
Enhancing the performance of malleable MPI
applications by using performance-aware dynamic

reconfiguration

Gonzalo Mart́ına, David E. Singha,∗, Maria-Cristina Marinescub, Jesús
Carreteroa

aUniversidad Carlos III de Madrid, Computer Science Department,
Leganés, Madrid 28911, Spain

bBarcelona Supercomputing Center, Computer Applications in Science & Engineering,
Barcelona 08034, Spain

Abstract

The work in this paper focuses on providing malleability to MPI applications

by using a novel performance-aware dynamic reconfiguration technique. This

paper describes the design and implementation of Flex-MPI, an MPI library ex-

tension which can automatically monitor and predict the performance of appli-

cations, balance and redistribute the workload, and reconfigure the application

at runtime by changing the number of processes. Unlike existent approaches, our

reconfiguring policy is guided by user-defined performance criteria. We focus on

iterative SPMD programs, a class of applications with critical mass within the

scientific community. Extensive experiments show that Flex-MPI can improve

the performance, parallel efficiency, and cost-efficiency of MPI programs with a

minimal effort from the programmer.

Keywords:

Malleable MPI applications; performance-aware dynamic reconfiguration;

computational prediction model; distributed systems; high performance

computing.

∗Corresponding author
Email addresses: gmcruz@arcos.inf.uc3m.es (Gonzalo Mart́ın),

desingh@arcos.inf.uc3m.es (David E. Singh), maria.marinescu@bsc.es (Maria-Cristina
Marinescu), jcarrete@arcos.inf.uc3m.es (Jesús Carretero)

Preprint submitted to Elsevier September 21, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41830176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

The majority of scientific applications that execute on high performance

computing (HPC) clusters are implemented using MPI. The focus of this paper

is to provide MPI applications with malleable capabilities through performance-

aware dynamic reconfiguration. Parallel applications may be rigid, moldable,

malleable, or evolving based on their capability to vary the number of proces-

sors that they execute on at runtime [1]. In rigid and moldable applications

the number of allocated processors is fixed for the entire duration of the execu-

tion. Evolving and malleable applications, on the other hand, allow changing

the number of processors during program execution—an operation called recon-

figuration. In the case of evolving applications the changes are initiated by the

application itself. A malleable application may increase the number of processes

when new processors become available in the system and decrease it when cur-

rently allocated processors are requested to the resource management system

(RMS) by another application with higher execution priority. Malleable ap-

plications allow implementing more flexible and efficient scheduling policies [2]

that use idle processors to improve resource utilization [3, 4]. While different

RMSs support dynamic allocation of resources for malleable applications [5, 6],

MPI does not natively provide support for malleability.

The challenge when designing dynamic reconfiguration techniques for mal-

leable MPI applications is not simply to modify the number of processes that

the application is running on according to the availability of resources, but

to make these decisions based on performance criteria. Reconfiguring actions

should only be triggered if process addition or removal may benefit the appli-

cation performance. For certain classes of problems, increasing the number of

processors beyond a certain point does not always result in an improvement

in terms of execution time. This is due to larger communication and synchro-

nization overheads, in addition to the overhead incurred by the reconfiguring

operations. The support framework must decide how many processors to run

on before triggering a reconfiguring action. This number depends on the set of

2

available processors in the system, the reconfiguring overhead, and the predicted

application performance when running on the new processor configuration. Re-

configuring actions involve changing the data distribution of the application

(which may lead to load imbalance) and modifying its communication patterns.

These lead to changes in the application performance. In addition, this opti-

mization process is considerably more complex when running on architectures

with heterogeneous (performance-wise) compute nodes equipped with different

types of processors.

In this paper we introduce Flex-MPI, an MPI extension which supports mal-

leability and implements performance-aware dynamic reconfiguration for itera-

tive MPI applications. We have implemented Flex-MPI as a library on top of the

MPICH [7] implementation. Our performance-aware dynamic reconfiguration

technique allows the user to define the performance objective and constraints of

the application. We use the completion time of the application as the perfor-

mance objective. Flex-MPI automatically reconfigures the application to run

on the number of processes that is necessary to increase the performance such

that application completes within a specified time interval. Flex-MPI modifies

the application performance by adding or removing processes whenever it de-

tects that the performance target is not achieved. The reconfiguration process

also depends on the user-given performance constraint which can be either the

parallel efficiency or the operational cost of executing the program.

Flex-MPI implements a computational prediction model to decide the num-

ber of processes and the process-to-processor mapping that can achieve the

required performance objective under a performance constraint. The efficiency

constraint results in minimizing the number of dynamically spawned processes

to maximize parallel efficiency. The cost constraint focuses on minimizing the

operational cost by mapping the newly created dynamic processes to those pro-

cessors with the smallest cost (expressed in $ per CPU time unit) while satis-

fying the performance constraint. The operational cost of a program execution

has become a key performance factor in the last years [8, 9]. This metric is

particularly relevant when we consider heterogeneous systems where each type

3

of processor may have a different operational cost. These configurations are

commonplace when executing HPC applications on the cloud, an approach of

increasing interest in the HPC community [10, 11].

To summarize, the main contributions of this work are:

• An efficient library which supports malleable applications and provides

monitoring, load balancing, data redistribution, and dynamic reconfigur-

ing functionalities for iterative MPI applications.

• A simple, high-level Application Programming Interface (API) to access

Flex-MPI functionalities from any MPI application.

• A computational prediction model which can estimate the perfor-

mance of the parallel application prior to a dynamic reconfiguring action.

• A novel performance-aware dynamic reconfiguration policy which

automatically reconfigures the MPI application to run on a number and

type of processors that satisfy a user-given performance objective under

efficiency or cost constraints.

• An extensive performance evaluation that demonstrates the capabili-

ties of Flex-MPI to enhance MPI application performance via malleability.

The rest of this paper is organized as follows. Section 2 discusses related work

in the area of malleability in MPI applications. Section 3 describes the design

of the Flex-MPI library and the programming model of malleable applications.

Section 4 discusses the implementation of each software component of Flex-

MPI. In Section 5 we present an extensive performance evaluation. Section 6

summarizes the conclusions and discusses future work.

2. Related work

Supporting malleability in MPI applications has been a topic of great in-

terest in the last years due to the necessity to maximize resource utilization in

4

HPC clusters. The vast majority of existing approaches work under the assump-

tion that increasing the number of processors in a parallel application does not

increase its execution time. As a result, reconfiguration is done by increasing

the number of processes to the maximum available processors in the system.

In practice however, parallel applications show a performance threshold beyond

which increasing the number of processors does not lead to a significant perfor-

mance improvement [12] due to increasing communication and synchronization

overheads [13].

There are several approaches which provide malleability for MPI applications

using offline reconfiguration [14, 15, 16]. Offline reconfiguration is provided

by a mechanism which consists in stopping the execution of the application,

checkpointing the state in persistent memory, then restarting the application

with a different number of processes. This has several important drawbacks,

one of the major ones being the overhead introduced by the I/O operations

carried out every time the application is reconfigured. Dynamic reconfiguration,

on the other hand, provides malleability by allowing the application to change

the number of processes while the program is running.

Adaptive MPI (AMPI) [17] is an MPI extension which uses processor vir-

tualization to provide malleability by mapping several virtual MPI processes to

the same physical processor. AMPI is built on top of CHARM++, in which vir-

tualized MPI processes are managed as threads encapsulated into CHARM++

objects. The runtime system provides automatic load balancing, virtual pro-

cess migration, and checkpointing features. Adaptive MPI programs receive

information about the availability of processors from an adaptive job scheduler.

Based on this information, the runtime system uses object migration to adapt

the application to a different number of processes.

Process Checkpointing and Migration (PCM) [18, 19] is a runtime system

built in the context of the Internet Operating System (IOS) [20] and uses process

migration to provide malleability to MPI applications. The PCM/IOS library

allows MPI programs to reconfigure themselves to adapt to the available pro-

cessors as well as the performance of the application by using either split/merge

5

operations or process migration. Split and merge actions change the number of

running processes and their granularity, while process migration changes the lo-

cality of the processes. Processor availability is managed by an IOS agent which

monitors the hardware. Although adaptive actions are carried out without user

intervention, PCM requires that the programmer instruments the source code

with a large number of PCM primitives.

