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Abstract

The work we present in this paper focuses on understanding the propa-

gation of flu-like infectious outbreaks between geographically distant regions

due to the movement of people outside their base location. Our approach

incorporates geographic location and a transportation model into our exist-

ing region-based, closed-world EpiGraph simulator to model a more realis-

tic movement of the virus between different geographic areas. This paper

describes the MPI-based implementation of this simulator, including several

optimization techniques such as a novel approach for mapping processes onto

available processing elements based on the temporal distribution of process

loads. We present an extensive evaluation of EpiGraph in terms of its ability

to simulate large-scale scenarios, as well as from a performance perspective.
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1. Introduction

We live in a world that is rapidly becoming predominantly urban and

highly connected—virtually and physically. Transportation networks whose

original role was simply to connect isolated regions are now serving a new pur-

pose; to connect them faster and more reliably. The emergence of a mobility

network that is more strongly connected, and in which more people migrate

towards the nodes from rural areas, creates a big vulnerability to contagious

threats. It is not just a matter of the area of dissemination, but also of prop-

agation speed. Recent decades show the occurrence of global influenza pan-

demics originated in Asia (1957, A/H3N2 strain) and Latin America (2009,

A/H1N1 strain) as examples of outbreaks related to the movement of people

between continents [1, 2]. Understanding the patterns that viruses, such as

influenza, follow when they propagate among the population of widely-spread

geographic regions is fundamental for an agile response of public health au-

thorities.

Our epidemiological simulator (EpiGraph) can predict the evolution of

infections over short to medium time frames within single urban areas and

was validated against the data from the 2004-2005 New York State Depart-

ment of Health Report [3]. It is implemented as a scalable, fully distributed

application based on MPI. The simulator we are describing in this paper is

an extension of the original EpiGraph that overcomes the limitations coming

from the assumption of a closed world, where new individuals could not be
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introduced. To do this we capture the introduction of a virus in a population

at different times and by individuals that travel between urban regions—and

which, voluntarily or not, get in contact with the local population. Model-

ing this type of contacts is crucial to understand the effect that travel and

commute have on the evolution of epidemics at a global level.

The original contributions of this paper are (1) an extension of EpiGraph

which enables an efficient simulation of virus propagation between arbitrar-

ily far apart urban areas interconnected via transportation networks, and

(2) a set of several performance optimization methods complete with a thor-

ough analysis of their effect of EpiGraph’s performance. We describe how we

partition data efficiently to exploit data locality, how we optimize the com-

munications, and finally we introduce a process-to-processor mapping tech-

nique which brings significant performance improvements. We also present

an experimental evaluation of EpiGraph when simulating 92 urban regions

in Spain consisting of 21,320,965 inhabitants. The results show that we can

scale our simulations to run efficiently over large areas.

The rest of the paper is organized as follows. Section 2 discusses the re-

lated work. Section 3 summarizes the main features of EpiGraph, including

the transportation model that captures the spatial transmission of flu-like

infectious diseases between cities. Section 4 discusses the parallel implemen-

tation of EpiGraph and includes an efficient process-to-processor mapping

algorithm. Results and performance evaluation are presented in Section 5.

Section 6 concludes the paper.
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2. Related work

Epidemiological simulators have become a powerful tool for understand-

ing and predicting the dynamics of the propagation of infectious diseases.

The dynamics of infectious diseases are usually modeled using stochastic or

deterministic compartment models. This simplest such model for influenza

is the classic Susceptible-Infectious-Recovered (SIR) epidemic model [4]. The

SIR model considers that the population is divided into a set of groups ac-

cording to the health state of the individual. Two approaches are most

popular to simulate the spreading of the infection throughout a population:

using a deterministic mathematical model based on differential equations, or

using a social contact network-based model.

Simulators based on the deterministic approach [5, 6] use a set of differ-

ential equations to model the process by which individuals pass between the

different stages of the infection. These models assume that the population

is homogeneously mixed and the social contacts are highly structured—an

unrealistic assumption. In reality, each individual has specific interaction

patterns and the contacts between the individuals within a social contact

network are unstructured. This makes the interconnection network be het-

erogeneous [7, 8].

The propagation dynamic of infectious diseases is tightly related to the

structure and the characteristics of the network of connections between the

individuals within a population [9, 10]. For this reason, epidemiological sim-

ulators based on social contact network models are becoming increasingly

more popular. These simulators model the evolution of the epidemics as

a stochastic process in which the movement of the individuals between the
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infectious stages is driven by probabilistic variables.

Several works have studied the implications of the social contact network

on the spreading of epidemics [11, 12]. One of their shortcomings is that they

do not consider propagation at a global level, but rather consider a restricted

number of urban regions. In case of an epidemic outbreak the results provided

by the epidemiological simulator are critical during the first days, when the

quality of decision making is vital. A simulator must therefore be able to

efficiently handle highly detailed simulations and process huge amounts of

data in a timely manner—which requires high computational power.

EpiFast [13] is an MPI-based simulator which implements an SIR-like

model for simulating the evolution of epidemics in heterogeneous social con-

tact networks. These contact networks are generated randomly and do not

use either demographic nor geographic information. The parallel implemen-

tation of EpiFast is based on the master-slave model, which makes the com-

munications more complex and reduces the scalability of the algorithm when

executing on many processors.

