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Abstract

A vast ammount of unstructured information resides in documents
in natural language that can be found in many sources such as World
Wide Web, news articles, e-mails and so on. Discovering new knowledge
analyzing these text resources is the goal of Text Mining, which is an inter-
disciplinary field that borrows techniques from Data Mining and Natural
Language Processing (NLP).

Coreference resolution is a NLP task which consists of determining
the noun phrases and pronouns in a text or discourse that refer to the
same entity. The research in coreference resolution has a direct effect on
the field of Text Mining and its related NLP areas that need a discourse
interpretation such as Information Extraction, Question Answering, Sum-
marization, Machine Translation and so on. Furthermore, in order to un-
derstand a text document or even a speech, it is mandatory to resolve its
coreferences.

This survey is an extended summarization of state of the art of coref-
erence resolution. The key concepts related to coreference and anaphora
are presented, the most relevant approaches to coreference resolution are
discussed, and existing systems are classified and compared. Finally, the
evaluation methods shared by researchers in the area and the commonly
used data sets corpora are presented and compared.

1 Introduction

The need for managing the information that resides in the vast amount of docu-
ments in natural language is becoming more important. Documents in natural
language, as opposed to information stored in databases, are characterized by
their unstructured nature. Sources of such unstructured information include
the World Wide Web, governmental electronic repositories, news articles, blogs
repositories, e-mails, and so on.
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Text Mining is the data analysis of text resources where new knowledge is
discovered (Hearst, 1999). It is an interdisciplinary field that uses techniques
from the general fields of Data Mining and Natural Language Processing, com-
bining methodologies from Information Extraction (IE) (Turmo et al., 2006),
Information Retrieval (IR) (Faloutsos and Oard, 1995), Computational Lin-
guistics (Mitkov, 2003), Categorization (Sebastiani and Ricerche, 2002) and
Summarization (Mani, 2001). Research in this areas deals with many issues
originating from natural language particularities. And the research in natural
language tasks, such as coreference resolution, has a significant impact on all
these areas.

Coreference resolution is a natural language processing (NLP) task which
consists of determining the noun phrases and pronouns in a text or discourse
that refer to the same entity. It has a direct effect on the field of Text Mining
and its related areas that need a discourse interpretation such as Information
Extraction, Question Answering, Summarization, Machine Translation and so
on. Furthermore, in order to understand a text document or even a speech, it
is mandatory to resolve its coreferences.

Coreference resolution is considered a hard and important problem, and
a challenge in artificial intelligence (AI). The necessary knowledge to resolve
coreferences is not only lexical and syntactic, but also semantic and pragmatic,
which implies to go deep in many levels of natural language comprehension.

This survey covers the state of the art on coreference resolution and part of
the strongly related task of anaphora resolution. The document is divided in
six sections. First, Section 1 is an introduction to the concepts of coreference
and anaphora, and an explanation of the most addressed resolution tasks: Direct
Coreference and Pronominal Anaphora. Section 2 shows the main steps followed
by a general coreference resolution system including some preprocessing issues
such as mention detection and previous filtering. An extended summarization
of most of the relevant approaches for coreference and anaphora resolution is
divided in two sections: Knowledge-based and Corpus-based approaches. On
one hand, Section 3, is mainly focused in approaches based on linguistic and
cognitive theories for anaphora resolution. Most of the knowledge-based works
are hand-written heuristics that do not use machine learning neither annotated
corpora. Moreover, most of the knowledge-based approaches rely on previous
morphological and syntactic manual analysis of the documents. On the other
hand, Section 4 summarizes the approaches based on annotated corpora and
is divided in three subsections: Statistical and Manual approaches, Supervised
learning, and Weakly supervised and Unsupervised learning. All three subsec-
tions include approaches focused on coreference resolution and, most of them,
based on an automatic preprocess. Section 5 reviews the corpora and evaluation
methods used by most of the coreference resolution systems. Finally, Section 6
is a conclusion reviewing the evolution of coreference resolution approaches so
far, and the directions that researchers may follow in this area.
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1.1 Coreference

Coreference resolution is the task of determining which mentions in a dis-
course refer to the same entity. A mention, normally a noun phrase (NP), is a
referring expression having an entity as a referent. Coreference chains are
groups of referring expressions having the same referent. It means, a coreference
chain is formed by all the mentions in a discourse that refer to the same entity.
The goal of a coreference resolution system is to find coreference chains given
an arbitrary text as input.

The example in Figure 1 shows a coreference chain about the entity ”Sergio
Aguero” in a newspaper article:

Atletico Madrid president Enrique Cerezo has warned Chelsea
off star striker Sergio Aguero.

Aware of Chelsea owner Roman Abramovich’s interest in the
young Argentine, Cerezo said last night: ”I will answer as
always, Aguero is not for sale and we do not want to let him
go.”

Figure 1: Example of a coreference chain.

As one can see in Figure 1, in order to resolve the coreference chain of ”Sergio
Aguero” several knowledge of diverse nature must be used. First, morpholog-
ical and syntactic analysis is required in order to detect all the pronouns,
named entities and any other noun phrase referring to some entity. In other
words, morphological and syntactic information is needed to detect mentions.
Lexical procedures are also needed to decide that mentions like ”Sergio Aguero”
and ”Aguero” might be alias referring to the same entity. However, seman-
tic information would be useful to decide that both are persons. Furthermore,
pronoun resolution should be used to link him with ”Aguero”. In addition,
knowledge about discourse coherence might be useful to discard possibly
missmatches. Finally, world knowledge is kind of essential if one wants to
add the young Argentine in the coreference chain.

1.2 Anaphora vs Coreference

Anaphora, Cataphora and Coreference resolution are close but different prob-
lems. The goal of anaphora resolution is to identify an antecedent for each
noun phrase (NP) that depends on other NPs for its interpretation. Specifically,
anaphora is the linguistic phenomenon of pointing back to a previously men-
tioned item in the text. The “pointing back” word or phrase is called anaphor
and the expression to which it refers or for which it stands is its antecedent.
In the case when the “anaphor” is pointing forward, it means the “anaphor”
is found in the text before the “antecendent”, it is called cataphora (Mitkov,
2002). Cataphora phenomenon is not as common as anaphora.
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It is important to emphasize that a pair of anaphoric items do not need to
be coreferential. In some cases, an anaphor is pointing back to its antecedent
but they are not referring to a concrete entity.

Every dog has its house.

In this example, “its” is the anaphor of “every dog” but “every dog” is not
referring to a specific entity.

Although coreference chains are normally composed by some anaphoras and
perhaps some cataphoras, there are also other possibilities: some mentions may
be coreferential without being anaphoric, as in the following example:

Some people say Barcelona is a good place to visit. I think
I’m going to Barcelona this summer.

Figure 2: Coreferential mentions do not need to be anaphoric

In this case (Figure 2), “Barcelona” is not an anaphor because there is no
dependency on other NP for its interpretation. However, both mentions of
“Barcelona” form a coreference chain.

1.3 Kinds of Coreferences and Anaphoras

Anaphoras and Coreferences can be classified following diverse criteria. In the
case of anaphoras, they are usually classified depending on:

• Lexical form of the anaphor:

– Pronominal anaphora: The anaphor is a pronoun

– Nominal anaphora: The anaphor is a pronoun, a proper name or
a definite NP and the antecedent is a non-pronominal NP.

– Verb anaphora: The anaphor is a verb (Alice smiled, as did Bob)

– Adverb anaphora: The anaphor is an adverb (We are going to the
station to meet you there)

– Zero anaphora: The anaphor is omitted (Amy had made a special
effort that night but @ was disappointed with the results). Where @
should be ’she’ but is omitted.

– One-anaphora: The anaphor is the word one (He fell from the
bicycle two times yesterday, and another one today).

• Location: Anaphor and antecedent can be in the same sentence (intrasentential)
or in different ones (intersentential)
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• Type of identity: Anaphor and antecedent are coreferential (identity-of-
reference) or not (identity-of-sense)

• Type of antecedent: Noun phrase, noun anaphora (head noun or nominal
group, but not a NP), verb or verb phrase, clause, sentence, sequence of
sentences or coordinated antecedents (for example “Bob and Charlie....
both....”)

Nominal (which includes pronominal) anaphora is the kind of relation found
in coreference chains when its type is identity-of-reference. In the case of coref-
erence and also for nominal anaphora there are two main relation classes:

• Class of coreference relation:

– Direct: identity (Mike W. Smith ⇔ Smith, M.), synonymy (baby ⇔
infant), generalization and specialization (car ⇔ vehicle).

– Indirect: (a.k.a. associative or bridging): part-of (wheel ⇔ car),
set membership (Gringo Starr ⇔ Beatles)

1.4 Most Frequently Addressed Tasks

There are many types of coreferences and anaphoras as we have seen in section
1.3. However, two of them are the most frequently addressed problems: direct
coreference and pronominal anaphora.