Utrera et al. [21] introduces a technique called Folding by JobType (FJT)

which provides virtual malleability. The FJT technique combines moldability,

system-level process folding, and co-scheduling. Parallel jobs are scheduled as

moldable jobs, in which the number of processes is decided by the resource

manager just before the job is scheduled on the compute nodes. FJT introduces

virtual malleability to handle load changes and take advantage of the available

processors. This is done by applying a folding technique [22] based on co-

scheduling a varying number of processes per processor.

Cera et al. [23] introduces an approach called dynamic CPUSETs mapping

for supporting malleability in MPI. CPUSETs are lightweight objects which

are present in the Linux kernel. They enable users to partition a multipro-

cessor machine by creating execution areas. CPUSETs features migration and

virtualization capabilities, which allows to change the execution area of a set

of processes at runtime. Cera’s approach uses CPUSETs to effectively expand

or fold the number of physical CPUs without modifying the number of MPI

processes. While most of the approaches described above are transparent to

the programmer, they provide support for malleable applications via operating

system-level mechanisms which are not integrated into the MPI library.

The MPI-1 specification [24] requires that the number of application pro-

cesses remains fixed during its execution. The dynamic process management

interface was introduced by the MPI-2 specification and consists of a set of

primitives that allow the MPI program to create and communicate with newly

spawned processes at runtime. This interface is implemented by several of the

existing MPI distributions (e.g. MPICH [7] and OpenMPI [25]) and has been

used by several approaches to provide dynamic reconfiguration to malleable MPI

6

applications.

Cera et al. [26, 27] and Leopold et al. [28] introduce different approaches that

use the dynamic process management interface to enable malleability to iterative

MPI applications. However, these approaches do not evaluate the application’s

performance prior to the reconfiguring action. This may lead to performance

degradation and inefficient resource utilization for fine-grained parallel applica-

tions that exhibit a small computation to communication ratio.

ReSHAPE [29, 30] is the approach that is more closely related to Flex-MPI.

ReSHAPE features a runtime framework for malleable, iterative MPI applica-

tions that uses performance data collected at runtime to support reconfiguring

actions. The ReSHAPE framework increases the number of processes of the ap-

plication when the there are available processors in the system and the iteration

time has improved due to a previous increase or the number of processes has

never been expanded before. ReSHAPE then decreases the number of processes

when the current set of processors does not provide a performance benefit as

a result of a previous increase. Flex-MPI features a much more sophisticated

computational prediction model which uses hardware counters and network per-

formance data to estimate the future application performance prior to a recon-

figuring action. ReSHAPE assumes that all iterations of a parallel application

are identical in terms of computation and communication times, and that they

have regular communication patterns. Our approach targets parallel applica-

tions with both regular and irregular communication patterns. Additionally, it

can handle varying computation times that are due to varying workloads or ex-

ecution on non-dedicated systems. Flex-MPI uses the computational prediction

model to evaluate multiple potential reconfiguration scenarios and choose the

one which is predicted to best satisfy the performance objective. ReSHAPE, on

the other hand, improves application performance by considerably more costly

trial-and-error, i.e. by triggering reconfiguration actions followed by an evalua-

tion of their effect on performance.

7

3. Flex-MPI library overview

Flex-MPI targets iterative Single Program Multiple Data (SPMD) applica-

tions with both regular and irregular computation and communication patterns.

A large proportion of the SPMD parallel applications are iterative, such as lin-

ear solvers, particle simulation and fluid dynamics simulators. In the SPMD

paradigm each process executes the same code but operates on a different sub-

set of the data. The usual structure of an iterative SPMD application consists

of an initializing section in which each process loads its data partition; what

follows is an iterative section during which the processes operate in parallel and

communicate with each other to reach a global solution. Our approach focuses

on applications which use one-dimensional and two-dimensional distributed data

structures in which each process stores only its own data partition and does not

replicate data managed by other processes.

Flex-MPI is implemented as a library on top of the current stable release of

MPICH (v.3.0.4). This makes it fully compatible with all the new features of the

MPI-3 standard [31]. Figure 1 shows the execution environment of a Flex-MPI

application which consists of: the Flex-MPI library, the MPI user application,

the Performance API (PAPI) [32] and MPI library, the user-given performance

objective and performance constraints, and the resource management system.

Figure 2 shows the workflow diagram of a malleable MPI application us-

ing Flex-MPI. Each box shows in square brackets the Flex-MPI components

that provide the corresponding functionality. Initially the MPI application runs

on n processes. At every iteration, the MPI program instrumented to use the

Flex-MPI API automatically feeds the per-process values of the chosen run-

time performance metrics to the monitoring (M) module (label 1.a). These

include hardware performance counters, communication profiling data, and the

execution time for each process. Once Flex-MPI has collected these metrics

it returns the control to the MPI application (label 1.b). Additionally, at ev-

ery sampling interval—consisting of a fixed, user-defined number of consecutive

iterations—the monitoring module feeds the gathered performance metrics to

8

MPI library

MPI calls MPI wrapped calls XMPI calls

FLEX-MPI library

PAPI
library

Performance
objective and

constraints

Resource
Management
System

Load balancing
Computational

prediction
model

Reconfiguring
policy

PMPI interface

MPI application

Monitoring
Dynamic
process

management

Data
redistribution

Figure 1: Execution environment of a Flex-MPI application.

the reconfiguring policy (RP) module (label 2). This allows the RP module to

track the current performance of the application and decide whether it needs to

reconfigure the application to adjust the performance of the program to the ob-

jective. A reconfiguring action involves either the addition (label 3.a) or removal

(label 3.b) of processes. The computational prediction model (CPM) estimates

the number of processes and the computing power (in FLOPS) required to

satisfy the performance objective. Using this prediction, the RP module com-

putes the new process-to-processor mapping based on the number and type of

the processors that are available and the performance constraint (efficiency or

cost). The number and type of available processors is provided by the resource

management system.

The dynamic process management (DPM) module implements the process

spawn and remove functionalities and is responsible for rescheduling the pro-

cesses according to the mapping. A reconfiguring action changes the data dis-

tribution between processes, which may lead to load imbalance. Each time a

9

MPI application

P0 P1 P2 P3 Pn

Performance monitoring
[M]

Performance evaluation
[RP, CPM]

Spawn p processes
and expand MPI
communicator

[DPM]

Redistribute data
[LB, DR]

Redistribute data
[LB, DR]

Shrink MPI
communicator and

remove p processes
[DPM]

1.a. Values of performance metrics during
 last iteration

3.b. Dynamic
reconfiguring
action (shrink)

3.a. Dynamic
reconfiguring

action (expand)

4.a. Resume program
execution with m (n+p)

processes

1.b. Return control

4.b. Resume program
execution with m (n-p)

processes

2. Values of performance metrics during
 last sampling interval

Figure 2: Workflow diagram of a malleable MPI application using Flex-MPI.

reconfiguring action is carried out the load balancing (LB) module computes

the new workload distribution based on the computing power of the processing

elements allocated to the application. The data redistribution (DR) module is

responsible for mapping and redistributing the data between processes accord-

ing to the new workload distribution. In this work we consider that each of

the computing cores of a multi-core processor is a processing element (PE). We

also assume that compute nodes are not oversubscribed. Once Flex-MPI has

reconfigured the application to the new number of processes (m), it resumes its

execution (labels 4.a and 4.b).