FluTE [14] is an individual-based simulation model for Influenza. The

hierarchical structure of communities within the population is based on data

extracted from the census. The social contacts within each community are

randomly generated as uniformly mixing groups. FluTE is able to simulate

large-scale scenarios and implements a transportation model based on infor-

mation extracted from the air traffic routes in the U.S. The complexity of

their MPI-based parallel algorithm increases non-linearly with the commu-

nity size, which reduces the performance of FluTE for large-scale scenarios.

EpiSimdemics [15] is an epidemiological simulator which implements an
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efficient MPI-based parallel algorithm to simulate very large populations of

up to 100 million people, although it requires massive computing resources to

do so. The population is modeled based on demographic data extracted from

the census. It does not consider a transportation model. In contrast, Epi-

Graph requires lower computing resources to simulate large-scale scenarios

with a more sophisticated epidemic model and a more realistic social model

which captures the transmission of an infection across different urban regions

due to the movement of the population.

InFlusim [16] implements an extension of the SEIR compartmental model

which includes hospitalization and home confinement. InFlusim is a deter-

ministic model that does not take into account individual characteristics or

spatial distribution of the population. The Centers for Disease Control and

Prevention of United States offers a set of tools for pandemic simulations—

Flu Preparedness [17]—which includes CommunityFlu. This tool performs

simulations at individual level for influenza propagation over a community

of 2,500 persons and it is able to model the effect of different interventions

like vaccinations, school closings, and patient isolation. A similar approach

can be found in [18], where stochastic models are used to evaluate the effects

of school closings and reductions in contacts of ill persons by means of con-

finement. EpiGraph follows a similar approach to these two tools, but it has

the advantage of considering larger communities modeled from actual social

networks and connected by both long and short-range transportation.

The GLEaMviz tool [19] is a software that is able to simulate the spread of

epidemics at large scale. GLEaMviz employs a stochastic SEIR compartmen-

tal model in combination with a metapopulation approach based on simulat-
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ing a collection of groups interconnected by transportation. The simulation

granularity is by groups of individuals with a resolution of approximately

25x25 kilometers. The geographical extension of each group is determined

by applying Voronoi decomposition techniques and it is given a value based

on census data. Epidemic propagation occurs differently within groups and

between groups, inter-group dissemination happening due to travel using

both short and long-range transportation.

STEM [20] is an open source project for modeling the spread of infec-

tious diseases using a metapopulation approach. Its modular structure in-

cludes different disease models like seasonal Influenza [21], malaria [22], and

dengue fever. In [21] STEM is used to simulate the seasonal influenza using

the SIR(S) compartmental models with a seasonally modulated transmission

coefficient. This tool is supported by an open community of contributors

and considers spatially structured populations and transportation effects ob-

tained from GIS data sets. STEM does not consider single individual char-

acteristics but rather works with groups at the granularity of US counties.

A similar approach is follower in GEM [23], which implements an extended

SEIR stochastic model (including non-susceptible states) and simulates the

effect of an influenza outbreak on the major cities in the world taking into

account different travel restriction levels and vaccination policies. All these

tools based on a metapopulation approach are able to perform large scale sim-

ulation but they do not model interactions between individuals. This makes

it more difficult to evaluate the effectiveness of interventions like school clos-

ings, confinement of infected families in their homes, or selective vaccination

policies based on single individual characteristics like age, gender, or occupa-
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Figure 1: Enron, Facebook and social graphs displayed as matrix patterns.

tion. In contrast, EpiGraph considers individual characteristics, their related

connections, and the traveling patterns between different regions.

3. EpiGraph structure

EpiGraph is designed as a scalable tool which simulates the propagation

of influenza in scenarios that cover extended geographic areas. EpiGraph

consists of three main components: the social model—based on the contact

network of the individuals in a population—, the epidemic model, and the

transportation model—which captures the movement of individuals between

different regions—. The following sections describe in detail each one of these

models, as well as the simulator implementation.

3.1. The social interconnection model

The social interconnection model is represented via an undirected con-

nection graph that captures heterogeneity features at the level of both the
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individual and each of his interactions. Each individual is represented as

a node and has specific characteristics such as age, gender, race, and oc-

cupation. We represent the interactions with edges which capture a time-

dependent interaction between two individuals. Social interaction patterns

are modeled using real information extracted from on-line social networks.

We use real demographic information obtained from the National Institute

of Statistics of Spain [24] to represent the characteristics of the individuals

and communities. The basic community is the group. A group is a collection

of individuals connected by one of the following relationships: school-age

children and students, workers, stay-home parents, and retired individuals.

We use the Albatross [25] algorithm to generate each group by sampling

the graphs obtained from Facebook and the Enron email corpus. The graph

extracted from the Enron database consists of 70,578 nodes and 312,620 edges

and is used to model worker and retired groups. Facebook has 250,000 nodes

and 3,239,137 edges and is used for school and stay-home groups. Figure 1

shows an example of these graphs as well as a fraction of the social graph.

Arrows labeled 1 show two groups from the social graph that are generated

by sampling Facebook and Enron graphs. Note that the sampling algorithm

generates different group patterns and sizes every time that it is applied.