Direct coreference is the kind of coreference addressed by most of the coref-
erence resolution systems. Concretely, their main goal is to discover all the
entities referred in a document and the chain of mentions to them. Until the
first appearing of an annotated corpus and an international contest motivating
research in this task (MUC-6, 1995) the computational linguistic community
was mainly focused in anaphora resolution. With MUC-6, a wave of new inter-
est in coreference resolution appeared with the challenge of applying machine
learning to such a new task. Therefore, most of the newest developed systems,
from middle 90s until today, are corpus-based coreference systems, while most
of the prior works before 90s are knowledge-based anaphora resolution systems.

Most of the anaphora resolutions researchers have focused their efforts in
the task of pronominal anaphora resolution (also named pronoun resolution).
Other kinds of anaphora tasks like verb or adverb anaphora, or the ones with
complex antecedents such as sentences or sequence of sentences are more com-
plicated. Anaphora resolution has been a research topic widely studied during
decades, and it still being an interesting problem since it is far from being solved.
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2 Coreference Resolution Systems

A coreference resolution system gets a plain text as input and returns the same
text with coreference annotations as output. This section describes a generic
process of a coreference resolution system. It introduces the different phases of
the preprocessing and resolution process and explains the issues and difficulties
of each step. Most of the existent coreference resolution systems can be consi-
dered instantiations of this general process that consists of four steps. First, it
is needed a text processing in order to identify the mentions (step 1) and char-
acterize them (step 2). Next, the system evaluates the coreferentiality of each
pair or group of mentions (step 3). And finally, coreference chains are formed
(step 4). Following subsections describe each one of these steps.

2.1 Identification of mentions

In order to identify the mentions from the plain input text, it is required a
preprocess. At least, a part of speech tagger and a NP chunker. Each noun
phrase (NP) is considered a mention when resolving direct coreference, and
also proper names, named entities and pronouns1. Nested NPs may also be
mentions. However, annotating everything produces duplicates. For example:

(The company) of ((his) father) in (Michigan)
NP: The company of his father in Michigan
NP: The company of his father
NP: The company
NP: his father
Pronoun: his
Proper name: Michigan

In the example, we find 6 possible mentions where only 4 are necessary. In
the case of nested NPs, an acceptable solution is to discard the longest NPs
when they share the head. However, any of them are referring to the same real
entity (the company), so any of them should be valid, but only one.

Each published coreference system uses its own preprocess pipeline. The
diversity of preprocesses used in different systems makes difficult the compari-
son of those systems performances. Even when they use the same corpus and
measure, a different preprocess may have a large influence in final results.

Some researchers prefer to center their efforts in coreference chains resolu-
tion avoiding the step of identification of mentions. To do that, they use true
mentions, it means, the annotated mentions for train or test proposes. In this
cases, the system knows that every mention in the input has to be assigned
to some coreference chain in the output, while systems without true mentions

1Interrogative pronouns (What, Where, etc.) are not considered mentions
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will need to discard lots of non-coreferential mentions in further steps. Conse-
quently, the difficulty of the task largely decreases. However, a system based on
true mentions can not be applied in real situations because, actually, there is no
way to distinguish coreferential mentions from non-coreferential ones without
coreference resolution.

2.2 Characterization of mentions

Depending on the information required for further resolution, several processing
steps are applied such as parsing, chunking, word sense disambiguation, named
entity recognition and classification, semantic role labeling and so on. Some
filters such as pleonastic pronouns and anaphoric NPs may also be applied to
discard some mentions before resolution.

Sometimes, some preprocessing tasks like named entity recognition, syntac-
tic parsing and others, are assumed as perfect in order to avoid carring along
processing errors in the pipeline and obtain bad results because of that. In this
cases, gold standard syntactic parsing or NE are used.

In this phase, some models opt for filtering mentions before resolution in or-
der to improve system precision and maybe decrease computational costs. Two
of the most used filters are pleonastic pronouns and non-anaphoric mentions.

Pleonasm is the use of more words than necessary to express an idea clearly.
In English, the pronoun “It” sometimes acts as a pleonastic pronoun because
does not refer to any entity but it is grammaticaly necessary. It is usually
found in temporal and meteorological expressions, but can also occur in other
sentences:

It is raining.
It is four o’clock.
It is fine.
It is okay.

There are other cases where some authors consider pronoun “it” as pleonastic
(Mitkov, 1999).

It seems that...
It is known that...
It is important to note that...

However, these cases may be considered cataphoric with a fact, usually intro-
duced by “that”. There are also other cases where a pronoun is not anaphoric,
for instance, the use of you referring to the reader.
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Filtering pleonastic pronouns before resolution avoids further missclassifica-
tions and makes the task easier for the resolution algorithm which can always
consider pronominal mentions as anaphoric.

On a different matter, many coreference resolution systems proposes previous
filtering of non-anaphoric NPs in order to facilitate further coreference chains
classification. It may be useful in anaphora resolution. However, when resolving
coreferences, a coreferential NP does not need to be anaphoric as it has been
shown in Figure 2. Consequently, it is not clear the utility of this kind of
filtering.

2.3 Classification of Candidates

The real coreference resolution starts at the Classification step where the sys-
tem evaluates the coreferentiality of each pair or group of mentions. Most
of the coreference resolution systems consists of a pairwise classifier where
each candidate pair of mentions is classified as COREFERENTIAL or NON-
COREFERENTIAL, normally with a confidence value or an associated pro-
bability. This information is used in final step to form definitive coreference
chains.

This classification step has several variations depending for example on the
order followed to classify the pairs, the algorithm used for classification or the
information used about candidate mentions. A pair of mentions is evaluated
using the information gathered in previous steps. A set of heuristics that eval-
uate the compatibility of that pair in some criteria (a set of features) is used by
the classification algorithm to evaluate their coreferentiality.

2.4 Formation of Chains

Apart from some sophisticated systems that directly evaluate the compatibil-
ity of group of mentions, normally, after pairwise classification a final step of
formation of chains is required. Many works simply link each pair of mentions
classified as COREFERENTIAL avoiding possible contradictions, like single-
link in clustering algorithms. For example, if the pair of mentions A and B
and also the pair B and C have been classified as COREFERENTIAL, then
the chain A-B-C is formed independently of the classification of the pair A and
C. Other systems take advantage of the probabilities obtained in Classification
step to find the best possible coreference chains, using algorithms of different
nature such as bell-tree or graph partitioning.

The following two sections summarize the state of the art of two approach
branches: knowledge-based and corpus-based. First one, knowledge-based ap-
proaches, describes systems developed mainly for the resolution of anaphora
without annotated corpora. Anaphora resolution does not require this last step
(formation of chains) of the generic algorithm. Moreover, in most cases, steps
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1 and 2 are partially skipped because the system relies on previous parsing.
The second section, corpus-based approaches, describes systems that fit in the
generic algorithm, in spite of some ones that mix steps 3 and 4.

3 Knowledge-based Approaches

This section reviews approaches based on a set of hand-written heuristics that do
not use machine learning neither an annotated corpus. Most of them were made
between 70s and 90s when no annotated corpora were available. Moreover, the
task which most of this approaches were developed to is pronominal anaphora
resolution, but not coreference. Notwithstanding, some of these pioneer works
showed interesting ways to follow that still are a reference nowadays for anaphora
resolution and also for coreference resolution.

This section is divided in three subsections that represent the three most
relevant families of knowledge-based approaches. First, the ones focused on
sentences, browsing parsed trees and looking for antecedents using morpholog-
ical and syntactic information. Second, approaches based on cognitive theories
about discourse. These works take advantage of discourse rhetorical structure
and resolve pronouns assuming discourse coherence. And third, approaches that
satisfy constraints combining different kinds of information.

3.1 Based on Parsed Tree

3.1.1 Hobbs’ Algorithm

Hobbs’ Algorithm (Hobbs, 1977) defines a set of steps to follow in order to
resolve anaphoric pronouns. Starting in the pronoun’s node of the syntactic
tree of a sentence, a breadth-first left-to-right search is done taking care of some
conditions when a NP is found. If an antecedent is not found in the same
sentence, then the search continues in the previous sentence of the document,
and so on. Every time a NP is found, it has to agree in number and gender with
the pronoun to be proposed as antecedent.

An example is shown in Figure 3. It shows the process followed by Hobbs’
Algorithm to find that “the residence of the king” is the antecedent of “it” in
the sentence “The castle in Camelot remained the residence of the king until 536
when he moved it to London”. The order followed traversing the parsed tree is
shown in Figure 4

Hobbs’ Algorithm achieves precision performance about 90% finding an-
tecedents for anaphoric pronouns. Pleonastic pronouns are manually filtered
before resolution and the syntactic parsed tree of sentences is complete and al-
ways correct (not automatic). Therefore, this high precision results should be
seen as ideal. However, it indicates that, once pleonastic pronouns are filtered,
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Figure 3: Example of search done by Hobbs’ Algorithm finding that “the residence of the
king” is the antecedent of “it” in the sentence “The castle in Camelot remained the residence
of the king until 536 when he moved it to London”.

about 90% of pronouns in a document can be resolved only with morphological
and syntactic information.

Another important finding of Hobbs’ work was that 98% of pronominal
anaphora antecedents are in the same sentence of the pronoun or in the previous
one. Therefore, reducing the search scope only to two sentences, a system may
improve its precision with a slight loss of recall.