Application developers can access the Flex-MPI library through the API,

which consists of a set of high-level interfaces—carrying the XMPI prefix—that

automatically reconfigure the MPI application. MPI initialize (MPI Init) and

finalize (MPI Finalize) functions are wrapped to initialize and finalize the Flex-

MPI library functionalities and the MPI environment. MPI point-to-point and

10

MPI_init((...);

MPI_Comm_rank(...);
MPI_Comm_size(...);

XMPI_Get_wsize((...);

XMPI_Register((...);

XMPI_Get_shared_data((...);

for((it;(it(<(itmax;(it++)({

XMPI_Monitor_init(();

for((i=displ;(i(<(displ+count;(i(++)({
//Parallel(computation

}

MPI_Allreduce((...);

XMPI_Eval_reconfiguration((...);

XMPI_Get_process_status((...);

if((status(==(EMPI_REMOVED)(break;
}

MPI_Finalize(();

MPI_Init(...);

MPI_Comm_rank(...);
MPI_Comm_size(...);

MPI_Scatter((...);

for((it=0;(it(<(itmax;(it++)({

for((i=displ;(i(<(displ+count;(i(++)({
//Parallel(computation

}

(((MPI_Allreduce((...);
}

MPI_Finalize(();

Legacy code (MPI)

Instrumented code (FLEX-MPI)

L1:

L2:
L3:

L4:

L5:

L6:
L7:
L8:

L9:
L10:

L11:

L1:

L2:
L3:

L4:

L5:

L6:

L7:

L8:

L9:
L10:
L11:

L12:

L13:

L14:

L15:
L16:

L17:

Figure 3: Comparison of the legacy code (left) and the instrumented Flex-MPI code (right)
of an iterative MPI application.

collective communication operations are wrapped to collect performance met-

rics. Wrapped functions are managed using the MPI profiling interface (PMPI)

which redirects the function calls to the Flex-MPI library in a user-transparent

way.

Figure 3 shows a comparison between a simplified legacy code sample and

the same code instrumented with Flex-MPI functions. The SPMD application

uses a data structure (vector A) distributed between the processes (L4). In

the iterative section of the code (L5-10) each process operates in parallel on a

different subset of the data structure. At the end of every iteration the program

performs a collective reduce operation (L9). In the legacy code all the MPI

specific functions (in red) are managed by the MPI library.

The instrumented code consists of: (1) native MPI functions (in red), (2)

wrapped functions (in yellow), (3) Flex-MPI functions which allow the parallel

program to get and set some library-specific parameters (in blue), and (4) Flex-

MPI functions to access the dynamic reconfiguration library functions (in green).

Additionally, all the references to the default communicator MPI COMM WORLD in

11

the legacy code are replaced with XMPI COMM WORLD, a dynamic communica-

tor provided by Flex-MPI. To simplify the presentation, the instrumented code

shows the high-level interfaces of the Flex-MPI API without the required func-

tion parameters.

In Flex-MPI the MPI initialize (L1), finalize (L17), and communication (L12)

functions are transparently managed by the Flex-MPI library using the PMPI

interface. The rest of the MPI specific functions (L2-3) are directly managed

by the MPI library. The parallel code is instrumented with a set of functions to

get the initial partition of the domain assigned to each process (L4) and register

each of the data structures managed by the application (L5). Registering is

necessary to know which data structures should be redistributed every time a

reconfiguring action is carried out.

The DR module communicates with the newly spawned processes to pass

them the corresponding domain partition and the current program iteration

number (it) before starting the execution of the iterative section (L6). Newly

spawned processes will compute at most the remaining number of iterations

(L7). This number is variable and depends on the iterations when the process

is created and destroyed. The iterative section of the code is instrumented to

monitor each process of the parallel application (L8) during every iteration. In

addition, at every sampling interval the RP module evaluates whether reconfig-

uring (L13) is required. Then each process checks its execution status (L14). In

case that the RP module decides to remove a process, this leaves the iterative

section (L15) and terminates execution.

4. Flex-MPI components

This section describes the internal implementation of each architectural com-

ponent of the Flex-MPI library.

4.1. Monitoring

Flex-MPI uses PAPI and PMPI to dynamically collect performance metrics

from the MPI program. We use low-level PAPI interfaces to track the number of

12

floating point operations FLOP , the real time Treal (i.e. the wall-clock time),

and the CPU time Tcpu (i.e. the time during which the processor is running

in user mode). These metrics are collected for each MPI process and they

are preserved during context switch. They allow us to effectively calculate the

computing power of each processor as the number of floating point operations

per second FLOPS. Flex-MPI targets SPMD applications whose computation

is based on floating point operations. We use FLOP because it is a good

quantitative measure of the workload performed by the class of applications we

are considering. In these applications, the number of FLOP is proportional to

the workload computed by the process. The performance metrics collected by

Flex-MPI can be easily changed to model the performance of a different class

of applications (e.g. processor cycles or completed instruction count).

PMPI is an interface provided by the MPI library to profile MPI programs

and collect performance data without modifying the source code of the appli-

cation or accessing the underlying implementation. We use the PMPI interface

to collect the type of MPI communication operation, the size of the data trans-

ferred between processes, and the time spent in communication operations. In

addition, we use PMPI to wrap MPI Init and MPI Finalize. This allows Flex-

MPI to initialize and finalize its functionalities transparently.

4.2. Dynamic process management

The dynamic process management module manages the addition and re-

moval of MPI processes, as well as the inter-process communication whenever

a reconfiguring action is carried out. This functionality uses the dynamic pro-

cesses management interface of MPI to spawn dynamic processes at runtime.

MPI provides a default intra-communicator MPI COMM WORLD which encapsu-

lates the set of all processes initiated by the mpirun/mpiexec command. From

now on we refer to this set of processes as the initial set of processes. Those

processes which are dynamically spawned and removed at runtime are called

dynamic processes. Due to the restrictions of the current implementation of

MPI, only dynamic processes can be removed at runtime. The members of

13

remote_comm

MPI_COMM_WORLDMPI_COMM_WORLD

XMPI_COMM_WORLD

MPI_COMM_WORLD

Spawn (nprocs=2)
<<

MPI_COMM_WORLD

MPI_COMM_WORLD

XMPI_COMM_WORLD

MPI_COMM_WORLD

MPI_COMM_WORLD

XMPI_COMM_WORLD remote_comm

MPI_COMM_WORLD

MPI_COMM_WORLD

XMPI_COMM_WORLD

MPI_COMM_WORLD MPI_COMM_WORLD

remote_comm

MPI_COMM_WORLD

1 P0 P1 P2

P0 P1 P2

P0 P1 P2

P0 P1 P2

2

3

4

P* P*

P* P*

P*P3

P3 P4

Figure 4: Low-level actions of dynamic process management functionality at process creation.

the initial set of processes (default intra-communicator MPI COMM WORLD) can-

not be terminated until the program completes and dynamic processes can not

be added to or removed from this default communicator. For this reason, Flex-

MPI introduces its own global intra-communicator called XMPI COMM WORLD to

enable communication between initial and dynamic processes. We implement

this communicator using the “merge” method [33].

Flex-MPI decides to spawn a new process if: (1) there are idle processors in

the system, (2) the current performance of the application does not satisfy the

user-given performance objective, and (3) the computational prediction model

estimates a performance improvement that satisfies the performance objective.

Figure 4 illustrates the behavior of the dynamic process management module

when two dynamic processes (P3,P4) are added to an MPI program already run-

ning on an initial set of processes (P0-2) (step 1). We use MPI Comm spawn to

spawn new processes in Flex-MPI. Although the spawning primitive accepts as

input parameter the number of processes to start (n), each of the new processes

is spawned using an individual call to MPI Comm spawn. This makes each process

14

have its own (MPI COMM WORLD) intra-communicator and remote comm remote

communicator (step 2). The local and remote communicators are merged by

invoking MPI Intercomm merge, which returns a new XMPI COMM WORLD intra-

communicator encapsulating processes P0-3 (step 3). The merge function is

invoked once more to merge this intra-communicator and the remote commu-

nicator of P4. The result is a global intra-communicator which encapsulates all

of the processes (P0-4) (step 4).

This design choice allows fine-grained control over the number of application

processes to satisfy the performance constraints. The downside is that process

creation time varies linearly with the number of dynamically spawned processes.

The current implementation of Flex-MPI supports the creation of n > 1 simul-

taneous processes using MPI Comm spawn. However, due to implementation con-

straints of communicators in MPI, those processes spawned via an individual

call to MPI Comm spawn cannot be removed individually in subsequent sampling

intervals—and group termination may negatively affect the application perfor-

mance. This is a way to reach a trade off between process creation costs and the

granularity of reconfiguring actions (as the number of processes simultaneously

created or destroyed) and may be useful for those execution scenarios which

involve the dynamic creation of a large number of processes.