In addition to the interactions within a given group we represent inter-

actions between members of the same family and between individuals of dif-

ferent groups. These reflect the fact that at different times individuals may

interact with each other in different environments: during work, at home,

during leisure time, or via spontaneous contacts. Additionally, we consider

the changes in the time patterns during the weekends and holidays. For
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instance, a given percentage of the companies (work connections) are not

active on these days. We use the values of the social graph to code the type

of connection. Each of these kinds of interactions is assigned to a specific

daily time frame depending on the schedule for the main activity, leisure,

and family time. Arrows labeled 2 in Figure 1 show the active edges for

different times for a social graph portion. This approach allows us to store

in the same connection graph different types of interactions which became

active at different times of the day.

3.2. The epidemic model

The epidemic model is specific to the infectious agent under study, in our

case, the Influenza virus. We start from the SEIR epidemic model [26], a

variation of the classic SIR model [4] that takes into account an additional

state (E, exposed) representing the latent phase. We extended the SEIR

model to include additional states such as asymptomatic, dead, and hospi-

talized [27]. The hospitalized state is important when simulating realistic

cases where this may be needed and the cost associated with this measure

must be predicted. We consider that the infective period consists of three

phases with different characteristics: (1) pre-symptomatic infection where

individuals are infectious but symptoms are not yet present; (2) primary

stage of symptomatic infection where symptoms are present and it is possi-

ble to initiate an antiviral therapy; (3) second stage of symptomatic infection

where symptoms are present but viral therapy is no longer effective. A more

detailed description of this model can be found in [3].

Figure 2 illustrates the epidemic model. It consists of two subgraphs.

Let us consider the upper one: susceptible individuals (state S) who become
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Figure 2: State diagram for the epidemic model.

infected incubate the infection in the primary latent state (LP ). In this state

there are not symptoms or possibility of infecting the others. After that, a

fraction of cases remains asymptomatic (A) and the rests of them go to a

secondary latent state (LS) where symptoms are still not present but it is

not possible to became asymptomatic. What follows is the primary state of

symptomatic infection (IP ), in which symptoms are present and, depending

on the individual characteristics (age and risk group), a fraction of the clini-

cally ill cases will seek medical care and initiate an antiviral therapy. Instead

of using a fixed duration for the window of opportunity in which the antiviral

therapy is effective, such specified in [28], we assume that every individual

may have a slightly different one by using a probability distribution. To

what extent the antiviral treatment will have an effect depends on the time

within the window when an individual seeks medical care. If an individual
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is treated with antivirals and the treatment has an effect then he moves to

state ISV . Otherwise he remains in IP and then passes to IS in which the

antiviral treatment is no longer effective. An infected individual can recover,

get hospitalized, or die (states R, H and D). The lower part of the graph (in-

volving the T-subscript states) reflects the case of vaccinated individuals in

which the basic reproduction numbers are different from the non-vaccinated

cases.

The time an individual spends in a given state is generated following a

normal distribution based on the model parameters from the existing lit-

erature [29, 30, 31, 28]. Each individual will be assigned a different time,

generated based on a normal distribution. Table 1 shows the basic reproduc-

tion numbers for the infective states and the parameters used in the normal

distributions. The state transition algorithm is shown in Algorithm 1. For a

given individual l, the EvalTransition function evaluates whether the time

in the current state has expired. If so, he moves to the new state, which is

obtained via the UpdateStatus function (which considers the states shown

in Figure 2). If there are different possible next states, the transition is prob-

abilistic. An infected individual stops transitioning when he has reached the

immune, recovered, or dead state.

The algorithm that computes the dissemination of the infectious agent is

shown in Algorithm 2. For every infected individual l, the algorithm selects

all individuals that he is connected to at this time (L1). For each one of

those in the susceptible state, the probability that they will get infected is

given by the EvalInfection function (L3). This probability depends on the

basic reproduction number of the infected individual, the type of connection,
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Algorithm 1 UpdateStatus function for state transition of infected individuals.

Input: (l, statusn, parameters(l)) where l is the considered individual, statusn
contains characteristics and health status of each individual of the nth urban
region; and parameters(l) are parameters of the epidemic model for individual
l.

Output: (statusn(l)) updated status of lth individual.
1: if statusn(l) is not Susceptible then
2: if EvalTransition(parameters(l)) is True then
3: statusn(l) = UpdateStatus(statusn(l))
4: end if
5: end if

Algorithm 2 ComputeSpread function for the generation of new infected individuals.

Input: (l, socialn, statusn, parameters(l)) where l is the considered individual,
socialn is the set of graphs describing the social network of the nth urban
region; statusn contains characteristics and health status of each individual
of the nth urban region; and parameters(l) are parameters of the epidemic
model for individual l.

Output: (statusn) where updated status of individuals.
1: if statusn(l) is Infected then
2: Connections = EvalConnections(socialn, l)
3: for each individual i ∈ Connections do
4: if statusn(i) is Susceptible && EvalInfection(parameters(l)) is True

then
5: statusn(i) = Primary latent
6: end if
7: end for
8: end if

the time of the day, and the specific characteristics of the individual. Note

that both the EvalTransition and the EvalInfection functions use proba-

bility values and random-generated numbers, which give EpiGraph stochastic

features.

A useful feature of EpiGraph is that it is possible to evaluate the ef-

fect of intervention strategies—such as vaccination, school closing, and social
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Table 1: Parameters of the epidemic model for each state: R0 is the basic reproduction
number of the state, Tµ is the average time (in days) in each state and Tσ is its standard
deviation.

