 

similar. 

The next step is to compare the interval where this method is valid in the both cases. This is 

summarized in the figure 6-41: 
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Figure 6-41: Scatter values of the approaches along the distance 

In the figure 6-41 it is possible to observe the location where the two methods are valid and 

its scatter along their optimum point. In this case is very clear that the interval of the stress 

averaging approach is much wider than the critical stress distance. 

To resume and conclude the reliability of the two approaches is that with the hypotheses 

considered the both approaches can be valid to evaluate an adhesive joint with the same 

material and with similar geometry. It is reached a good correlation value between the two 

specimens. But the stress averaging approach has less influence on the local point chosen as 

the critical distance approach. 
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7 Evaluation of the butt-joined specimen submitted to non-
proportional loading 

The last chapter contains the fatigue evaluation of the non-proportional load type for butt-

joined specimen. As exposed in the chapter 3.5, one of the four loading types in butt-joined 

specimen is a composition of torsion and tensile stress with a 90° phase shift. For this type of 

load applying a proportional method as used before is not recommended, because the stress 

tensor is not proportional. The stress tensor is dependant of the phase and it is not constant 

during the cycle. That can produce a change of the maximum principal stress direction during 

the cycle and create sequences inside the cycle. In these cases one of the suitable methods to 

realize a fatigue study is the critical stress plane. 

The method is detailed explained in chapter 2.2.5´. For further information see [Sus10]. 

The first step to evaluate the test is to define the stress tensor dependent on the phase. The 

global tensor for each point is the sum of the stress state of each point of pure tension and 

pure torsion state, taking into account the phase shift. Because of this last reason, the global 

tensor is dependent on the phase φ. 

[𝜎(𝜑)𝑡𝑜𝑡𝑎𝑙] = [𝜎(𝜑)𝑝𝑢𝑟𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛] +  𝑘 [𝜎(𝜑 − 𝜋
2⁄ )

𝑝𝑢𝑟𝑒 𝑡𝑜𝑟𝑠𝑖𝑜𝑛
] 

where  𝑘 = 𝑟𝑀/𝐹 = 3.6  

(7.1) 

 

[𝜎(𝜑)𝑝𝑢𝑟𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛] = cos (𝜑) ∙ [𝜎𝑝𝑢𝑟𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛] (7.2) 

 

[𝜎(𝜑)𝑝𝑢𝑟𝑒 𝑡𝑜𝑟𝑠𝑖𝑜𝑛] = cos (𝜑) ∙ [𝜎𝑝𝑢𝑟𝑒 𝑡𝑜𝑟𝑠𝑖𝑜𝑛] (7.3) 

 

[𝜎(𝜑)] = [

𝜎𝑥(𝜑) 𝜎𝑥𝑦(𝜑) 𝜎𝑥𝑧(𝜑)

𝜎𝑥𝑦(𝜑) 𝜎𝑦(𝜑) 𝜎𝑦𝑧(𝜑)

𝜎𝑥𝑧(𝜑) 𝜎𝑦𝑧(𝜑) 𝜎𝑧(𝜑)

]   where  𝜑 ϵ 𝑇 (7.4) 

The stress tensor σ(φ) is considered as nominal tension force. With this description is possible 

to scale easily the tensor to obtain the real stress-state, due to the linear-elastic behaviour of 

the adhesive joints. The parameter rM/F represents the constant relation between the force and 

moment. It is previously described in equation (5.5) (page 42). The next step is to find the 
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critical stress plane for each studied point. In this case a Matlab subroutine (iterative 

algorithm) is programmed to find the critical stress plane in each point. The critical plane 

found is defined as the plane in which the variance of tensile stress is maximal. For other 

materials, like steel in [Sus10] and [Sus13], the critical plane is the one with maximum 

variance of shear stress, because on fatigue steel test the shear stress is the critical stress state. 

In the case of adhesive, as could be seen in the chapter 5.1, the critical stress is the tensile 

stress. Because of this reason it is decided that the critical plane is the plane with a maximum 

variance of tensile stress. 