The reconfiguring policy dictates both the number of processes and the type

of processors on which to spawn them. MPI provides a mechanism to set the

host key of the MPI Info argument of MPI Comm spawn to the host name of

the compute node where the new process needs to be allocated. The dynamic

process management module implements a scheduler which uses the mechanism

provided by MPI to map processes to compute nodes with processor types cor-

responding to those dictated by the reconfiguring policy.

Flex-MPI removes a dynamic process if: (1) the current performance of

the application does not satisfy the user-given performance objective, and (2)

the computational prediction model estimates a performance reduction that

satisfies the performance objective as result of this operation. Removing a dy-

namic MPI process from an application implies disconnecting the process from

15

MPI_COMM_WORLD MPI_COMM_WORLD MPI_COMM_WORLD

MPI_COMM_WORLD

XMPI_COMM_WORLD

MPI_COMM_WORLD

>>

MPI_COMM_WORLD

MPI_COMM_WORLD

XMPI_COMM_WORLD

MPI_COMM_WORLD MPI_COMM_WORLD

Remove (rank=4)
>>

1

2

3

P0 P1 P2

P0 P1 P2

P0 P1 P2

P3 P4

P3 P4

P3 P*

Figure 5: Low-level actions of dynamic process management functionality at process removal.

XMPI COMM WORLD to allow the process to leave the iterative section and finish

execution by invoking MPI Finalize. This operation is implemented by first

deallocating the merged intra-communicator and then allocating a new intra-

communicator for the remaining processes. Due to the fact that MPI Finalize

is blocking and collective for all the processes in MPI COMM WORLD, each dynamic

process must have been spawned via a separated call to allow individual termi-

nation.

Figure 5 illustrates the behavior of the dynamic process management module

when process P4 is removed from the previous MPI program (step 1). The

current XMPI COMM WORLD is deallocated. This allows disconnecting P4 from the

rest of the processes (step 2). A new group is then formed via MPI Group incl

to include P0-P3, and a new intra-communicator XMPI COMM WORLD is allocated

for this group. P4 finishes its execution by calling MPI Finalize (step 3).

4.3. Load balancing

Load balancing is a major issue in parallel applications [12] because it can

have a huge impact on the overall performance of the program. Flex-MPI inte-

grates a dynamic load balancing technique [34] for SPMD applications that uses

the performance metrics collected by the monitoring functionality to make work-

16

load distribution decisions. One of the main advantages of this approach is that

it does not require prior knowledge about the underlying architecture. The dy-

namic load balancing technique implements a coordination-based method [35].

The load balancing module computes the new workload distribution using

the values for the computing power of each processor on which the application

is running the MPI processes. The idea is to assign to each process a data

partition that is proportional to the relative computing power (RCP) of the

processor on which it is running. The relative computing power of processor

i (RCPi) [36, 37] is computed in Equation 1 as the computing power of the

processor (in FLOPS) divided by the sum of the computing power of all of

the p processors on which the MPI program is running. Rather than balance

the workload using the number of rows or columns as reference, our balancing

algorithm uses the number of nonzero elements. This allows us to balance the

workload of parallel applications that use sparse data structures.

RCPi =
FLOPSi
p∑

i=0

FLOPSi

(1)

More importantly, our approach can balance the workload of applications

running both in dedicated and in shared modes [38]. When having exclusive

access to the resources it can still be the case that the workload is not distributed

according to the computing power of each processor—either from the start or

during the execution. In a non-dedicated system [38] the computing resources

are shared between different user applications which may come and go, and can

have irregular execution patterns. Our previous work [34] provides more details

and a practical evaluation of the dynamic load balancing algorithm.

4.4. Data redistribution

Flex-MPI provides a user-transparent data redistribution mechanism which

is triggered as a result of load balancing when a reconfiguring action is carried

out. The data redistribution module uses MPI standard messages to efficiently

move data between MPI processes at runtime. The data structures that it can

17

handle must be one-dimensional (e.g. vectors) or two-dimensional (e.g. matri-

ces), and they may be dense or sparse with block-based one-dimensional (row

or column) domain decomposition. Once the load balancing module decides the

new workload distribution, the data redistribution module maps it to a set of

data partitions—one per process—and moves this data from the previous to the

new owners.

When the dynamic process management module spawns a new process this

will receive a portion of the data which is proportional to the computing power

of the processor mapped to the process. When a process is terminated its data

is transferred to the remaining processes according to the computing power of

the processors mapped to each of these processes.

4.5. Computational prediction model

At the end of every sampling interval the computational prediction model

calculates the performance of the application when executing on different pos-

sible new processor configurations. The execution time of a parallel applica-

tion (Tsi) during a sampling interval (si) depends on the computation time

Tcomputation and the communication time Tcommunication. In this work we as-

sume that the MPI application uses synchronous MPI operations. In this case

the synchronization overhead counts as part of the communication time of the

application. We account separately for the process creation and termination

operations involved in reconfiguring (Toverhead process), as well as for the data

redistribution operations (Toverhead data). Equation 2 defines the execution time

of a parallel application during a sampling interval as computed by the computa-

tional prediction model, and it takes as input the application performance data

collected by monitoring and the system network performance data collected via

benchmarking prior to the MPI program execution.

Tsi = Tcomputation + Tcommunication + Toverhead process + Toverhead data (2)

18

4.5.1. Modeling the computation cost

To estimate the computation time of the application during the next sam-

pling interval Flex-MPI needs to first obtain the number of FLOP in the current

sampling interval. This value is provided by the monitoring module. For SPMD

applications with regular computation patterns Flex-MPI uses linear extrapo-

lation to predict the number of FLOP in the next sampling interval based on

the values in the past intervals. For those applications with irregular compu-

tation patterns Flex-MPI uses a profiling of the parallel application prior to

the malleable execution. The reason to use profiled data is that there is no

reliable method to predict the computation pattern of irregular applications [5].

For these applications, the computational prediction model of Flex-MPI uses

the number of FLOP collected at runtime to correct differences between the

profiled and measured performance.

Equation 3 calculates the predicted computation time for the next sampling

interval. It takes as inputs the estimated FLOP and the computational power

(FLOPS) of each processor (p).

Tcomputation =
FLOP∑np

p=1 FLOPSp
(3)

4.5.2. Modeling the parallel communication cost

There are several parallel communicational models to predict the perfor-

mance of MPI communication operations, the most known of which are LogGP [39]

and PLogP [40]—based on LogP [41] and the Hockney model [42]. These models

use a set of standardized system parameters to approximate the performance of

the algorithms which implement the collective MPI operations. The cost mod-

els for the synchronous MPI operations provided by MPICH [7] are all based

on the Hockney model [43, 44]. We use these to model the performance of the

communication operations in Flex-MPI.

The Hockney model assumes that the time to communicate between two

nodes is α + nβ, where α is the network latency, n is the size of the message

in bytes, and β is the transfer time per byte. In addition to these, the MPICH

19

cost models use two more parameters: p—the number of processes involved in

the communication—, and γ—used for reduction operations.

The communication model uses the profiling data gathered by the moni-

toring module (via PMPI) and the MPICH cost functions to predict the cost

of communications for the current sampling interval (Tcommunication model i).

Flex-MPI requires that α, β, and γ are previously defined based on the network

performance. These values are provided to Flex-MPI via a configuration file. To

obtain precise estimations we introduce λ, a correction parameter that accounts

for the difference between the estimation for the previous sampling interval

(i− 1) and the real value as measured by the monitoring module (Equation 4).

This value is then used to correct for the estimation made by the Hockney model

for the current sampling interval (i) (Equation 5).

λi =
Tcommunication estimated i−1

Tcommunication real i−1
(4)

Tcommunication estimated i = Tcommunication model i × λi (5)

4.5.3. Modeling process creation and termination costs

The costs of creating and destroying a dynamic process depend on various

factors such as the operating system, the MPI implementation, and the size

of the program binary. This implies performing offline tests to obtain these

values and pass them as input to the Flex-MPI library. By default Flex-MPI

creates and destroys processes individually; the overall process creation and

destruction costs will therefore grow linearly with the number of dynamic pro-

cesses involved in reconfiguring actions. Equation 6 and Equation 7 model the

costs associated with creating nprocs spawn and removing nprocs remove dy-

namic processes executing an MPI application, where process spawning cost

and process removing cost are the creation and termination cost per process.