State R0 Tµ (days) Tσ (days)
Infective 1.3730 2 0.25
Latent 0.6850 0.25 0
Asymptomatic 0.6850 4.1 0.5
Infected Treated 0.0470 2 0.25
Latent Treated 0.0235 0.25 0
Asymptomatic Treated 0.0235 4.1 0.5

distancing—on the propagation. Social distancing restricts the interaction of

individuals by retaining them at home and reflects measures of closing public

facilities to mitigate the spreading of the disease.

3.3. The transportation model

The transportation model reflects the movement of people between cities

for work, study, or vacation, and it is based on the gravity model proposed

by Viboud et al. [2]. The number of individuals ∆Pi,j who move between

locations i and j depends on the population size at both locations (Pi and

Pj), as well as the distance between them (di,j). Equation 1 applies for travel

distances of less than 120Km—which reflects the daily commute of students

and workers to neighbouring cities. Equation 2 applies for the long-distance

commute of workers that need to reside at a different location for several days

in a row. Additionally, we consider people from any group type that move at

any distance for several days for vacation purposes. Once the volume of inter-

city commuters is calculated, we randomly select individuals from specific

group types within the populations and move them for a specific period of

time to other locations. In our experiments, of the short distance commuters,

85% are workers and 15% are students; for the long-distance commuters the
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percentages are 50% workers, 30% students, 15% retired individuals, and 5%

unemployed people.

(di,j < 120Km) ∆Pi,j =
P 0.30
i Pj0.64

d3.05i,j

(1)

(di,j ≥ 120Km) ∆Pi,j =
P 0.24
i Pj0.14

d0.29i,j

(2)

The geographical information that EpiGraph takes into account includes

latitude, longitude, and distance between urban regions, and was extracted

from the Google Maps web service using the Google Distance Matrix API [32].

Although this work simulates urban regions that are spatially co-located

within the same country, EpiGraph can be used to simulate very large-scale

scenarios in which regions spawn different countries or continents.

3.4. The EpiGraph algorithm

Algorithm 3 shows the pseudocode of EpiGraph’s simulator [33]. The

iterative algorithm has four phases which execute every time step for each

one of the simulated urban regions. The first phase (L4) updates the in-

fectious status of every local individual l based on the epidemic model (in

Algorithm 1). The second phase (L6) computes the dissemination of the

infectious agent using the social model (Algorithm 2).

The third phase (L9) evaluates both pharmaceutical and non-pharmaceutical

interventions in order to mitigate the propagation of the infectious disease.

Non-pharmaceutical interventions—such as closing schools or social distancing—

are triggered when the number of infected individuals in the population

surpasses a threshold. The fourth phase computes the propagation of the
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Algorithm 3 Spatial transmission algorithm.

Input: (regions, social, status, distance, parameters) where regions are the ur-
ban regions considered in the simulation, social is the set of graphs describing
the social network of each urban region; status contains characteristics and
health status of each individual for each urban region; distance stores the dis-
tance for every pair of urban regions; and parameters are parameters of the
epidemic model for each individual)

Output: (status) where status is the updated status of individuals.
1: for timestep = 1→ simulation time do
2: for each region n ∈ regions do
3: for each individual l ∈ socialn do
4: UpdateStatus(l, statusn(l), parameters(l))
5: if statusn(l) is infectious then
6: ComputeSpread(l, socialn, statusn, parameters(l))
7: end if
8: end for
9: Interventions(statusn)

10: for each region m ∈ urban regions, (m 6= n) do
11: Transportation(socialm, socialn, distancem,n)
12: end for
13: end for
14: end for

infection via the transportation model (L11) once a day for each pair of ur-

ban regions. Each subset of processes corresponding to a region compute

the number of individuals which move from this region to another region de-

pending on the size of the populations and the geographical distance between

them.

EpiGraph uses a large portion of memory to store the infectious status

and the connections of each individual. For example, a simulation of an area

with 92 cities and an overall population of 21,320,965 inhabitants requires

31.3 GB of memory. This amount of data requires parallel data distribution

and processing. The next section describes the parallel design and imple-
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mentation of EpiGraph, including different optimization techniques applied

for exploiting locality, improving communications and load balancing, and

reducing the execution time by an efficient process placement.

4. Enhancing EpiGraph’s performance

4.1. Data partitioning

We implemented EpiGraph as a parallel application based on the Single

Program Multiple Data (SPMD) paradigm. SPMD applications require a

workload partitioning strategy to distribute the data to the processes that

execute in parallel. The interaction graph for each urban region is stored

internally as a sparse matrix called interconnection matrix. In our case, this

data is of the order of millions of individuals and interactions. To use the

memory efficiently we do not replicate data structures between processes,

but rather distributed them. We use a one-dimensional data decomposition

strategy with block partitioning to assign different subsets of the data struc-

tures to the processes. The interaction graph is partitioned by dividing the

population in equal-size blocks assigned to the subset of processes involved

in the simulation of a specific urban region. Other data structures such as

individuals’ status—health status, age, or race—are partitioned using the

same methodology.

Each process is responsible for simulating the virus propagation through

the individuals assigned to it only. Communication and synchronization

operations use MPI, which enables an efficient execution both on shared

memory, as well as on distributed memory architectures.