3.1.2 Binding Theory

The Binding theory is part of Principles and Parameters Theory (Chomsky,
1981) and imposes important syntactic intrasentential constraints as to how NPs
may corefer. It is helpful in determining impossible antecedents of pronominal
anaphors and in assigning possible antecedents to reflexive pronouns. Some of
the constraints defined there have been used for automatic anaphora resolution
(Ingria and Stallard, 1989; Carvalho, 1989).

The Binding Theory cares about the interpretation of reflexives, pronouns
and lexical NPs, formulating an important syntactic constraint for each case.
All three constraints use the structural relation of c-command which must be
introduced first. Given a syntactic tree of a sentence, a node A c-commands a
node B if and only if (Haegeman, 1994):

1. A does not dominate B

2. B does not dominate A

3. the first branching node dominating A also dominates B.
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Hobbs’ Algorithm

1. Begin at the NP node immediately dominating the pronoun

2. Go up the tree to the first NP or S node encountered. Call this node
X, and call the path used to reach it p.

3. Traverse all branches below node X to the left of path p in a left-to-
right, breadth-first fashion. Propose as the antecedent any NP node
that is encountered which has an NP or S node between it and X.

4. If node X is the highest S node in the sentence, traverse the surface
parse trees of previous sentences in the text in order of recency, the
most recent first; each tree is traversed in a left-to-right, breadth-
first manner, and when an NP node is encountered, it is proposed as
antecedent. If X is not the highest S node in the sentence, continue
step 5.

5. From node X, go up the tree to the first NP or S node encountered.
Call this new node X, and call the path traverse to reach it p.

6. If X is an NP node and if the path p to X did not pass though
the N-bar node that X immediately dominates, propose X as the
antecedent.

7. Traverse all branches below node X to the left of path p in a left-to-
right, breadth-first manner. Propose any NP node encountered as
the antecedent.

8. If X is an S node, traverse all branches of node X to the right of
path p in a left-to-right, breadth-first manner, but do not go below
any NP or S node encountered. Propose any NP node encountered
as the antecedent.

9. Go to step 4

Figure 4: Traversal order followed to propose antecedents for a pronoun if they agree in
gender and number.

The key constraints introduced in Binding Theory use the c-command rela-
tion, grammatical conditions and the concept of local domain. Local domain
conceptually refers to an immediate context, including the current sentence,
were short-distance anaphors may occur. Following, the three key constraints
of Binding Theory are listed:

• A. Reflexives: A reflexive anaphor must be c-commanded by its an-
tecedent and they must agree in person, gender and number.

• B. Pronouns: A pronoun cannot refer to a c-commanding NP within the
same local domain.

• C. NPs: A non-pronominal NP cannot corefer with an NP that c-commands
it.

Constraints B and C are specially useful in order to discard antecedents.
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3.2 Based on Rhetorical Structure

A discourse is divided in a set of complete units called utterances. An utter-
ance is typically larger than a single sentence, but smaller than the complete
discourse. The structure of a discourse offers information about the message
that the speaker wants to transmit. On one hand, redundancy, coherence and
agreement in the discourse allows the listener to better understand the meaning
of the received words. On the other hand, some pronouns, ellipsis, appositions
and others are used due to the speaker laziness.

The theories described in this section and their implementations studied this
cognitive and linguistic phenomena and take advantage of it in order to resolve
pronouns.

3.2.1 Centering and Focusing

Centering (Grosz et al., 1983) is a theory about discourse coherence. It is based
on the idea that speaker/writer intention is to keep main entity in focus which
entails some uses of referring expressions. During a discourse, the center (the
main entity) usually shifts softly and it does not tend to occur when using
anaphoric pronouns referring to it. It means, when looking for antecedents of
pronouns, it is plausible to assume that center is not changing from previous
utterances. In the contrary, when the center changes, it has to be easily infer-
enced by the listener/reader in a coherent discourse. So, definite NP or other
type of clues are usually used in this case.

The theory defines a set of rules and constraints to determine the center and
its changes across subsequent pairs of utterances. Each utterance U has a single
backward-looking center, Cb(U), and a set of forward-looking centers, Cf(U).
Cb(U) serves to link U to the preceding discourse, while Cf(U) provides a set
of entities to which the succeeding discourse may be linked. The preferred entity
in the forward-looking set is Cp(U).

In a discourse, we have an ordered list of utterances U1, U2...Um. In the
original Centering theory, there are defined three transition states: Continuing,
Retaining and Shifting. Continuing is the transition state where backward-
looking center is the same in two consecutive utterances (Cb(Un) = Cb(Un−1))
and it also agrees with the preferred forward-looking center (Cb(Un) = Cp(Un)).
Retain is the state where backward-looking centers agree (Cb(Un) = Cb(Un−1))
but it seems that the center is going to change because the preferred forward-
looking center is different (Cb(Un) 6= Cp(Un)). Finally, Shifting is the transition
state where backward-looking centers are different (Cb(Un) 6= Cb(Un−1)). Fig-
ure 5 list constraints and rules for each utterance Un. An example of Centering
interpretation of a discourse is shown in Figure 6.

Focusing and Centering are theories based on the same linguistic and cog-
nitive phenomena. Actually, Focusing (Sidner, 1979) is the theory of discourse
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Constraints Rules

1. There is only one Cb.

2. Every element of Cf(Un)
must be realized in Un

3. Cb(Un) is the highest-ranked
element of Cf(Un−1) that is
realized in Un

1. If some element of Cf(Un−1)
is realized as a pronoun in Un,
then so is Cb(Un)

2. Continuing is preferred over
Retaining which is preferred
over Shifting.

Figure 5: Constraints and rules of Centering (interpretation of Brennan et al. (1987))

Utterance Centering Resolution

Un Bob is planning to go out today Cf = {Bob}
State = Continuing

Un+1 He called Charlie to go Cb = Bob He = Bob
to the beach Cf = {Bob, Charlie,

the beach}
State = Retaining

Un+2 However, Charlie didn’t Cb = Bob his = Bob
answer his call Cf = {Charlie, Bob,

Bob’s call}
State = Shifting

Un+3 He was already at the beach Cb = Charlie He = Charlie
Cf = {Charlie, the beach}

Figure 6: Example of centering.

structure which provided the basis to develop Centering. There are two levels
of focusing in discourse: global and local (immediate). Entities relevant during
whole discourse are considered in global focus while entities in focus across sub-
sequent utterances are in local focus. In order to resolve anaphoras, which is the
goal of works described in this section, only local focusing is taken into account.
To avoid confusion, in the rest of the document “Focusing” will be used to refer
only to local focusing.

The main differences between Centering and Focusing arise within their rep-
resentation models. Sidner’s discourse focus corresponds roughly to Grosz et al.
backward-looking center of a utterance U (Cb(U)), while potential foci in Focus-
ing correspond approximately to forward-looking centers (Cf(U)) in Centering.
However, Focusing also introduces other concepts like, for instance, actor focus
to handle multiple pronouns in a single utterance. In addition, their constraints
to resolve anaphoras are quite different and consequently, further implementa-
tions are different depending on the theory they follow. The specific details of
each theory are out of the scope of this document. We refer the reader to follow
the cites if she/he wants to go deeper in them (Sidner, 1979; Grosz et al., 1983).

Originally, the use of centering and focusing theories for anaphora resolution
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only provides a search scope limited to entities in the immediately preceding ut-
terance. Both theories bother about focus/center changes between utterances
but ignore some intrasentential affairs. Also antecedents further than imme-
diately previous utterances are ignored. Consequently, alternative models for
Centering (Hahn and Strube, 1997; Walker et al., 1998; Strube, 1998) and for
Focusing (Carter, 1986; Azzam, 1996) extend that search space to handle intra-
sentential anaphora and distant antecedents.

Carter (1986) argued that intrasentential candidates in Focusing should be
preferred over candidates from previous sentences only in the cases where no
discourse focus has been established or where discourse focus is rejected for
syntactic or selectional reasons. That new rule was applied also for Centering
(Walker, 1989).

The BFP (initials of the authors’ names) algorithm for pronoun resolution
(Brennan et al., 1987) is a practical implementation of Centering theory. It also
contributes with some extensions to the original theory. It splits the Shifting
transition state into Smooth-shift and Rough-shift. This change helps to define
new rules which better find the center and its transitions.

BFP algorithm has some weaknesses mainly inherited from original Center-
ing theory. First, it has difficulties solving global pronouns because it is only
scoped in a local search. Second, it does not have any incremental method to
process pronouns inside the same sentence. Third, intrasentential pronouns are
not always solved because BFP is focused in discourse and it only search an-
tecedents in previous utterances. Finally, candidate ranking is not completely
specified and may be cases where several candidates have the same ranking and
it is not possible to choose one of them.

Many works deal with these problems and propose some solutions. Most of
them combine the main ideas of Centering with Hobbs’ algorithm because, in
both ways, strengths of one fit with many weaknesses of the other.