Toverhead process(spawn) = nprocs spawn× process spawning cost (6)

20

Toverhead process(remove) = nprocs remove× process removing cost (7)

4.5.4. Modeling data redistribution costs

Data redistribution operations use the collective communication primitive

MPI Alltoallv to efficiently distribute data between processes. Flex-MPI can

redistribute dense vectors and matrices, as well as sparse matrices stored in

CSC (Compressed Sparse Column) or CSR (Compressed Sparse Row) format.

The load balancing functionality calculates the future distribution depending on

the number of rows, columns, or nonzero elements of each structure that need

to be assigned to every process based on their type (e.g. int, double) and the

RCP of the processors.

The cost of data redistribution is computed using Equation 8, where nd and

ns are the number of dense and sparse data structures, datak is the total size of

data structure k that is redistributed in the current step, and p is the number

of processes involved in redistribution. The estimation takes into account the

storage format for the dense (Cost rdata dense) and sparse (Cost rdata sparse)

data structures. The redistribution costs are calculated using the cost function

for MPI Alltoallv based on the Hockney model.

Toverhead data =

nd∑
i=1

Cost rdata dense(datai, p) +

ns∑
j=1

Cost rdata sparse(dataj , p)

(8)

4.6. Reconfiguring policy

Algorithm 1 shows the pseudocode of the reconfiguring algorithm. This

functionality checks whether the application satisfies the user-given performance

objective at every sampling interval. If so, it continues executing on the same

processor configuration. Otherwise it performs a reconfiguring action by adding

or removing processes. The algorithm consists of three phases: the first phase for

performance evaluation; the second phase for analysis of malleable reconfiguring

actions; and the third phase for process reconfiguring.

21

Algorithm 1 Reconfiguring algorithm for malleable applications with perfor-
mance constraints.

1: ———– First phase ———–
2: Texeaccum ← Texeaccum + Trealn
3: Tgoaln+1 ← calculateGoal(Texeaccum, Goal)
4: Testn+1 ← CPM(alloc procs set)
5: if |Testn+1 − Tgoaln+1| < tol then
6: ———– Second phase ———–
7: if Testn+1 > (Tgoaln+1 + tol) then
8: avail procs set← requestAvailableProcessorsRMS()
9: for s = 0 to s = |avail procs set| do

10: (∆FLOPS, Tcomm, Tspawn, Trdata) ← CPMreconfig(s, Tgoal, cFLOPS)
11: (procs set, Tcomp, cost)← mappingSimplex(constraint,∆FLOPS, s, avail procs set)
12: Test Sn+1 = Tcomp + Tcomm + Tspawn + Trdata

13: if |Test Sn+1 − Tgoaln+1| < tol then
14: suitable procs sets← push(procs set)
15: end if
16: end for
17: else if Tgoaln+1 > (Testn+1 + tol) then
18: for r = 0 to r = MAX PROCS REMOV E do
19: (∆FLOPS, Tcomm, Tremove, Trdata) ← CPMreconfig(r, Tgoal, cFLOPS)
20: (procs set, Tcomp, cost)← mappingSimplex(constraint,∆FLOPS, r, alloc procs set)
21: Test Rn+1 = Tcomp + Tcomm + Tremove + Trdata

22: if |Test Rn+1 − Tgoaln+1| < tol then
23: suitable procs sets← push(procs set)
24: end if
25: end for
26: end if
27: end if
28: new procs set← selectBestProcsSet(suitable procs sets, alloc procs set)
29: ———– Third phase ———–
30: submitAllocationRMS(new procs set)
31: reconfiguring(new procs set)
32: new workload distribution← loadBalance(new procs set)
33: dataRedistribution(new workload distribution)

First Phase (lines 1-5): The first step (line 2) consists of capturing

(via monitoring) the execution time Trealn of the current sampling interval

n to update the application execution time (Taccum). This value is used by

calculateGoal (line 3) to compute the execution time Tgoaln+1 that is neces-

sary to satisfy the user-given performance objective during the next sampling

interval. CPM (line 4) uses the computational prediction model to predict the

execution time for the next sampling interval (Testn+1) under the current pro-

cessor configuration. When the difference between the required and predicted

22

execution times is bigger than a given threshold tol (line 5) the algorithm

performs a reconfiguring action.

The Second Phase (lines 6-28) analyzes different process reconfiguring

scenarios and selects the best ones under user-given performance objective and

performance constraints. The algorithm first decides—in lines 7 and 17—

whether to increase or decrease the number of PEs depending on which of the

predicted and required times is bigger. To add new processors (line 8) Flex-

MPI sends a request to the RMS. The RMS sends back a list of the additional

PEs that can be used by the malleable application. Each iteration starting in

line 9 evaluates a different execution scenario, which is associated to a num-

ber s of additional PEs ranging from 0—no reconfiguration—to the maximum

number available. Function CPMreconfig in line 10 uses the computational

prediction model to calculate the number of FLOPS (∆FLOPS) necessary to

achieve the performance objective Tgoal. The computational prediction model

uses as a parameter the number of currently allocated PEs (p) and it takes into

account the predicted times for communication and the predicted reconfigur-

ing overheads (for both process creation and data redistribution) when p + s

processors are used.

FunctionmappingSimplex (line 11) uses the Simplex algorithm [45] to find

a set procs set of s PEs that satisfies the performance objective according to

the user-given constraint. This is necessary because we consider heterogeneous

architectures consisting of PEs with different performance characteristics. In the

case of imposing the efficiency constraint the function returns the PE set whose

computational power is closer to ∆FLOPS. In the case of the cost constraint

it returns the PE set with the smallest operational cost and computational

power closest to ∆FLOPS. Line 12 calculates the predicted execution time

during the sampling interval Test Sn+1. Due to the reconfiguring overheads it

is possible that this time does not satisfy the performance objective. For this

reason, in line 13 the algorithm evaluates if the deviation of the execution time

is below a predefined tolerance. If true, proc set is stored in a list of suitable

scenarios (line 14). This procedure is repeated for each value of s.

23

To remove processes we are limited to the number of dynamic processes

which have been previously spawned by the application (MAX PROCS REMOV E).

For each configuration scenario r we calculate the computational power (line

19) that satisfies the performance objective. Function mappingSimplex (line

20) now returns the specific subset of PEs that needs to be removed to obtain

the required computational power—maximizing the number of processes that

will be removed to improve efficiency and save operational costs.

Function selectBestProcsSet (line 28) selects from the list of suitable exe-

cution scenarios the processor configuration which satisfies both the performance

objective and the performance constraint. For the efficiency constraint the algo-

rithm selects the scenario which leads to the smallest number of processes. For

the cost constraint it selects the one which leads to the minimum operational

cost.

Finally, in the Third Phase (lines 29-33) the algorithm reconfigures the

application to run on the newly selected processor configuration. In (line 30)

Flex-MPI notifies the RMS of the new processor allocation. The following steps

consist in performing the process reconfiguring through the dynamic process

management functionality (line 31), computing the load balance for the new

processor configuration (line 32), and redistributing the workload (line 33).

5. Experimental results

The platform we used for evaluation is a heterogeneous cluster consisting of

23 nodes of 4 different types connected via a flat Gigabit Ethernet network—i.e.

all nodes are connected to the same switch and therefore the latency and band-

width are equal for all node pairs. The nodes run Linux Ubuntu Server 10.10

with the 2.6.35-32 kernel and the MPICH 3.0.4 distribution. The cluster is man-

aged by the TORQUE resource manager [46]. Table 1 shows the characteristics

of each node class.

To perform a realistic evaluation, we assigned an operational cost to each

computing core based on the economic costs incurred when using the equiva-

lent Amazon EC2 instances in terms of performance. Table 2 summarizes the

24

Table 1: Configuration of the heterogeneous cluster with number of compute nodes and cores
for each node class.