Figure 3 illustrates an example of data partitioning for a simulation con-

sisting of three urban regions: Madrid, Barcelona, and Valencia. Each of
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Figure 3: Example of data partitioning strategy in EpiGraph for Madrid, Barcelona, and
Valencia.

them is simulated on a different subset of processes—8 processes for Madrid,

4 processes for Barcelona, and 2 processes for Valencia. Note that the in-

terconnection matrices are sparse. ComputeSpread analyzes the contacts

of infected individuals, which are stored as consecutive entries in the sparse

matrix. An individual will more probably infect another individual of the

same group based on the fact that there is a higher probability that they can

come in close vicinity. As a consequence of our storage schema—which uses

a block partition of the graph and assigns consecutive blocks of the sparse

matrix to the same process—this individual is stored in a memory location

close by. This fact allows us to exploit spatial data locality.

4.2. Communications

ComputeSpread and Transportation in Figure 3 are responsible for im-

plementing the propagation behaviors within each urban region and among
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different regions. If during the execution of ComputeSpread a local indi-

vidual is infected by another one belonging to the same process, his state

is locally updated. However, if this individual is not local and belongs to

the same urban region then his new state is communicated to the remote

process responsible for him via an intra-region communication. Intra-region

communications are designed to overlap in time to minimize the communi-

cation overhead. Each process uses point-to-point MPI Send and MPI Recv

to communicate those newly infected individuals who are local to each re-

mote process within the same urban region. In addition, the Interventions

function (Figure 3) performs a collective MPI Allgather operation to collect

statistics about the number of infected individuals in each region. These

statistics are used to adopt intervention policies at region-level.

Inter-region communications are performed by the Transportation func-

tion to propagate the infection between individuals belonging to different

regions. Each process from an urban region communicates with every re-

mote region according to the flow of individuals which move between them.

We use MPI point-to-point operations to transfer these individuals between

processes.

EpiGraph is a communication-intensive application in which most of the

execution time is spent in performing intra- and inter-region communica-

tions. As a result, our focus is on optimizing the communication between

processes to reduce its overhead. All processes executing an MPI application

are by default grouped into the global communicator MPI COMM WORLD. Any

collective operation that uses this global communicator—such as those per-

formed by the Interventions function—will block until all processes com-
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Figure 4: Two-level schema of MPI communicators.

plete. To overcome this performance bottleneck and reduce the commu-

nication overhead of collective operations we implement a communicator

model based on a two-level schema: on the first level we have the default

communicator—called global communicator, and on the second level we have

ad-hoc communicators—called local communicators—that work at the gran-

ularity of each urban region. Figure 4 shows the two-level schema for a

scenario consisting of the urban regions of Madrid, Barcelona, and Valencia.

The global communicator is used for communicating between processes in

behalf of the transportation model. Each process is identified by a global rank.

Intra-region communications involve both point-to-point messages to trans-

mit new infectious states, and collective operations to gather the number

of infected individuals. Once the algorithm has divided urban regions into

groups of processes, the local communicators group together the subsets of

processes involved in the computation of each specific region. The ad-hoc

local communicators MPI COMM [REGION] enable the decoupled execution be-

tween those subsets of processes that are associated with each urban re-

gion. This improves the performance of intra-region collective operations

and reduces the synchronization overhead. Processes are identified in the

MPI COMM [REGION] communicator by a local rank.
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4.3. Load balancing and process mapping

An effective process mapping needs to balance the workload of the appli-

cation between the MPI processes. We consider each of the nc cores of every

compute node to be independent processing elements (PE) with the same

performance. We balance the workload both at the internal level of each

urban region (intra-region level), as well as at the top level of the simulation

(inter-region level).

To balance the workload at intra-region level we take into account the

workload of each region and the available computing power of the platform.

We calculate the relative computing power (in FLOPS) of the PEs and the

load (in FLOP ) associated to each region. The relative computing power

of the PEs is evaluated by running an offline microbenchmark. The load

associated with each city is estimated using PAPI performance counters [34]

and taking into account the population size and the number of contacts

within each region. Using these values, we assign a given number of FLOP

to each PE. As a result, large regions are divided over several processes while

small regions can be fully executed on a single process.

At the inter-region level we balance the computation by mapping the

processes involved in the execution to the available PEs. Due to the dynamic

computational load and irregular computation pattern of EpiGraph, finding

an efficient mapping for a multicore cluster is not trivial. The key factor

for propagating the infection beyond city boundaries is the transportation

model, and cities with more traveling individuals have bigger chances of being

infected. This probability is higher for cities located at less than 120Km from

infected cities (short-distance transport) and for large populated areas (long-

21



0

2000

4000

6000

8000

10000

12000

14000

0 2 5 7 10 12 15 17 20 22 25 27

N
u

m
b

e
r 

o
f 

in
fe

ct
e

d
 in

d
iv

id
u

al
s 

Weeks 

Málaga Barcelona Sevilla Gijón

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 3 5 7 8 10 12 14 16 17 19 21 23 25 26 28

N
o

rm
al

iz
e

d
 v

al
u

e 

Weeks 

Infected

FLOP

Number of communications

(a) (b)

Figure 5: Simulation results: (a) infection spread for 92 regions when the disseminations
starts in Malaga; (b) normalized values of infected individuals, FLOP, and number of
communications for Barcelona.

distance transport). Figure 5(a) shows the number of infected individuals

for a selection of four processes related to the regions of Malaga, Barcelona,

Seville, and Gijon (one per region) in a simulation of 92 regions with the

infection starting in Malaga. We observe that Barcelona is infected 10 weeks

after the beginning of the simulation, and shortly after the infection starts

in Seville. In contrast Gijon, a small area located in the north, starts the

infection 17 weeks later.