• Walker (1989) compares BFP with Hobbs’ algorithm using the same test
documents and concludes that BFP achieves better performance resolving
intersentential pronominal anaphora while Hobbs’ algorithm performs bet-
ter finding intrasentential ones. Consequently, a potential modification is
proposed for BFP based on Carter’s extension for Focusing (Carter, 1986).
The addition of Carter’s rule to BFP improves its performance.

• Tetreault (1999) proposes an alternative to BFP called Left-Right Center-
ing (LRC) which adheres to the constraints and rules of Centering theory
and also incorporates a search process similar to Hobbs’ Algorithm. It can
be viewed as an extension of Hobbs’ algorithm but including discourse in-
formation. Therefore, LRC resolves pronouns incrementally.

• Kameyama (1997) extends Centering in order to consider sentence struc-
ture with a hierarchy of clauses as centering-units instead of normal use of
utterances as centering-units. It breaks down utterances in clauses which
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helps to search intrasentential pronouns using the same Centering princi-
ples.

• Strube’s S-list algorithm (Strube, 1998) is based on the same idea of cen-
tering but makes it simpler. In spite of having a set of conditions to
determine the current entity in focus, it has an ordered list of entities that
grows as new entities are found through the discourse. The list (S-list) is
reordered when new entities are added. When searching for antecedents
it follows the S-list order. The first one that satisfies the agreement con-
straints with the pronoun is selected.

In the case of Focusing, Azzam (1996) discovers and solves two of its weak-
nesses. First, the original algorithm only deals with simple sentences with sub-
ject, verb and object optionally followed by prepositional phrases or adverbial
adjuncts. However, real sentences might be more complex. Second, entities
proposed by the algorithm for anaphora or coreference resolution are the en-
tities in focus and do not include entities of the sentence under consideration.
Both problems are solved breaking down complex sentences in small and sim-
pler units named embedded sentences. However, Azzam et al. (1998) studied
the incorporation of focusing for coreference resolution in a working coreference
system without finding an improvement of the performance.

3.2.2 Discourse Representation Theory

Discourse Representation Theory (DRT) (Kamp and Reyle, 1993) is another
discourse theory successfully applied to anaphora resolution. Each sentence is
represented in a Discourse Representation Structure (DRS) which is a diagram
with discourse referents at the top and conditions at the bottom. A DRS is a
semantic representation of the sentence obtained using the sentence syntactic
information and can be easily translated to a first-order logic formula. DRSs
represent the meaning of the discourse and also impose constraints for pronoun
resolution. Table 1 shows an example of how two sentences are represented in
DRSs and pronouns are resolved.

Bob wants a new bicycle. He doesn’t have enough money.

x, y
x = BOB
NEW (y)
BICY CLE(y)
WANT (x, y)

z
z = x

¬

u
ENOUGH(u)
MONEY (u)
HAV E(z, u)

Table 1: Example of two DRSs.

DRT has been adopted by many researchers and some works combine DRT
with Focusing to take advantage of both techniques (Cormack, 1993; Abraços
and Lopes, 1994).
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3.3 Based on Constraints Satisfaction

Constraint Satisfaction approaches, also known as Factor-based approaches,
combine information from different sources to resolve anaphoras or coreferences.
Some authors split these factors into constraints and preferences. On one hand,
constraints must be satisfied in order to accept a candidate as a possible an-
tecedent. On the other hand, preferences are used to score and rank possible
antecedents and choose the best one. Anyway, one can consider both as weighted
constraints and model it as a constraints satisfaction problem. The antecedent
which better satisfies the constraints is the one selected at the end.

This approach does not directly rely on any cognitive or linguistic theory
about discourse understanding or representation, but can combine any possible
one in order to filter or score candidates. As it is discussed later, works based
on constraints satisfaction have been following the way from knowledge-rich
solutions, trying to combine pragmatic and semantical information with full
parse trees, to knowledge-poor solutions where only PoS tagging and chunking
is required (Carter, 1986; Rich and LuperFoy, 1988; Carbonell and Brown, 1988;
Lappin and Leass, 1994; Kennedy and Boguraev, 1996; Baldwin, 1997; Mitkov,
1998).

Carter (1986) developed a shallow processing approach implemented in a
program called SPAR (Shallow Processing Anaphor Resolver) to resolve nomi-
nal anaphoras. SPAR combines different knowledge sources and strategies such
as Focusing, Hobbs’ algorithm, semantic rules and heuristics. After a syntactic
analysis of sentences is done, SPAR constrains the search of antecedents provid-
ing a measure of semantic density. Antecedents that semantically agree with
anaphor are proposed. Next, a set of focus-based rules are applied to anaphors
in order to find one or more antecedent candidates. Both, Focusing theory and
some rules inspired in Hobbs’ algorithm are used adding intrasentential can-
didates. After that, domain constraints are required to discard inconsistent
antecedents. Next, a common-sense inference is done if some anaphors remain
unresolved. And finally, if still can not determine antecedents, a set of weak
heuristics are activated.

Rich and LuperFoy (1988) proposed Lucy, a distributed architecture for
anaphoric pronoun resolution. A set of modules (or factors) score the possible
antecedents according to its criterion. A weighted average of all scores is calcu-
lated for antecedent ranking, and best ranked is selected as antecedent. Each
factor evaluates independently a different aspect such as gender agreement, an-
imacy, semantic consistency and so on (Figure 7). Therefore, Lucy exploits
several different linguistic areas and theories.

The process first syntactically and semantically analyzes the input discourse.
Next, each factor proposes candidates for pronouns and scores each proposed
pair antecedent-anaphor following its own criterion. Each factor also scores
pairs proposed by the other factors. Then, a module named Handler averages
the scores and ranks them in order to choose the one with highest average.
Scores can be negative (which means a negative recommendation) and have an
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associated confidence value which is used in the averaging formula.

Figure 7: Lucy. Rich and LuperFoy’s distributed architecture.

A similar idea to that of Lucy is proposed by Carbonell and Brown (1988)
as a general framework for intersentential anaphora resolution. It is also based
on a combination of multiple knowledge sources: syntax, semantics, dialogue
structure and world-knowledge. Each kind of knowledge is implemented as a
set of constraints. On one hand, some constraints act as a filter and directly
eliminate candidates which violate them. On the other hand, the rest of con-
straints, called preferences here, are used as a voting scheme where the stronger
preferences are assigned more votes. In the event of a tie, it is consider an
ambiguity.

Some of the constraints proposed here are really elaborated but also require
lots of knowledge and discourse understanding. For example, a set of constraints
named precondition/postcondition constraints pretend to know real-world prag-
matic knowledge about the actions expressed in a sentence in order to discard
impossible antecedents. For instance:

A) Bob lent Charlie some money. He spent it in a new bicycle.
B) Bob borrowed from Charlie some money. He spent it in a
new bicycle.

In example A, precondition/postconditions constraints would discard “Bob”
as referent since he does not have the money anymore. He lent it to “Charlie”
so, “Charlie” is the only possible antecedent for “He”. In the contrary, in the
example B, “Charlie” would be discarded as antecedent for the same reason. In
this case, “He” is referring to “Bob”. In order to implement that, a big amount
of data specifying each verb preconditions/postconditions must be generated.

Many works use similar schema of constraints and preferences (or filtering
and ranking) to develop multi-strategy solutions. For instance, Lappin and Le-
ass (1994) propose an approach similar to Carbonell and Brown (1988). The
main difference between them is that Lappin and Leass only use constraints
at morphological and syntactic level avoiding the hard task of semantic and
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pragmatic constraint implementation, obtaining a reasonable accuracy. Lappin
and Leass also designed a filter to find pleonastic pronouns and discard them.
Until then, most of works expected a previous manual filtering of non-anaphoric
pronouns. However, it relies on perfect morphological and syntactic analyzers.
Therefore, Kennedy and Boguraev (1996) proposed a parser-free pronoun res-
olution system that uses a set of heuristics to estimate the full parser perfect
information expected by Lappin and Leass. Also Baldwin (1997) presented a
pronoun resolution system only using morphological information and shallow
parsing. Baldwin’s system is called CogNIAC and achieves high precision on its
resolution because it only takes a decision when very high confidence constraints
have been satisfied.

Following this knowledge-poor trend, Mitkov (1998) published a robust pro-
noun resolution system that only relies on part of speech tagging and shallow
syntactic information (chunking). It has a set of elaborated constraints that
obtain clues (antecedent indicators) to resolve pronouns. The system works like
previous ones, a set of constraints filter possible candidates and another set of
soft constraints scores and sort them in order to choose the one with highest
score.

LaSIE (I and II) is the Large Scale Information Extraction system developed
in the University of Sheffield to participate in MUC-6 and MUC-7 (Humphreys
et al., 1998). The system is a pipeline of modules each of which processes
the entire text before next is invoked. The modules are: Tokenizer, Gazetteer
Lookup, Sentence Splitter, Brill Tagger, Tagged Morph, Buchart Parser, Name
Matcher, Discourse Interpreter and Template Writer. LaSIE-II not only resolves
coreferences but also Named Entities and templates of Information Extraction
(template elements, template relations and scenario template). Coreference res-
olution is done in the Discourse Interpreter module. There, a Domain Model
(knowledge of the domain) is represented in a semantic net whose nodes repre-
sent concepts, with an associated attribute-value structures recording proper-
ties and relations of the concept, and whose arcs model a concept hierarchy and
support property inheritance. The parser gives a semantic representation of the
input text to the Discourse Interpreter which adds it to the Domain Model to
finally become a Discourse Model. Coreference is done when adding new in-
stances to the Discourse Model. If new instance can be paired with an existent
one, they are coreferential. To determine when can be paired a similarity score
is calculated based on a distance in the concept hierarchy and the number of
shared properties. The highest scoring pair is merged and all their properties
combined forming an entity. The system participates in MUC-6 (LaSIE-I) and
MUC-7 (LaSIE-II) and achieves better performances than most of the other
participants.