Class Nodes Cores Processor Frequency RAM

C1 20 80 Intel Xeon E5405 2.00 GHz 4 GB

C7 1 24 Intel Xeon E7-4807 1.87 GHz 128 GB

C6 1 12 Intel Xeon E5645 2.40 GHz 24 GB

C8 1 24 Intel Xeon E5-2620 2.00 GHz 64 GB

Table 2: Performance evaluation and cost model of the Amazon EC2 platform.

Performance Cost Economic efficiency

Instance type per core per core per core

(GFLOPS) ($/hour) (GFLOPS/$1)

m1.small 2.00 0.100 20.00

c1.medium 1.95 0.100 19.50

m1.xlarge 2.85 0.200 14.25

operational cost of Amazon EC2 that we obtained from [47]. Table 3 shows the

actual costs for each node class of our cluster. We evaluated the performance of

each node class using the HPL benchmark [48] for values of N (order of the coef-

ficient matrix A) between 18,000 and 110,000, depending on the RAM capacity

of each node. We can see that these costs are proportional to those in Table 2

in terms of their performance per processor core. We then associated each class

with an Amazon EC2 instance of similar performance (column Related Amazon

EC2 instance type in Table 3). Based on this association we assigned the same

economic efficiency to the classes as that of the corresponding Amazon EC2

instances. For C8 nodes the performance is not similar to any of the Amazon

EC2 instances. We assigned them a smaller economic efficiency which allows

us to evaluate the effectiveness of using Flex-MPI with three node categories:

a powerful, expensive, economically inefficient class C8, two not highly power-

ful, but cheap and highly cost-efficient classes C1 and C7, and a class C6 of

intermediate performance and efficiency.

25

Table 3: Performance evaluation and cost model of the cluster.

Related Performance Cost Economic efficiency

Class Amazon EC2 per core per core per core

instance type (GFLOPS) ($/hour) (GFLOPS/$1)

C1 m1.small 1.90 0.095 20.00

C7 c1.medium 2.25 0.115 19.50

C6 m1.xlarge 2.90 0.204 14.25

C8 - 4.62 0.462 10.00

Table 4: Problem sizes for the benchmarks evaluated.

Jacobi Conjugate Gradient EpiGraph

Problem size Order NNZ Size (MB) Order NNZ Size (MB) Order NNZ Size (MB)

A 10,000 1.0×108 381 18,000 6,897,316 99 1,000,000 145,861,857 1,308

B 20,000 4.0×108 1,523 36,000 14,220,946 210 2,000,000 180,841,317 1,803

C 30,000 9.0×108 3,454 72,000 28,715,634 440 3,000,000 241,486,871 2,462

Our benchmark suite consists of three parallel applications: Jacobi, Conju-

gate Gradient, and EpiGraph. They are written in C and modified to integrate

high-level Flex-MPI interfaces. Jacobi is an application which implements the

iterative Jacobi method for solving systems of linear equations that uses dense

matrices. Conjugate Gradient implements an iterative algorithm for solving

systems of linear equations that use sparse, symmetrical, and definite positive

matrices. EpiGraph [49] is an epidemic simulator for urban environments and

operates on a sparse matrix that represents the interconnection network between

the individuals in the population. Jacobi and Conjugate Gradient have a reg-

ular communication pattern and exhibit an approximately constant execution

time per iteration. EpiGraph’s workload, on the other hand, varies over time

depending on the number of infected individuals during each iteration. The

communication pattern in EpiGraph is irregular, and the number of communi-

cations and the size of the data sent between processes varies over time.

Table 4 shows the different problem sizes that we used for our benchmarks.

26

The dense matrices we use for Jacobi were randomly generated using MAT-

LAB [50]. The sparse matrices in Conjugate Gradient are a subset of the

University of Florida sparse matrix collection [51]. The sparse matrices used

by EpiGraph are generated by the application based on actual data from real

social networks [49]. Each benchmark application was executed for a different

number of iterations. We executed Jacobi for 2,500 iterations, CG for 20,000

iterations, and EpiGraph for 86,400 iterations (which corresponds to 60 days of

simulation). We used a sampling interval of 100 iterations for Jacobi and CG,

and of 8,640 iterations for EpiGraph.

5.1. Validating the computational prediction model

This section describes the experiments conducted in order to collect the

system parameters required by the computational prediction model as well as

the process of validation.

We first present an analysis of the overhead of process creation and ter-

mination operations during the execution of our benchmark applications. We

measure the overhead of process creation and termination using predefined re-

configuring points during the execution. These values are used to effectively

predict the overhead of reconfiguring actions in Flex-MPI. Figures 6 (a) and (b)

show these overheads for our benchmarks. The size of the binaries are 28KB

each for Jacobi and CG, and 184KB for EpiGraph. In these figures the x-axis

represents the number of dynamic processes spawned or removed. For the mea-

surement of the overhead of process creation all applications start with 8 initial

processes. For instance in Figure 6 (a) the x value 8 means that the application

goes from executing on 8 to 16 processes. For the measurement of the overhead

of process termination we trigger the process removing action when the appli-

cation is running on 80 processes. The measurement of process termination

is slightly more complex due to the fact that only those processes which have

been previously spawned dynamically can be later removed. For instance, we

measure the overhead of removing 32 processes—x value 32 in Figure 6 (b)—by

starting the application with 48 processes, spawning 32 dynamic processes, then

27

0!

5!

10!

15!

20!

25!

30!

35!

40!

8! 16! 24! 32! 40! 48! 56! 64! 72!

Ti
m

e
(S

ec
s.

)!

Number of processes spawned!

Jacobi! Conjugate Gradient! EpiGraph!

0!

0,01!

0,02!

0,03!

0,04!

0,05!

0,06!

0,07!

8! 16! 24! 32! 40! 48! 56! 64! 72!

Ti
m

e
(S

ec
s.

)!

Number of processes removed !

Jacobi! Conjugate Gradient! EpiGraph!

(a) (b)

Figure 6: Measured times for the creation and termination of dynamic MPI processes on 20
computing nodes of class C1.

Table 5: Hockney model parameters measured on the ARCOS cluster.

Parameter Description Measured value

α Latency 50 µsecs.

β Transfer time 0.008483 µsecs. per byte

γ Computation cost of reduction operation 0.016000 µsecs. per byte

removing them and measuring the time spent in this last operation. For our

benchmarks the average creation and destruction times in the ARCOS cluster

are 520.1 ms and 0.8 ms. These values show that the creation and destruction

costs do not depend on the binary size in the case of our benchmarks.

To predict the performance of communication operations in Flex-MPI we

use MPICH’s communication models, which are based on the Hockney model.

Table 5 shows the parameter values for the Hockney model. These parameters

were measured directly on the ARCOS cluster using point-to-point tests.

To validate the computational prediction model we execute a modified Ja-

cobi code in which the reconfiguring actions are predefined to occur at a par-

ticular iteration. Figure 7 shows a comparison between the predicted and real

times for executions starting from (a) 8, (b) 16, (c) 32, and (c) 64 initial pro-

cesses when adding and removing different numbers of dynamic processes. Real

times correspond to the times measured during the sampling interval following

the sampling interval in which the reconfiguring action is carried out. Results

28

0!

5!

10!

15!

20!

25!

30!

35!

Spawn 8 ! Spawn 24! Spawn 56!

Ti
m

e
(S

ec
s.

)!

Number of processes dynamically spawned/removed!

Number of processes at start time: 8!

Estimated computation time ! Real computation time! Estimated communication time ! Real communication time!

Estimated process reconfiguring time ! Real process reconfiguring time! Estimated data redistribution time! Real data redistribution time!

0!

5!

10!

15!

20!

25!

30!

35!

Spawn 8! Spawn 24! Spawn 56!
Ti

m
e

(S
ec

s.
)!

Number of processes dynamically spawned/removed!

Number of processes at start time: 8!

Estimated computation time ! Real computation time! Estimated communication time ! Real communication time !

Estimated process reconfiguring time ! Real process reconfiguring time! Estimated data redistribution time! Real data redistribution time !

0!

5!

10!

15!

20!

25!

30!

35!

Spawn 8! Spawn 24! Spawn 56!

Ti
m

e
(S

ec
s.