The iterative algorithm increases the angles ϕ and θ 10° from 0° to 180° (according symbolism 

adopted in figure 2-13, page 24). The other half is not calculated because they have the same 

value with different sign. For each possible plane the variance of the tensile strength is 

calculated using also a phase interval of 10° from 0° to 360°. Then the algorithm compares the 

variance of normal stress and takes the one with maximum value. 

That means that in total there are 324 possible planes. The variance is calculated from 36 

points. This iteration is realized in each node of the middle adhesive layer with 0.1 mm 

element length. After found the plane with maximal variability of the tensile stress, the angle 

α is calculated with another iteration based on the direction with maximal variability of the 

shear stress inside the critical plane (ϕ and θ fixed). 

The results obtained are accord the stress distribution seen previously in the figure 6-17 (page 

65). The critical stress state near the symmetric axis is the direction of the tension force, 

because in the middle of the adhesive is where the tensile strength is maximal. Otherwise, 

near the border the orientation of the critical plane is orientated to the shear stress. 

Once the critical stress plane is found for each point, the tensile and shear stresses are 

defined. Then a damage accumulation method is applied. The method consists in applying a 

rain-flow matrix to simplify the subsequence inside the cycle to one equivalent stress 

amplitude, as it is applied in FEMFAT 5.1 program [Mag15]. After that, the PALMGREN-MINER 

rule, with the reference S-N curves from the pure loads, damage accumulation estimation is 

realized. In this particular case, due to the particular stress distribution and loads on the 

sample, there is any subsequence inside the cycle. All the critical planes have perfect 

sinusoidal behaviour during the cycle. This is the consequence of apply two different pure 

loads as torsion and tension load, which tensors components combine between them without 

modifications or sums. Because of this reason, the rain-flow matrix can be avoided and it is 
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possible to apply the damage accumulation method with the stress amplitude of the sinus 

curve obtained from the tensile and shear stress of the critical plane. 

The damage accumulation method applied is the PALMER-MINER rule. S-N curves obtained in 

chapter 5.1.3 from pure tension and pure torsion load are established as the reference curves. 

The damage accumulation is calculated on the 16 butt-joined samples loaded with this non-

proportional loading type (all of them failed). 

The results below exposed are the point along the middle layer with maximum damage 

accumulation. 

Table 7-1: Maximum damage accumulation for the 16 butt-joined samples with combined loads with phase shift 

Fa [kN] 3.02 2.88 3.3 3.39 3.44 3.53 3.2 3.39 

Dexp 0.395 0.030 0.035 0.263 0.194 0.139 0.053 0.272 
 

Fa [kN] 3.62 3.58 3.25 2.88 2.79 2.74 2.83 2.55 

Dexp 0.151 0.449 0.215 0.027 0.101 0.015 0.014 0.022 
 

This point of maximum damage accumulation is situated all the time near the revolution axis 

(1.7 mm from the revolution axis), where the tensile stress is higher. This result can be 

explained by two theories. The first one is that the tensile strength is the critical stress-state 

for the adhesive and it fails where the tensile stress is maximal. The other option is that in this 

particular case, the torsion stress is very low in comparison with the maximum torsion stress 

that the joint can support (Figure 5-4, page 44). But the tensile stress is near the maximum 

tensile stress that the joint can support (near the values of pure tension force). 

The values of the experimental damage accumulation are between 0.4 and 0.014. These 

values can be found similar in literature, for example in [Sch14]. But this total damage varies 

strongly because of the flat slope of the S-N curves. 
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8 Conclusions 

This work is a study of different methods to evaluate structural adhesive joints submitted to 

cyclic loads with constant amplitudes. It is based on the experimental results of three different 

specimens: KS-II, cup-shaped specimen similar to the real components and butt-joined 

cylinder specimens. 

To avoid differences on the specimens the three types are joined with the same adhesive and 

the same thickness. The substrates of the specimens are steel to secure a cohesive rupture of 

the joint. The three specimens are loaded with constant variable amplitude with a stress ratio 

of R=0.1, which generates a tensile mean stress. 