Figure 5(b) shows the normalized computational load (in FLOP) and

the number of communications of the process that runs the simulation for

Barcelona. We can see that there is a direct correlation between the number

of infected individuals and both the computation intensity (defined as number

of FLOP per iteration) and the number of communications. Given that the

distribution of infected individuals is different for each city—both in terms

of number of infections and temporal distribution of the infection spread—

we conclude that EpiGraph’s computational load is also different for each
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process both in computation intensity and temporal distribution.

The mapping algorithm presented in this paper follows some guiding prin-

ciples such as assigning processes that do not exhibit simultaneous high com-

putational load (like Malaga and Gijon) to the same processor while avoiding

resource-competing processes (like Barcelona and Seville). This strategy pre-

vents access conflicts to shared resources (e.g. shared cache levels, memory

channels, and I/O buses). The basic idea of the mapping algorithm is to

construct a weighted adjacency matrix adja for all the processes. For a given

pair of processes i and j, adja(i, j) contains the combined number of FLOP

for the iterations when their loads are simultaneously greater than a given

threshold. We call this interval of iterations the overlap between processes

i and j. In the previous example Malaga’s process does not overlap in time

with Gijon’s, and the associated entry in adja is therefore zero. On the

other hand, the computational load of Barcelona and Seville overlaps during

5 weeks, which means that the value stored in adja is the sum of the load in

FLOP of the two cities during this interval. adja allows us to identify which

processes do not overlap during the program execution, and therefore can

be potentially executed on the same compute node without competing for

resources. In addition, this matrix also quantifies the amount of combined

load, which is proportional to the aggregated computation intensity of both

processes during the overlap.

Figure 4 shows the load-aware process mapping algorithm. It receives

the total number of processes, the number of processing elements (nodes

and cores), and the weighted adjacency matrix. It returns map, a structure

which specifies the PE assigned to each process p. We identify each PE as
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Algorithm 4 Load-aware process mapping algorithm.

Input: (np, nn, nc, adja) where np is the number of processes, nn and nc the num-
ber of nodes and cores of the platform, and adja the weighted adjacency ma-
trix.

Output: (map) is the core and core mapping assigned to each process.
1: for process p = 1, np do
2: for node n = 1, nn do
3: {procs} = take processes(PE{n,∗},map)
4: Loadn = take load(adja, {procs}, p)
5: end for
6: nmin = take minimum load(Load1:nn)
7: for core c = 1, nc do
8: {procs} = take processes(PE{nmin,c},map)
9: Loadc = take load(adja, {procs}, p)

10: end for
11: cmin = take minimum load(Load1:nc)
12: map(p) = {nmin, cmin}
13: end for

PE{n,c}, where c is the core belonging to the compute node n. The first step

of the algorithm computes the overlap of each process with all the processes

assigned to each compute node. In line (L3), function take processes obtains

the list of processes that are already mapped to node n. The function receives

as an argument the list of cores associated to the node and the mapping

of the previously assigned processes. Function take load (L4) subsequently

computes the accumulated load for the overlap between the process p and all

the processes running on node n by using the adjacency matrix. In line L6

the algorithm selects the node with the minimum accumulated load.

The second step is to find the core which is best suited to host the process

under consideration. Lines L7-L11 of the algorithm evaluate individually

each core of the node nmin already selected. Using the adjacency matrix we

analyze the load during the overlap between the process p and the processes
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assigned to each core (line L8). Then, in line L11 we select the core with the

smallest overlap in load. Finally, the algorithm updates map with the new

mapping. The next section presents a detailed evaluation of the performance

improvement achieved with this technique.

5. Performance evaluation

For our experiments we consider the propagation of Influenza throughout

the most populated cities of Spain. We evaluated EpiGraph by simulat-

ing the spatial transmission both on a distributed memory system and on a

shared memory system. The distributed platform is a cluster with 19 com-

pute nodes, each of them having one Intel Quad Core Xeon E5405 processor

running at 2.00GHz and 4GB of memory. The shared memory system con-

sists of a single compute node which has four Intel Xeon E7-4807 processors

with Hyper-Threading support and 6 cores each, running at 1.87GHz and

128GB of memory. All the compute nodes run a Linux Ubuntu Server 10.10

with the 2.6.35-32 kernel and are interconnected by a Gigabit Ethernet net-

work. We use the MPICH-2 v1.4.1 implementation of MPI. The problem

instances are available at [35], including the executable version for running

the experiments.

5.1. Large-scale area simulations

We simulated the virus propagation for the 92 most populated cities in

Spain [24] and a simulated time span of one year. We executed the scenario

on the cluster using 76 processes—4 processes per compute node—and we

compare the spatio-temporal propagation of the infectious disease when the

outbreak originates in different regions.
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Figure 6: Comparison of the spatio-temporal propagation of Influenza since the outbreak
of epidemics originated in (a) A Coruña, (b) Madrid and (c) Malaga.