4 Corpus-based Approaches

This section includes approaches that use corpora for training or to obtain sta-
tistical data. These works mostly appeared after MUC-6 (Grishman and Sund-
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heim, 1996) and MUC-7 (MUC, 1998), where annotated coreference documents
were published. Therefore, most of the works since middle 90s to present time
are of the kind of corpus-based approaches for coreference resolution.

4.1 Statistical and Manual Approaches

Ge et al. (1998) presented a statistical approach to anaphora resolution. They
study the probability of a pronoun to be anaphoric with a mention, given a
set of attributes. Attributes are distance, number of times the possible referent
is mentioned, type of antecedent (NP for example) and so on. One interest-
ing attribute is the one called “Hobbs distance”, which is the position that an
antecedent has in the list of proposed antecedents when executing a slightly
modification of Hobbs’ algorithm to resolve a pronoun. The algorithm collects
statistics on a annotated training corpus (Penn Tree Bank) and uses these prob-
abilities to resolve pronouns.

Cardie and Wagstaff (1999) proposed a clustering approach for coreference
resolution. The order of resolution follows the NP found order in the document
and decisions are taken greedily. When a new mention is found in the document,
it is classified in one of the existent clusters or a new one is created for it. The
degree of relatedness of an NP with existent clusters is represented in a distance
metric. That distance is defined as the weighted summatory of a set of features.
If the distance is lower than a cut-threshold the NP is assigned to that cluster.
Feature function weights are chosen by hand and cut-threshold is chosen to
maximize F1 on the development set.

Harabagiu et al. (2001) studied annotated corpora for coreference in order
to acquire constraints for a resolution system. In spite of defining constraints
using expert linguistic knowledge, they evaluate pairs of coreferential (or not)
mentions in the annotated texts. Positive training instances are extracted from
coreference chains pairing any NP inside the chain with any other, without
considering the order inside the chain. Thanks to this methodology, one can ob-
tain much more positive samples than only pairing anaphors and antecedents.
Negative training pairs are easily acquired pairing NPs from different chains.
Studying these samples they develop a set of rules, some of them semantic, that
utilize WordNet and some heuristics for disambiguation. The set of coreference
rules is then transformed into a corresponding set of soft constraints by estimat-
ing the accuracy of each rule on the training data. The resolution is done with a
local-search algorithm that, starting with a random solution, changes partitions
optimizing by pairwise coreference probabilities given by the soft constraints.

4.2 Supervised Learning

This section summarizes the state of the art of supervised machine learning
coreference resolution systems. It is divided in five subsections, four of them
corresponding to the models most followed by researchers, namely: Pairwise
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Classifiers, Coreference Chains, Graph Partitioning and Conditional models.
Last subsection describes some works dedicated to the addition of semantic
features.

4.2.1 Pairwise Classifiers

First machine learning systems developed for coreference resolution were based
on pairwise classifiers using decision trees (DT) (normally C4.5 or C5: (Quinlan,
1993)). Each pair NP-NP found in the document (following some arbitrary
order) is considered as possible coreferential pair. A set of feature functions
evaluates pair compatibility, each one according to its own criterion. Then,
taking account of feature functions returned values, the DT classifies each pair
as coreferential or not. Once all pairs are classified, implicitly, a single-link
clustering is done producing final coreferential chains.

McCarthy and Lehnert (1995) developed RESOLVE, a domain specific ma-
chine learning system for coreference resolution. RESOLVE learns a DT in order
to classify pairs of mentions as coreferential or not. It consists of 8 features, 3
of them domain-specific. The others are lexical, semantic and positional. No
syntactic features are used.

Later, Soon et al. (2001) proposed a general corefence resolution system also
based on a DT classifier using 12 features. Their features are lexical, syntactic,
semantic and positional. However, a study of features contribution reveals that
only 3 features are highly informative to such a degree that the other 9 would
be the firsts ones to be considered for pruning away by the DT algorithm. The
3 informative features are STRING MATCH (the two strings are the same),
ALIAS (one mention is an alias of the other) and APPOSITIVE (both NPs are
in appositive position in the document). The DT learned with these 3 features
is only about 2% worst than the DT learned using the 12 features. There is an
example of a DT learned in Figure 8. Each feature evaluates a pair of mentions
and returns a value true (t) or false (f) and in some cases there is also an
unknown (u) value. The feature DISTANCE returns a numeric value indicating
sentence distance between both mentions.

Training set creation is done as follows. Each pair of mentions annotated
as coreferential in training corpus generates several training instances. The
number depends on the number of candidate mentions obtained by the prepro-
cess. Concretely, if mentiona and mentionb are annotated as coreferential, the
pair mentiona − mentionb is a positive example and each mentioni between
mentiona and mentionb in the document generates a pair mentioni−mentionb

which is a negative example for training.

The approach of Soon et al. (2001) achieved reasonably results in common
datasets MUC-6 and MUC-7 (62.6% and 60.4% respectively) comparable to that
of state-of-the-art nonlearning systems on the same datasets2. Consequently,

2http://www-nlpir.nist.gov/related projects/muc/proceedings/co score report.html
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many further works use Soon’s system as a baseline.

STR_MATCH = t: +
STR_MATCH = f:
| J_PRONOUN = f:
| | APPOSITIVE = t: +
| | APPOSITIVE = f:
| | | ALIAS = t: +
| | | ALIAS = f: -
| J_PRONOUN = t:
| | GENDER = f: -
| | GENDER = u: -
| | GENDER = t:
| | | I_PRONOUN = t: +
| | | I_PRONOUN = f:
| | | | DIST > 0: -
| | | | DIST <= 0:
| | | | | NUMBER = t: +
| | | | | NUMBER = f: -

Figure 8: Example of a decision tree classifier (Soon et al. 2001)

In order to study feature contributions, training instance selection and, in
general, propose improvements to Soon’s system, Ng and Cardie (2002b) pub-
lish a system for coreference with several new features and modifications to
the machine learning framework. This system outperforms Soon’s due to some
changes. First, lots of new features are added and old ones suffer some modifi-
cations in order to improve them. Second, pairs are classified with a confidence
value and not with straightforward binary decisions. It means that even when
a positive match is found the system keep seeking for another one with higher
confidence value. Third, instance selection for training is changed in order to
avoid pairs pronoun-NP but allow NP-NP and NP-pronoun, assigning lower
confidence values to the first ones.

Not only decision trees have been developed in order to learn pairwise classi-
fiers. For instance, Denis and Baldridge (2007) learn two binary classifiers using
maximum entropy models. One classifier determines if a pair of mentions are
coreferential or not, while the other classify single mentions as anaphoric or not.
The second is used as a filter before coreference classifier is applied. This kind
of anaphoric filter has been also tried in other works (Ng and Cardie, 2002a)
and its goal is to improve system precision without loss of recall. However,
normally it does not work as is expected. Note that neither coreferences are
always anaphoric, nor anaphoric mentions are always coreferential. Denis and
Baldridge (2007) tested how a cascade configuration of both filters causes a loss
of recall. However, they implemented a system to combine these informations
using Integer Linear Programming (ILP) which improves final results due to a
better information combination.
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Many other works have trained a pairwise classifier different of decision
trees such as RIPPER (Ng and Cardie, 2002b), maximum entropy (Denis and
Baldridge, 2007; Ji et al., 2005) or Support Vector Machines (Yang et al., 2006).
The later, proposes a new kernel that interprets syntactic parsed trees as fea-
tures, avoiding the efforts of decoding them into a set of flat syntactic features.

4.2.2 Coreference Chains

A different approach to pairwise classification is proposed by Luo et al. (2004).
In this work, a model based on a Bell Tree is proposed. Traversing mentions in a
document from beginning to end, a tree is formed generating all different possible
combinations of coreferential chains. Each possible combination is a node in the
tree and when a new mention is incorporated a new level of nodes representing
all possibilities is created. Each edge has a confidence value obtained with a set
of weighted feature functions evaluating the compatibility of the new mention
incorporated to each formed chain. Every step also performs some pruning
processes in order to keep an abordable tree size discarding lowest confidential
coreference chain combinations.