)!

Number of processes dynamically spawned/removed!

Number of processes at start time: 8!

0!

5!

10!

15!

20!

25!

30!

Remove 8! Spawn 16! Spawn 48!

Ti
m

e
(S

ec
s.

)!

Number of processes dynamically spawned/removed!

Number of processes at start time: 16 !

(a) (b)

0!

2!

4!

6!

8!

10!

12!

14!

16!

18!

Remove 24! Remove 16! Spawn 32!

Ti
m

e
(S

ec
s.

)!

Number of processes dynamically spawned/removed!

Number of processes at start time: 32 !

0!

2!

4!

6!

8!

10!

12!

14!

Remove 56 ! Remove 48 ! Remove 32!

Ti
m

e
(S

ec
s.

)!

Number of processes dynamically spawned/removed!

Number of processes at start time: 64 !

(c) (d)

Figure 7: Comparison between predicted and real times for different dynamic reconfiguring
actions.

indicate that CPM can predict with great accuracy the performance of par-

allel applications prior to a reconfiguring action, such as the relative error of

estimation times show: [-0.79%, 2.15%] for computation, [-4.79%, 4.44%] for

communication, [-4.92%, 5.55%] for process reconfiguring, and [-4.76%, 6.45%]

for data redistribution.

5.2. Overhead analysis

This section presents the performance evaluation of the overhead of Flex-

MPI. To do this we compare the execution times for J.B.8 for the following cases:

(1) the program executes legacy MPI code (compiled with MPICH v3.0.4) with

static process allocation, (2) the program executes Flex-MPI code with static

scheduling, (3) the program executes Flex-MPI code with dynamic reconfig-

uration under efficiency constraints, and (4) the program executes Flex-MPI

29

0!

200!

400!

600!

800!

1000!

Static scheduling
(MPI)!

Static scheduling
(Flex-MPI)!

Dynamic reconfiguration
(efficiency constraint)!

Dynamic reconfiguration
(cost constraint)!

Ti
m

e
(S

ec
s.

)!

Computation! Communication! Process reconfiguring! Data operations! Other!

Figure 8: Performance overhead for legacy MPI with static scheduling and Flex-MPI with
static static scheduling and dynamic reconfiguration, for J.B.8.

code with dynamic reconfiguration under cost constraints. The performance

objective in (3, 4) is to reduce the completion time of the application by 35%

compared to the completion time of the application with static scheduling (1,

2). Figure 8 reflects the time allocated to the different phases—computation,

communication, process reconfiguring, data operations, and other—for each of

these four cases. For scenarios (1) and (2) the data operations time accounts

for the time it takes to read the matrix data from disk; for scenarios (3) and

(4) it additionally accounts for the data redistribution time. For scenario (1)

other summarizes the overhead of the MPICH library; for scenarios (2), (3), and

(4) it summarizes the overhead of Flex-MPI library initialization, monitoring,

communication profiling, and evaluation of load balancing and reconfiguration

algorithms.

When comparing the results for (1) and (2) we see that the Flex-MPI over-

head is negligible and has no impact on the final application performance. The

results for dynamic reconfiguration (3, 4) show that the Flex-MPI overhead (in-

cluding process reconfiguring, data operations, and other) takes up to 13.81% of

the execution time of the dynamic application. These results reflect the trade off

between performance improvement and the overhead of the Flex-MPI library.

30

Table 6: Number of processes initially scheduled (Np) and their mapping to the available
class nodes for each malleability test case.

Process mapping

Test case Problem Problem size Np C1 C7 C6 C8

J.A.8 Jacobi A 8 2 2 2 2

J.B.8 Jacobi B 8 2 2 2 2

J.C.8 Jacobi C 8 2 2 2 2

J.C.24 Jacobi C 24 6 6 6 6

CG.A.4 Conjugate Gradient A 4 1 1 1 1

CG.B.4 Conjugate Gradient B 4 1 1 1 1

CG.C.4 Conjugate Gradient C 4 1 1 1 1

CG.C.8 Conjugate Gradient C 8 2 2 2 2

E.A.8 EpiGraph A 8 2 2 2 2

E.B.8 EpiGraph B 8 2 2 2 2

E.C.8 EpiGraph C 8 2 2 2 2

5.3. Performance evaluation of malleable MPI applications

This section presents the performance evaluation of Flex-MPI capabilities.

Table 6 summarizes the test cases that we considered and the number of initial

processes and types of processors for each one of them. In our experiments

the performance objective is to reduce the completion time of the malleable

applications by 25%, 30%, and 35% compared to the completion time for static

scheduling—the completion time of the application using Np processes with a

static processor allocation. For each of these objectives we evaluate the execu-

tion under both constraint types—efficiency and cost. The completion time for

static scheduling is the sum of computation and communication times, as well

as load balance and data redistribution overheads in case that the application

is unbalanced. Dynamic reconfiguration incurs overheads of process creation

and termination, in addition to load balance and data redistribution overheads

associated with the reconfiguring actions. The maximum number of processors

available for each benchmark application corresponds to the number of resources

31

of the ARCOS cluster as shown in Table 1. To provide a fair comparison we

apply load balance in both static and dynamic scenarios.

Figure 9 shows a comparison between the behavior of the reconfiguring pol-

icy module under efficiency (a) and cost (b) constraints when executing J.B.8

with a performance improvement objective of 35%. The statically scheduled

application takes 923 seconds and 1,535 cost units to complete on 8 processors.

When we impose the efficiency constraint—Figure 9 (a)—Flex-MPI triggers

two reconfiguring actions at iterations 300 and 2,200 to increase the computing

power of the application. Flex-MPI optimizes resource provisioning by mini-

mizing the number of dynamically spawned processes. The maximum number

of simultaneously executing processes using the efficiency constraint is 13 with

a total operational cost of 1,928 units. Dynamic processes execute on the least

cost-efficient yet most powerful processors—of class C8. When we impose the

cost constraint—Figure 9 (b)—Flex-MPI schedules new processes on the most

cost-efficient processors of our cluster—nodes of class C1. Flex-MPI triggers

several reconfiguring actions to satisfy the performance objective and the cost

constraint guided by the performance-aware reconfiguring policy. We can see

that in iteration 1,100 the reconfiguring policy concludes that the current perfor-

mance is below what is needed to reach the objective. As a result it increases the

computing power by adding three additional processors. In iteration 1,300 the

same module concludes that these processors lead to a performance above what

is needed and eliminates two of them. The maximum number of simultaneously

executing processes using the cost constraint is 20 with a total operational cost

of 1,543 units. The dynamic application running under the efficiency constraint

takes 597 seconds to execute—which is 35.33% faster than static scheduling.

The dynamic application with the cost constraint takes 601 seconds– 34.89%

faster than static scheduling. Both dynamic executions satisfy the performance

objective.

Figure 10 shows the workload (in GFLOP) of Jacobi in every iteration and

the computing power (in GFLOPS) of the processor configuration in every

sampling interval for J.B.8. The workload stays by and large constant in both

32

0!
1!
2!
3!
4!
5!
6!
7!
8!
9!

10!
11!
12!
13!

0! 500! 1000! 1500! 2000 ! 2500!

N
um

be
r o

f p
ro

ce
ss

es
!

Number of iteration !

Class C8! Class C6! Class C7! Class C1!

0!

2!

4!

6!

8!

10!

12!

14!

16!

18!

20!

0 ! 500! 1000! 1500! 2000! 2500!

N
um

be
r o

f p
ro

ce
ss

es
!

Number of iteration!

Class C8! Class C6 ! Class C7! Class C1!

(a) (b)

Figure 9: Number of processes and type of processors scheduled by Flex-MPI for the execution
of J.B.8 under the efficiency (a) and cost (b) constraints.

40

50

60

70

80

90

100 500 900 1300 1700 2100 2500
0

2

4

6

8

10

G
FL

O
P

Number of iteration

G
FL

O
PS

GFLOP GFLOPS

40

50

60

70

80

90

100 500 900 1300 1700 2100 2500
0

2

4

6

8

10
G

FL
O

P

Number of iteration

G
FL

O
PS

GFLOP GFLOPS

(a) (b)

Figure 10: Application workload (in blue, left y-axis) and computing power (in red, right
y-axis) for the execution of J.B.8 under the efficiency (a) and cost (b) constraints.

cases, regardless of the number of simultaneously executing processes. Figure 9

shows that the computing power varies with the number and type of processes

that are added or removed in every sampling interval. This affects the execution

time per iteration and therefore the completion time of the application.