Figure 6 illustrates the spatio-temporal propagation of the Influenza epi-

demics started in A Coruña, Madrid, and Malaga. We observe that the infec-

tious disease propagates rapidly when the epidemic originates in a highly pop-

ulated, well connected region (Madrid) compared to a smaller, more isolated

region (A Coruña). When the epidemic starts in Madrid the disease propa-

gates quickly not only to neighboring regions, but also to distant regions—due

to the higher travel volume and the more frequent long distance travel. When

the epidemic starts in an isolated region such as A Coruña the virus takes

several weeks to reach far away regions. Medium connected cities like Malaga

obtain intermediate results. Using the transportation model to perform large
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(a) A Coruña scenario (b) Madrid scenario

Figure 7: Comparison of the peak infection time for (a) A Coruña and (b) Madrid and
scenarios. The standard deviation is represented as vertical error lines and the numerical
values on top of them are the distance in kilometers to the source city of the infection.

scale simulations allows us to predict not only the impact of the infection on

the population but also the temporal evolution of the propagation.

5.2. Statistical analysis

We performed a statistical evaluation of the results produced by EpiGraph

by running each scenario of the large-scale simulation 20 times. We analyzed

the variability of the infection spread pattern measuring the peak infection

time for each execution. This time is defined as the time when the maximum

number of infected individuals is reached considering both the primary and

secondary infection states. For instance, in Figure 5(a), the peak infection

time is around week 6 for Malaga and week 12 for Barcelona. For each city in

each scenario we obtained the average and standard deviation values of the

peak infection time. Without loss of generality, Figure 7 shows the results for

A Coruña and Madrid scenarios. The standard deviation is represented as

vertical error lines and the numerical values on top of them are the distance
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in kilometers to the source city of the infection. In Figure 6 you can see the

geographical location of all the cities mentioned in the rest of the paper. If

we compare Figures 7(a) and (b) we see that the peak propagation times are

smaller for Madrid. This is because A Coruña is a medium-size city located

on the north-west coast of Spain, far away from many of the rest of the cities

in the country. In contrast, Madrid is the largest city located in the center of

the country. According to the transportation model, Madrid generates many

more traveling individuals than A Coruña (both because of the distance to

Malaga and A Coruña and to the volume of population involved), which

produces a faster spread of the infection. In the case of the infection starting

in A Coruña we can observe that the cities that first reach the peak infection

time are large cities (like Madrid or Barcelona) and medium-size cities that

are close to the initial infection point (like Lugo or Pontevedra). In contrast,

in case of the infection starting in Madrid, this reaches its peak in most of the

cities around the same time because of Madrid‘s central location and large

size.

5.3. Performance analysis

The following experiment evaluates the performance of EpiGraph when

executing on distributed and shared parallel architectures. We simulated

the propagation of the virus for a medium-scale scenario which consists of

a subset of 4 urban regions: Madrid, Barcelona, Valencia, and Seville. This

configuration allows us to evaluate the scalability of EpiGraph by increas-

ing linearly the number of processes. The execution of the medium-scale

simulations requires a minimum of 2 compute nodes (running 4 processes

each) when executing on the cluster due to the large memory footprint of
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Figure 8: Process mapping for EpiGraph simulations, where NP stands for the number
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Valencia and 1 for Seville. Doubling the number of processes implies doubling the number
of processes for each city.

the simulator. We take the execution with 8 processes as base, both for

the distributed and the shared configurations. The experiment is bounded

from above by 32 processes in the shared memory system because it has 48

logical PEs supported by Hyper-Threading and it is not possible to map 64

processes. Figure 8 shows how the application scales on both parallel archi-

tectures with respect to the performance of the base execution. EpiGraph

scales well up to 32 processes in the cluster and almost linearly in the shared

memory system due to a low intra-node communication overhead.

To analyze the performance in greater detail we profiled EpiGraph by

instrumenting the code with wall-clock timing functions. These collect the

time spent by each process in each of the functions of Algorithm 3. Function

ComputeSpread computes the dissemination of the virus and communicates

the newly infected individuals to the processes that are responsible for them.

To perform a precise profiling we split each such task in two components:

ComputeSpread Comp for the computation time and ComputeSpread Comm
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Figure 9: Time spent by EpiGraph in each of the phases of the simulation algorithm.

for the communication time. Figure 9 shows the percentage of the execution

time spent in each of these functions. As expected, the percentage of the ex-

ecution time spent in the computation phases (ComputeSpread Comp and

UpdateStatus) decreases and the time spent in the communication phases

(ComputeSpread Comm, Interventions and Transportation) increases when

simulating with more processes. When executing on 32 and 64 processes

more than half of the execution time is invested in communication opera-

tions. The execution time of the Transportation phase is significantly larger

than the execution time of the ComputeSpread Comm and Interventions

phases. The simulation of the transportation model involves both collective

and point-to-point communication and synchronization operations between

all of the running processes, which increases the cost of inter-region commu-

nications. Communication operations in the Interventions phase are per-

formed using the ad-hoc local communicators; this optimizes the cost of the

collective intra-region communications to less than 1% of the execution time.
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5.4. Process mapping