Figure 9: Example of a Bell Tree

It is important to note that feature functions evaluate possible coreference
of a new mention with the chain already formed and not only by pairs. In
this way, some information about an entity that may be separated in different
mentions can be used to evaluate compatibility more accurately. For example,
in a document one may find these three mentions in this order: 1) “Alice Smith”
2) “A. Smith” and 3) “She”. A classifier by pairs may fail evaluating gender
agreement when classifying the pair “A. Smith” and “She”. However, using
the already formed chain “Alice Smith”-“A. Smith”, it is easier to know that
“She” is also a good candidate to include in that chain. Figure 9 shows the tree
generated for this example. In the first step (a), a new entity is started with
mention 1 (Alice Smith) and active mention is 2 (A. Smith). Then, mention 2
can be added to the existent entity o can start a new one. Two edges and two
new tree nodes are generated: (b1) and (b2). In our case, the most probable
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node is (b1) because its edge has higher confidence value. Next, once mentions
1 and 2 are the same entity (b1) the system has to decide what to do with
active mention 3. Again two options are possible, put all three mentions in the
same entity (c1) or create a new one for mention 3 (c2). Finally (c1) is chosen
because its edge has higher confidence value.

4.2.3 Graph Partitioning

Graph partitioning approaches are a natural evolution of pairwise classifiers in
order to resolve corefences. Like in coreference chain trees (Section 4.2.2), a
set of advantages are easily incorporated when resolving coreferences as groups.
Indeed, after pair classification, implicitly a single-link clustering is done in
order to finally decide coreference chains. Viewing it from groups point of view
one can avoid contradictions in the results and lacks of information found when
classifying by pairs.

Generally, graph partitioning is done over an undirected graph in which
vertices are mentions and edges are weighted by the scores of feature functions
between adjacent mentions. Normally, edge weights are viewed as distances and
the algorithm cuts edges further than a threshold r in order to isolate the groups
representing independent coreference chains. Both feature function weights and
cut-threshold r are learned with training data.

Finley and Joachims (2005) developed a Support Vector Machines (SVM)
classifier in order to learn the similarity measure used to join elements of the
same coreference chain. This similarity measure is used by correlation cluster-
ing algorithm. The novelty of the system is that the measure is not learned
classifying pairs of elements (as COREF or NO-COREF). The SVM learning
algorithm is modified to learn a similarity measure that classify sets of elements
in a set of partitions. The loss function used for learning is the same function
used in the MUC scorer which it directly associates the learning process with
the final task. One of the problems found in this method is the impossibility
of train all the possible incorrect partitions. To solve it, two approaches are
proposed in order to iteratively determine the most relevant partition samples
for training. Their results confirm that a groupwise classifier performs better
than pairwise, but not comparable results (MUC test using MUC scorer, for
example) are published.

Nicolae and Nicolae (2006) presented an algorithm called BestCut to resolve
coreferences cutting edges in a graph. First, entities are separated by their type
(Person, Organization, Location, Facility and GPE). Pronouns are not included
in the process until the end. Second, a classifier decides if each pair of mentions
corefer or not with an associated confidence value. Then, all coreferential pairs
are linked in a graph where vertices represent the mentions and edges represent
that they are coreferential. Edge weights are the confidence values returned by
the classifier. BestCut cuts the edges with minimum cut weight. That is, the
weight of the cut of a graph into two subgraphs is the sum of the weights of
the edges crossing the cut. This process is repeated until a stop condition is
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Figure 10: Example of a Graph Partitioning

satisfied. A maximum entropy model is used for training the classifier and its
confidence values. The stop condition is also a trained classifier with a set of
features that optimizes ECM-F measure over the graph partitions. At the end of
the process, pronouns are assigned using the same pairwise coreference classifier.
The process presented here is promising as is shown in the results using true
mentions. However, it heavily relies in a previous sense disambiguation step for
NPs when automatic preprocess is done.

Figure 10 is an example of how the mentions “he”, “A. Smith”, “Alice Smith”
and “She” would be represented as a graph following Nicolaes representation
but including pronouns.

A similar approach is proposed in Klenner and Ailloud (2008) called coref-
erence clustering. All positively (COREFERENTIAL) classified pairs from a
pairwise classifier are the input of a clustering algorithm. The classification
cost depends on the number of similar positive and negative instances found by
the pairwise classifier in the dataset. The clustering algorithm uses the costs
of each pair to finally decide the coreference chains with a minimum cost. Do-
ing clustering after classification of pairs improves final performances because
it implies coherence with all the mentions in the final chains.

4.2.4 Conditional Models

Conditional models of identity uncertainty are proposed (McCallum and Well-
ner, 2003; Singla and Domingos, 2005; Richardson and Domingos, 2006) and
applied to coreference resolution (McCallum and Wellner, 2005; Culotta et al.,
2007). These models are general enough to include most of machine learn-
ing implementations based on feature functions. Therefore, pairwise classifiers,
coreference chain trees and also graph partitioning approaches can be considered
as particular cases/implementations of these more general models.
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First, the pairwise model is defined as following. Given a pair of mentions
xi and xj , a binary random variable yij is 1 if both mentions are coreferential.
A set of feature functions evaluate the compatibility of that pair. For example,
fk returns 1 if xi and xj agree in number. Each feature fk has an associated
real-valued parameter λk.

p(yij |xi, xj) =
1

Zxi,xj

exp
∑

k

λkfk(xi, xj , yij) (1)

where Z is a normalization parameter. Normally, in a pairwise classifier, if
the probability of xi and xj to be coreferential is higher than a 0.5 the classifier
assigns them as coreferential. A learning process determine best possible values
of parameters λ.

Using the same notation, a more general model, First-Order Logic Model
(or Groupwise Model), is obtained defining a vector of mentions xj = {... xi ...}
which includes a group of mentions candidates to form a coreference chain.
This time, feature functions evaluate the agreement of all the mentions in that
possible group.

p(yj |xj) =
1
Zxj

exp
∑

k

λkfk(xj , yj) (2)

where Z is a normalization parameter. This model includes relational in-
formation between elements to resolve. Feature functions are not limited to
compare some characteristic of two elements or to evaluate a particular charac-
teristic of an element, but also adds the possibility of functions evaluating the
compatibility of a feature in a group of elements (Culotta et al., 2007).

The models define how the most probable partitioning can be found de-
pending on the feature functions, even pairwise or groupwise. Decisions can
not be taken independently in a pair or group of elements, but they depend
on the configuration of the others. However, in practice, enumerating all pos-
sible configurations in order to find the most probable can result in intractable
combinatorial growth (de Salvo Braz et al., 2005). Consequently, a set of re-
ductions and practical implementations are proposed and tested with promising
performances (McCallum and Wellner, 2005; Culotta et al., 2007).

4.2.5 Adding Semantic Features

Several machine learning systems incorporate semantic features like WordNet
similarities/distances or aliases. There are many WordNet similarities using
different relations (IS-A, synonymy, homonymy...) in order to evaluate the si-
milarity between two word senses. For example, a possible distance between
two word senses is the number of word senses in the shortest path following
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only hyperonymy relations. However, due to word sense disambiguation errors,
WordNet similarities may result useless noisy features. Some works studied
how to incorporate additional usefull semantic information to ML systems for
coreference resolution.

Ji et al. (2005) added semantic relations to refine decisions taken by a pair
classifier. The classifier first determines coreferential pairs using first a set of
hand-written rules and then maximum entropy models. Once classification is
done with a associated confidence value, a search of semantic relations between
mentions that seem non-coreferential is performed. After that, a set of rules
are applied to mentions with relations. This step helps to improve precision by
pruning incorrect coreference links between mentions and also improve recall
by recovering missed links. Finally, a pairwise classification is done again using
confidence values of the first classification as another feature and using also the
recent incorporated semantic information.

Other works studied incorporation of semantic features into pairwise clas-
sifiers (Ponzetto and Strube, 2006; Ng, 2007). Ponzetto and Strube (2006)
developed a set of features to add to their maximum-entropy-trained pair clas-
sifier. Features from three different knowledge sources are proposed: Semantic
Role Labeling, WordNet and Wikipedia.

• Semantic Role Labeling. The semantic role of each mention is automati-
cally annotated with a parser. Then, two features are added for each pair
of mentions I SEMROLE and J SEMROLE indicating the semantic role
of each mention i and j.

• Wikipedia. Wikipedia is a multilingual Web-based free-content encyclo-
pedia. Each non-pronominal mention (mentioni) is searched in Wikipedia
(querying the head lemma or the Named Entity) and the response’s article
(articlei) is assigned to it. Sometimes a disambiguation page is found in-
stead of a direct article. In this cases, the article finally assigned depends
on the other mention of the pair mention-mention in classification process.
There are also other cases where no article can be assigned to a mention.
Six kinds of features are added to each pair of mentions:

– I/J GLOSS CONTAINS: True when the first paragraph of articlei/j

contains mentionj/i.

– I/J RELATED CONTAINS: True when articlei/j links to articlej/i.

– I/J CATEGORIES CONTAINS: True when categories of articlei/j

contain mentionj/i.

– GLOSS OVERLAP: An overlap score between first paragraphs of
articlei and articlej .

– WIKI RELATEDNESS BEST: Given several relatedness scores (fol-
lowing Wikipedia categories of the articles in different ways) this
feature chooses the highest one.