The first study of the thesis is the evaluation of the tests to determinate the S-N curves for 

every specimen and loading type and their behaviour under cyclic loads with tensile mean 

stress. With this first study it is possible to observe the high values of the slope of S-N curve 

respect to the metallic materials. It is also shown that the tensile stress is more critical on the 

adhesive joint than the shear stress. The non-proportional load is an aspect that has a high 

influence in metals but it is a new investigation direction for adhesive joints. From the results 

obtained with this butt-joined specimen, the S-N curve of the non-proportional load is very 

similar to the one obtained for the proportional load. The butt-joined specimens were used to 

study the creep behaviour of the adhesive and the possible reduction of their stiffness. From 

the experiments it could be seen that there is a creep effect due to the positive mean stress, 

but there is no loss of stiffness. 

Two different approaches widely used in the fatigue analysis of metallic components and 

welds were compared to develop a reliable method to evaluate the lifetime of adhesive joints. 

The two methods are stress-based approaches named critical distance approach and stress 

averaging approach. The stresses to compare these specimens are obtained through FEM. In 

this study several hypotheses based on the total width of the adhesive are applied to evaluate 

their influence on the method. These hypotheses are based on the similar distribution of 

tension perpendicular to the joint direction. The two approaches achieved a good correlation 

to evaluate the adhesive joints. Despite the high accuracy of the results, the stress distance 

approach has higher influence of the chosen point than the critical distance approach. 

It is also compared the accuracy of the results using the maximum principal stress and an 

equivalent stress named elliptic stress based on the tensor invariants. This equivalent stress 

gave good results for quasi-static failure assessment of adhesives, because it considers the 

hydrostatic component of the stress. Despite the good results obtained from this equivalent 
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stress, it has several drawbacks for application. One of them is the necessity to experimentally 

determine its parameters. They have to be determined through the stress-state of a reference 

point and they are strongly influenced by it. The results can vary strongly because of the 

determination of these parameters, reducing the accuracy and reliability of the method.  

A damage accumulation method is applied to evaluate the non-proportional load of the butt-

joined specimen. This method is complex to apply in adhesive joints and does not give high 

accuracy results due to the high value of the S-N curve slope. 

In this work the suitability of the stress-based and damage accumulation methods is realized. 

It has been observed the high influence of the geometry on the stress distribution on the 

adhesive layer and the possible influence of the total width of the adhesive as another 

parameter to determinate the lifetime of an adhesive joint. Further studies are needed in this 

field to evaluate the suitability of the current methods and specimens on adhesive joints and 

possible improvements of them. 
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9 Outlook 

This work opens different direction to investigate in further studies about the lifetime 

prediction of adhesive joints.  

One is the suitability to study this joint from a fatigue approach. Fatigue became important in 

the industry world due to the failure of materials under low cyclic loads. In the adhesive, the 

slope of S-N curve is quite flat, which means that the fatigue effect is lower. The adhesive has 

less difference behaviour between quasi-static load and cyclic load based on stress 

approaches. The outlook is to verify the suitability of simplify the fatigue approach for a quasi-

static approach in adhesive joints lifetime predictions. 

Another is the further studies about the creep effect of the adhesive. Creep effect has a big 

influence in the structures stiffness. No loss of stiffness was observed in this adhesive until the 

failure. The specimens were tested submitted to constant cyclic amplitudes. Other tests, with 

combined amplitudes, should be studied to determine this creep effect accurately. 

In the same direction, further studies with non-proportional loads should be realized to study 

the effects of phase shift and combined loads in adhesive joints with specimens and loads 

similar to the automotive industry components. 
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A. Technical drawings 

A.1. KS-II specimen 

 

 

The thickness of the metal plate is 1.5 mm 
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A.2. Cup- shaped specimen 

 

x 0.47191 

y 0.81738 

z 0.33044 

 

Unitary components of mixed load force in cup-shaped specimen 
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A.3. Butt-joined cylinder specimen 

 

 

 

Oberfläche [mm
2
]  9220.30  

Breite Klebstoff [mm]  14  

Dicke [mm]  1.5  

 

Innenelipse  Außenelipse 

a [mm] 111 125 

b [mm] 81 95 
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