The load-aware process mapping algorithm relies on the use of a weighted

adjacency matrix. The infection dissemination has a random component due

to the fact that every time we run a simulation the transportation model

propagates the infection in a slightly different way. This variability of propa-

gation patterns affects the contents of the adjacency matrix. However, all the

executions of the same scenario have a common propagation pattern which is

related to the transportation model: the cities that are infected earliest are

usually the largest ones or the closest to the already infected cities. Based on

this property we run 20 times each one of the three city scenarios (Madrid,

A Coruña, and Malaga) and use profiling to obtain the adjacency matrix for

each run. For each city we build the average adjacency matrix by counting

the number of times that each entry of the adjacency matrix appears in the

matrices of the 20 runs. If this entry has several occurrences then we include

it in the average adjacency matrix with a value equal to the average value

of the occurrences. Otherwise the matrix receives a zero in that cell. This

approach allows us to generate an adjacency matrix that contains the most

common propagation patterns.

We run these experiments on the distributed memory system, for which

we consider three different block-wise mappings. The first mapping assigns

processes {1,2,3,4} to compute node 1 (consisting of a four-core processor),

processes {5,6,7,8} to compute node 2, and so on. This is the default mapping

that the Torque resource manager uses [36]. This mapping raises problems

for cities whose simulation runs on several processes. These cities have several

processes assigned to the same compute node, which causes contention con-
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Figure 10: Aggregated load of compute node 3 for Malaga and a simulation with 24 cities
and 16 compute nodes.

flicts. Figure 10(a) shows the aggregated load of a compute node which has

been assigned four processes corresponding to Madrid and having a similar

load distributions. As a result we observe a load peak which can potentially

produce contention conflicts when accessing the shared resources of the pro-

cessor (cache, memory and I/O buses, etc.). The second mapping –called

cyclic mapping– alleviates this problem by using a round-robin distribution

such that processes {1,2,3,4} are assigned to compute nodes 1, 2, 3 and 4,

and so on. This mapping distributes the processes of the same city on differ-

ent compute nodes but does not leverage the knowledge about the common

propagation patterns of the processes. Figure 10(b) shows the result of this

mapping for the same compute node. The node now runs processes of four

different cities and the work load is more evenly distributed than in the pre-

vious example. However, two cities still overlap in time to create a load

peak around the 13th week. The load-aware mapping algorithm takes into

account the load distribution of all the processes involved in the execution.

Figure 10(c) shows the load using the average adjacency matrix. We can see

that the algorithm reduces the peak load to produce a more even distribution.
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Table 2: Percentage-wise reduction in execution time of cyclic and load-aware mappings
with respect of the block mapping policy for 92 cities and 131 processes.

Compute nodes Mapping policy Madrid Malaga A Coruña
19 Cyclic 12.2% 13.7% 12.7%
19 Load-aware 21.5% 16.8% 15.0%
18 Cyclic 2.2% 7.8% 6.1%
18 Load-aware 7.3% 12.8% 11.3%
17 Cyclic 5.9% 6.3% 6.1%
17 Load-aware 13.4% 10.4% 9%

Table 2 shows the percentage-wise reduction in the overall execution time

of the cyclic and load aware mappings with respect to the block mapping.

The simulation time for block mapping is around 5,500 secs. We evaluate

each one of the three city scenarios for 19, 18 and 17 compute nodes. We can

see that the load-aware mapping algorithm obtains the greatest reductions

in the execution time.

6. Conclusions

EpiGraph is a parallel tool that simulates the spatial transmission of In-

fluenza. This paper presents several techniques that improve its simulation

capabilities as well as its performance. In this work we extend EpiGraph with

a geographic location and transportation model which allows us to study the

spatial dynamics of the virus propagation over large-scale areas. We have

evaluated EpiGraph considering the 92 most populated cities of Spain and

different epidemiological scenarios. EpiGraph captures features of the popu-

lation model at the level of both the individual and each of his interactions.

This implies large computational and memory requirements. The second con-

tribution of this work is a set of different parallelization techniques to deal

with these requirements efficiently. These include data partitioning methods
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that exploit data locality and enable load balance, inter-process communi-

cation optimization based on a two-level MPI communicator schema, and a

process-to-processor mapping algorithm that considers the load variability of

EpiGraph. Results show that EpiGraph can be executed efficiently for large-

scale scenarios both on a cluster platform and on a shared memory compute

node. Additionally, the mapping algorithm reduces the execution time up to

21.5% compared with the default mapping provided by Torque.

6.1. Future work

There are several directions that deserve further investigation on our part.

One of them arises from the fact that in the transportation model the ac-

tual individuals that travel out of town are randomly chosen. It would we

interesting to see how fixing the pool of travelers—at least that of daily

commuters—affects the stability of the propagation in terms of the order

(and intensity) in which new cities become infected. In terms of process-to-

processor mapping we would like to evaluate how well a dynamic mapping

can do compared to our (pattern-based) load-aware mapping strategy. Fi-

nally, a less immediate extension would be the addition of a module which

can capture potential (person-specific) changes in travel behavior as a result

of acquiring knowledge about the cities that are already infected. This would

allow us to study, qualitatively and quantitatively, the effect of people’s be-

havior on the timing and intensity of epidemics.

7. Acknowledgments

We would like to acknowledge the assistance provided by David del Ŕıo
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