– WIKI RELATEDNESS AVG: The average of all relatedness scores.
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• WordNet. There are several measures of distance/similarity using synsets
of WordNet. Ponzetto and Strube (2006) developed two features WN SIMI-
LARITY BEST and WN SIMILARITY AVG which respectively return
the best score of all available WordNet similarities and their average. In
addition, they avoid disambiguation and all possible synsets of mentioni

are scored versus all possible synsets of mentionj .

Ng (2007) studies incorporation of shallow semantic features. Based on a
decision tree pair classifier, a set of features such as “semantic agreement”, “se-
mantic ACE class” and “semantic similarity” are proposed. Also other features
are incorporated and tested like patterns, anaphoricity and coreferentiality. Se-
mantic Agreement feature is similar to the ones based on WordNet but tries
to avoid the common disambiguation errors when assigning senses to nouns or
NP. In Ng’s work, he looks for nouns in apposition with Named Entities which
already have been assigned a semantic class. In these cases, the sense of the
noun is determined by the semantic class of the appositive NE. Second feature
“semantic ACE class” takes as main classes the ones used in ACE. The feature
considers two mentions to be semantically compatible if and only if both men-
tions have a common ACE semantic class. Last feature is similar to the most
used WordNet distance but here it incorporates previous word sense disambigua-
tion based on nouns found around the repetitions of the noun to disambiguate
in the document.

4.3 Weakly Supervised and Unsupervised Learning

Due to lack of big amounts of annotated data for training coreference resolution
systems, some researchers have explored weakly supervised and unsupervised
approaches. Co-Training and bootstrapping are two resources widely used in
this kind of situations. Also, unsupervised clustering and generative models are
taken into account.

Müller et al. (2002) applied co-training for coreference resolution in German
texts. Starting with few manually annotated documents, the system learns a
set of features and gradually annotates more texts. The performance of the
experiment is not significantly better than systems trained with manual anno-
tated data. However, the use of Co-Training seems to be able to save manual
annotation work.

Bean et al. (2004) proposed a system with contextual role knowledge. First,
few “easy” coreferences are annotated as a seed for subsequent bootstrapping.
Using a NERC, Named Entities of the same class which are equal or almost
equal, using some heuristics, are annotated as coreferential. Also antecedents
for reflexive pronouns are searched and automatically annotated. These two
kinds of annotation have high precision but low recall and are the initial seeds.
Once initial annotation is done, a set of caseframes are extracted from pairs
anaphor/antecedent. There are three kinds of caseframes: network, lexical
and semantic. For example, a network pattern is murder of <NP> and killed
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<patient>. Using these caseframes, some filters and a set of “knowledge sources”
(similar to feature functions of other works), a Dempster-Shafer decision is done
in order to finally obtain coreference chains.

Haghighi and Klein (2007) developed a nonparametric Bayesian approach
for coreference resolution and also cross-document coreference. The model is
fully generative and produces each mention from a combination of global entity
properties and local attentional state. It uses some information from annotated
corpora and true mentions for training and test but the approach is unsuper-
vised. It is a novelty approach never used before for coreference resolution and
might be showing a new research line to follow. Actually, Ng (2008) contributes
with three modifications to that model in order to solve its potential weaknesses
and improve the results. Ng (2008) also proposes an Expectation Maximization
(EM) clustering model which is unsupervised, although it is used in a weakly
supervised manner in the experiments using an only labeled document.

5 Corpora and Evaluation

This section reviews the most utilized annotated corpora and metrics used in
the state of the art to compare the performances of different systems. First,
two corpora are introduced: MUC and ACE. Then, there is a brief description
of the most popular metrics: MUC-scorer, ACE-value, B-CUBED and CEAF.

5.1 MUC

The Message Understanding Conferences (MUC) were competitions in Infor-
mation Extraction initiated in 1987 and founded by DARPA (Grishman and
Sundheim, 1996; MUC, 1998). The goal was to encourage the development
of new and better methods for many tasks related to Information Extraction.
Many research teams competed against one another. Coreference resolution
was included in the competition in MUC-6 (1995) and MUC-7 (1997). Anno-
tated corpora in English for coreference is copyrighted by the Linguistic Data
Consortium3.

5.2 ACE

Automatic Content Extraction (ACE)4 is a program to support automatic pro-
cessing of human language in text form (NIST, 2003). Promoted by National
Institute of Standards and Technology (NIST), the program is devoted to three
source types. These are, namely, newswire, broadcast news (with text derived

3http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2001T02
4http://www.nist.gov/speech/tests/ace/
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from ASR), and newspaper (with text derived from OCR). Also texts in lan-
guages different than English are available.

5.3 Metrics

Evaluation of coreference systems performance can be done using different met-
rics. The score for a particular run of a system is a measure of how well it
is performing the task. Normally, a metric compares the expected results (key
from here on) with system output ones (response from here on). Therefore, a
metric should indicate the way to follow to improve a system while, at the same
time, should be useful to compare different systems. However, coreference tasks
have been scored using several different metrics and, as discussed in section 5.4,
performance comparatives must be done carefully.

In this subsection the most widely used metrics are explained. First, there
are two metrics associated with world-wide coreference resolution contests: MUC-
score and ACE-value. Second, two metrics, B-CUBED and CEAF, are pre-
sented. Those were developed in order to avoid some weaknesses of previous
ones.

5.3.1 MUC-scorer

MUC-scorer (Vilain et al., 1995) was used in the MUC task. It is a link-based
metric which evaluates precision, recall and their harmonic F-measure. First, a
count of common links between key links and response ones is performed. The
link precision is the number of common links divided by the number of response
links, while recall is the number of common links divided by the number of
key links. First harmonic (F1) is calculated as any other precision and recall
harmonic measure:

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(3)

There are two important weaknesses in this metric:

• MUC scoring algorithm does not give any credit to coreferential mentions
detected but not included in any coreference chain in the response. This is
because only links are considered for evaluation. It is known that a single
mention can not constitute a coreference chain by itself. Therefore, no
single mentions are found in key documents. However, for a coreference
system, it is important to distinguish between a non coreferential mention
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and a mention that is coreferential but the other mentions of its chain may
not be detected.

• The algorithm penalizes links independently of their type or their coref-
erence chain and does not distinguish which ones are important errors.
This weakness causes at least two undesirable consequences. First, the
metric intrinsically favors systems producing fewer coreference chains and
may result in higher F-measures for worse systems. A response with few
but correct links may obtain really high precision score. Second, a system
that joins, for example, two big coreference chains in one, is penalized only
once, while a system that distinguish these two big chains but introduces
an incorrect link with some other mention has the same penalization.

Consequently, a system that performs really better than other for a human
understanding, might have the same score using MUC-scorer or even worse. In
the following example it is clearly exposed.

Bob1 is planning to go out today. He2 called Charlie3 to
go to the beach4. However, Charlie5 didn’t answer his6 call
because he7 already was at the beach8.
key chains: {1, 2, 6}Bob, {3, 5, 7}Charlie, {4, 8}beach

System1 chains: {1, 2, 6, 7}Bob, {3, 5}Charlie, {4, 8}beach

System2 chains: {1, 2, 3, 5, 6, 7}Bob/Charlie, {4, 8}beach

In a human point of view, System1, that detects the three coreference chains
but includes mention 7 (he) in Bob’s chain, would be considered quite good
because only fails in one pronoun but seems that it is “understanding” that
there are two people. However, System2, a system that joins Bob and Charlie
in the same chain, would not be considered as good by a human.

Recall scores are 4/5 for System1 and 5/5 for System2. And precision scores
are 4/5 and 5/6 respectively. Consequently, MUC-scorer determines that the
first system (good for a human) has a F-measure of 80.0% while the second one
(bad for a human) obtains 90.9%.

Despite its unintuitive results in some cases, MUC scorer is the most widely
used scoring algorithm in the state of the art of coreference resolution at least
for two reasons. First, MUC corpora and MUC-scorer were the first available.
And second, it is easy to understand and implement.

5.3.2 ACE-value

ACE-value (NIST, 2003) is the scoring algorithm used to evaluate the ACE
task. Each error found in the response has an associated cost. An error can
be a false-alarm (mention included in the response but not in the key), a miss
(the opposite) or a missclassification of a coreference chain. The cost associated
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to each error depends on the type of the entity (e.g. PERSON, LOCATION,
ORGANIZATION) and on the kind of mention (e.g. NAME, NOMINAL, PRO-
NOUN). The final cost is the sum of the costs of all the errors made and is nor-
malized versus the cost that would have a system with an unannotated output.
Finally, the final score is the substraction of the normalized cost from 1.

A perfect response will obtain an score of 100% but note that an score of
0% is not the worst possible, is the one obtained by a system without any
identified coreferential mention. The score of a system could be negative. The
interpretation of the score is that a system with a better score than another
has made less or less important errors than the other. However, it is important
to emphasize that an ACE-value of, for example, 85% does not mean that the
system performs correctly 85% of coreferences. It means that this system error
cost is the 15% of the error cost of a system with an unannotated output.

ACE-value is used in several works in the state of the art. However, since the
cost is entity-type and mention-type dependent, it needs an annotated corpus
not only with coreference chains but also with entity types and mention types.
Of course, ACE corpus has these annotations, but MUC hasn’t.

5.3.3 B-CUBED

B-CUBED (Bagga and Baldwin, 1998) is a coreference scoring algorithm ap-
peared to overcome the weaknesses of MUC-scorer. The main difference be-
tween these two algorithms is that MUC-scorer is a link-based measure while
B-CUBED is mention-based. Concretely, B-CUBED precision and recall are
calculated for each mention and then final precision and final recall are the to-
tal average. This average has the particularity that each mention can have a
different weight. For each mentioni we define:

• Ci as the number of correct response mentions in the coreference chain
where mentioni is included in the response.

• Ri as the total number of response mentions in the coreference chain where
mentioni is included in the response.

• Ki as the total number of key mentions in the coreference chain where
mentioni is included in the key.

Precisioni =
Ci

Ri
; Recalli =

Ci

Ki
(4)

Although it is not clearly specified in the original document, we assume that
Precision is evaluated for each mention included in the response and Recall for
each mention included in the key. Total precision and recall are the weighted
average of each mention precision and recall:
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Total Precision =
∑

i∈response

wi ∗ Precisioni (5)

Total Recall =
∑

i∈key

wi ∗Recalli (6)

Where wi is the weight associated to mentioni. These weights depends on
the task and, when scoring coreference resolution they are normally fixed to the
inverse of number of response mentions when calculating precision and to the
inverse of number of key mentions when calculating recall. F1 is calculated as
in equation 5.3.1.

Some authors (Luo, 2005) criticize B-CUBED claiming that a response with
all mentions in the same chain obtains 100% of recall and a response with men-
tions identified but without any link (i.e. each mention is a coreference chain
itself) obtains precision of 100%. from our point of view, this is not incor-
rect when response includes all key mentions and only these ones. If response
includes mentions not included in the key, precision decreases. On the con-
trary, mentions included in the key but not included in the response causes a
decrease of recall. Therefore, this is useful when evaluating systems with auto-
matic mention detection. However, if a system knows a priori the key mentions
and classifies them in coreferences chains, this metric may be considered too
generous.

The use of B-CUBED in the state of the art is not really extended. Although,
it is easy to implement and some researches also evaluate their results with this
metric for further comparisons.

5.3.4 CEAF

Luo (2005) proposed a Constrained Entity-Alignment F-Measure (CEAF) for
evaluating coreference resolution. The algorithm is more complex but it avoids
the problems of the previous ones. CEAF is computed based on the best one-
to-one map between key coreference chains and response ones. This is one of
the main differences with MUC-scorer and B-CUBED. These two algorithms
allow a mention to be used multiple times when scoring. It causes them to be
too generous with their scores and in some cases produces unintuitive results as
in the example of Section 5.3.1. CEAF handles the evaluation as a one-to-one
map, so a mention will never get double credit. Moreover, with CEAF one can
interpret results intuitively. For example, when the score of a coreference system
is 85%, one can say that this system performs correctly 85% of coreferences.

We refer the reader to the original paper (Luo, 2005) for specific details of
the algorithm. Here we expose a simplification in order to understand the main
ideas of the algorithm. First let G be all possible one-to-one maps between
key coreference chains and response coreference chains. This means that each
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coreference chain in the response is uniquely associated with one in the key, for
each possible map g ∈ G. Then, we define a function φ which evaluates the
similarity of two coreference chains (for example, one of the key Ki and one of
the response Rj):

φ(Ki, Rj) = |Ki ∩Rj | (7)

This function could be defined differently depending on the task one wants
to evaluate. We show here a simple one which counts the common mentions in
Ki and Rj . Next, we find the map which maximizes the sum of similarities, and
we call it g∗:

g∗ = argmaxg∈G

∑
(i,j)∈g

φ(Ki, Rj) (8)

Finally, we can define precision, recall and F1 as follows:

Precision =

∑
(i,j)∈g∗ φ(Ki, Rj)∑

i φ(Ri, Ri)
(9)

Recall =

∑
(i,j)∈g∗ φ(Ki, Rj)∑

i φ(Ki,Ki)
(10)

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

(11)

CEAF is a novel metric and it is not yet extended in the state of the art. It
also does not help, the fact that it is not as easy to implement as the others.
However, some works already publish their performances evaluating it with
CEAF and it would be expected that progressively many researchers take into
account this metric.

5.4 Comparing Results

Due to differences between metrics and preprocesses, coreference systems com-
parisons must be done carefully. Table 2 and Table 3 compares some of the
state-of-the-art performances in MUC and ACE, respectively. Even if dataset,
scorer and preprocess are shown in these tables, each system has its own nu-
ances that might be not represented here. Only some representative systems
have been included in these tables.

Both tables have a column called Preprocess which indicates how the men-
tions used in the coreference resolution system have been obtained. Mentions
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might be obtained using an automatic preprocess (auto) or from the manu-
ally annotated key (true mentions). In the first case, many mentions are non-
coreferential and should be discarded by the system, which increases the dif-
ficulty, while in the second case only a chain assignation is needed. There is
also a special case (auto+keys) where an automatic preprocess is done but true
mentions not detected by the system are also included increasing recall.

Authors Dataset Scorer Preprocess Performance (F1 %)

Humphreys et al. (1998) MUC-6 MUC auto 61.0
MUC-7 MUC auto 61.8

Cardie and Wagstaff (1999) MUC-6 MUC auto 54.0
Soon et al. (2001) MUC-6 MUC auto 62.6

MUC-7 MUC auto 60.4
Ng and Cardie (2002b) MUC-6 MUC auto 70.4

MUC-7 MUC auto 63.4

Harabagiu et al. (2001) MUC-6 MUC true mentions 81.9
Luo et al. (2004) MUC-6 MUC true mentions 85.7

McCallum and Wellner (2005) MUC-6 MUC true mentions 73.4
Haghighi and Klein (2007) MUC-6 MUC true mentions 70.3

Table 2: Results comparative for MUC-6 and MUC-7.

6 Conclusion

Coreference resolution research has been very active last decade since the ap-
pearing of annotated corpora and the first machine learning systems. Many
advances have been possible mainly thanks to the existence of two evaluation
frameworks: MUC and ACE. ACE dataset is newer and larger than MUC’s
and contains richer annotations. More recently, the ACE datasets are being
increasingly used by researchers in the area.

Regarding the metrics, although the great majority of published papers have
been using MUC-scorer to evaluate experiments, this metric has some weak-
nesses as is discussed in Section 5.3.1. Considering the other options for evalua-
tion – ACE-value, B-CUBED and CEAF – the best alternative for MUC-scorer
seems to be CEAF which measures more accurately the performance on the task
of coreference resolution.

Taking into account the state of the art, the immediate future of the research
in coreference resolution seems to be evolving mainly in three different ways.
First, models for supervised learning might be improved with better training
instance selection methods and new procedures for a better combination of the
available information: the groupwise approaches that form coreference chains
taking care of the whole group of mentions are more appropriate than pairwise
ones. Second, the addition of semantic and pragmatic knowledge to the systems
should improve final performances: it is well-known that some ambiguities at
syntactic or lexical level need world knowledge or discourse comprehension to
be solved. Thus, the use of ontologies and other resources for disambiguation
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Authors Dataset Scorer Preprocess Performance (F1 %)

Ng (2005) ACE-bnews MUC auto 64.9
ACE-bnews B-CUBED auto 65.6
ACE-npaper MUC auto 69.3
ACE-npaper B-CUBED auto 66.7
ACE-nwire MUC auto 54.7
ACE-nwire B-CUBED auto 66.4

Nicolae and Nicolae (2006) ACE-phase2 MUC auto 63.8
Ng (2007) ACE-bnews MUC auto 64.7

ACE-bnews CEAF auto 61.7
ACE-npaper MUC auto 64.6
ACE-npaper CEAF auto 61.5
ACE-nwire MUC auto 63.3
ACE-nwire CEAF auto 63.6

ACE-02 MUC auto 64.2
ACE-02 CEAF auto 62.3

Ponzetto and Strube (2006) ACE-bnews 03 MUC auto+keys 69.5
ACE-nwire 03 MUC auto+keys 71.7

Luo et al. (2004) ACE-dev ACE-value true mentions 89.8
ACE-feb02 ACE-value true mentions 90.0
ACE-sep02 ACE-value true mentions 88.0

Ji et al. (2005) ACE 2004 MUC true mentions 82.4
Nicolae and Nicolae (2006) ACE-phase2 MUC true mentions 89.6
Ponzetto and Strube (2006) ACE (bn+nw) 03 MUC true mentions 70.7
Denis and Baldridge (2007) ACE-bnews MUC true mentions 69.2

ACE-npaper MUC true mentions 72.5
ACE-nwire MUC true mentions 67.5

Culotta et al. (2007) ACE 2004 B-CUBED true mentions 79.3
Haghighi and Klein (2007) ACE 04 nwire MUC true mentions 64.2

ACE 04 bnews MUC true mentions 62.3

Table 3: Results comparative for ACE.

is a line of research to follow. Finally, an interesting open line is the research
of unsupervised and weakly supervised approaches, since the scarce availability
of annotated corpora for training and test is a bottleneck for the research in
supervised technology.
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