Figure 11 summarizes the performance improvement of dynamic reconfig-

uring compared with static scheduling for the our test cases (Table 6) and

performance objectives of 25%, 30%, and 35% performance improvement with

both efficiency and cost constraints. Results show that Flex-MPI dynamically

adapts the number of processors to satisfy the user-given performance require-

ments. Note that the number and type of processors allocated to achieve the

33

0!

0.05!

0.1!

0.15!

0.2!

0.25!

0.3!

0.35!

J.A.8! J.B.8! J.C.8! J.C.24! CG.A.4! CG.B.4! CG.C.4! CG.C.8! E.A.8! E.B.8! E.C.8!

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t!

MPI benchmark.Problem size.Number of processes at start time!

Efficiency constraint (performance +25%)! Cost constraint (performance +25%)!
Efficiency constraint (performance +30%)! Cost constraint (performance +30%)!
Efficiency constraint (performance +35%)! Cost constraint (performance +35%)!

Figure 11: Performance evaluation of the malleable MPI applications with Flex-MPI support
for satisfying the performance objective.

0!

10!

20!

30!

40!

50!

60!

J.A.8! J.B.8! J.C.8! J.C.24! CG.A.4! CG.B.4! CG.C.4! CG.C.8! E.A.8! E.B.8! E.C.8!

Nu
m

be
r o

f p
ro

ce
ss

es
!

MPI benchmark.Problem size.Number of processes at start time!

Efficiency constraint (performance +25%) ! Cost constraint (performance +25%)!
Efficiency constraint (performance +30%) ! Cost constraint (performance +30%)!
Efficiency constraint (performance +35%) ! Cost constraint (performance +35%)!

Figure 12: Number of dynamic processes scheduled by Flex-MPI for satisfying the performance
objective for the malleable MPI applications.

0!

0.5!

1!

1.5!

2!

2.5!

3!

J.A.8! J.B.8! J.C.8! J.C.24! CG.A.4! CG.B.4! CG.C.4! CG.C.8! E.A.8! E.B.8! E.C.8!

No
rm

ali
ze

d
op

er
at

ion
al

co
st

of
 e

xe
cu

tio
n!

MPI benchmark.Problem size.Number of processes at start time !

Efficiency constraint (performance +25%) ! Cost constraint (performance +25%)!
Efficiency constraint (performance +30%) ! Cost constraint (performance +30%)!
Efficiency constraint (performance +35%) ! Cost constraint (performance +35%)!

Figure 13: Cost analysis of the malleable MPI applications with Flex-MPI support for satis-
fying the performance objective.

34

performance improvement depend on the user-given performance constraint.

This can be seen in greater detail in Figures 12 and 13. Figure 12 shows the

maximum number of simultaneously executing processes for each performance

objective, for each test case. The number of processes is always bigger when im-

posing the cost, rather than the efficiency, constraint. This is because the most

cost-efficient nodes are the less powerful and Flex-MPI requires a greater num-

ber of them to increase the performance of the application to the point where

the applications complete their execution within the required time interval. The

effect of this election can be seen in Figure 13, which shows the normalized op-

erational cost of each test case relative to static scheduling. We can observe

that the operational cost when imposing the cost constraint is always smaller

than that obtained for the efficiency constraint.

6. Conclusions and Future work

This paper describes the design and implementation of Flex-MPI, a library

that confers malleability to iterative SPMD MPI applications with minimal user

effort. Flex-MPI enables MPI applications to spawn and remove dynamic pro-

cesses at runtime to optimize their performance, parallel efficiency, and cost-

efficiency. Some of the main technical contributions captured by this library

are: automatic monitoring via hardware performance counters, prediction of

the future performance of (regular and irregular) parallel applications, and

performance-aware dynamic reconfiguration guided by user-defined cost and

efficiency constraints. Our techniques work equally well for applications op-

erating on dense and sparse data structures, as well as for heterogeneous and

homogeneous, shared or dedicated, architectures.

We present an extensive validation of the computational prediction model

and a detailed performance analysis of a set of benchmarks that are represen-

tative for the class of applications we target. Our results show that the com-

putational prediction model effectively estimates the performance of parallel

applications prior to a reconfiguring action. This allows the performance-aware

35

reconfiguring policy to provision a number and type of processors that satis-

fies the user-defined performance criteria. The performance analysis of a set

of well-known SPMD MPI programs shows that Flex-MPI can significantly im-

prove the performance of parallel applications. This increases the efficiency of

resource utilization and the cost-efficiency of program executions.

There are several interesting directions for future work that are allowed by

the Flex-MPI framework and which can considerably widen the scope of our

approach. Some of them aim to extend the capabilities of our approach to cover

a wider set of parallel applications. For instance, by extending the current model

to support applications with asynchronous communications, which may overlap

communication and computation. This is a realistic extension given that the

Flex-MPI implementation allows control over both the application and the MPI

library. The second is an extension of the data redistribution component to

support parallel applications with three-dimensional domain decomposition or

cyclic data distribution.

Another research direction is the design and implementation of optimization

techniques for adaptability of Flex-MPI applications to Cloud environments.

This involves extending the capabilities of monitoring and dynamic process man-

agement components of Flex-MPI to take into account the overhead of virtu-

alization and the variable performance of the interconnection network between

instances, and evaluate their impact on the performance of HPC applications.

Finally, we are currently working on the design and implementation of a cen-

tralized dynamic load balancing algorithm that can consider multiple Flex-MPI

applications together to optimize the overall system performance. Addition-

ally, we are considering more performance metrics than just FLOPS, and we

are currently evaluating the introduction of more hardware counters such as

cache misses in multicore processors and power consumption. These new met-

rics will improve both the load balancing algorithm as well as the application

performance monitoring at execution time.

36

References

[1] D. Feitelson, L. Rudolph, Toward convergence in job schedulers for par-

allel supercomputers, in: D. Feitelson, L. Rudolph (Eds.), Job Scheduling

Strategies for Parallel Processing, volume 1162 of Lecture Notes in Com-

puter Science, Springer Berlin / Heidelberg, 1996, pp. 1–26.

[2] G. Utrera, ” Virtual Malleability” Applied to MPI Jobs to Improve Their

Execution in a Multiprogrammed Environment, Universitat Politècnica de

Catalunya, 2010.

[3] J. Hungershofer, On the combined scheduling of malleable and rigid

jobs, in: Computer Architecture and High Performance Computing, 2004.

SBAC-PAD 2004. 16th Symposium on, IEEE, 2004, pp. 206–213.

[4] L. V. Kalé, S. Kumar, J. DeSouza, A malleable-job system for time-

shared parallel machines, in: Cluster Computing and the Grid, 2002. 2nd

IEEE/ACM International Symposium on, IEEE, 2002, pp. 230–230.

[5] C. Klein, C. Pérez, An RMS for non-predictably evolving applications, in:

Cluster Computing (CLUSTER), 2011 IEEE International Conference on,

IEEE, 2011, pp. 326–334.

[6] O. Sonmez, B. Grundeken, H. Mohamed, A. Iosup, D. Epema, Scheduling

strategies for cycle scavenging in multicluster grid systems, in: Cluster

Computing and the Grid, 2009. CCGRID’09. 9th IEEE/ACM International

Symposium on, IEEE, 2009, pp. 12–19.

[7] W. Gropp, MPICH2: A new start for MPI implementations, in: Re-

cent Advances in Parallel Virtual Machine and Message Passing Interface,

Springer, 2002, pp. 7–7.

[8] M. Duranton, S. Yehia, B. De Sutter, K. De Bosschere, A. Cohen, B. Falsafi,

G. Gaydadjiev, M. Katevenis, J. Maebe, H. Munk, et al., The HiPEAC

vision, Report, European Network of Excellence on High Performance and

Embedded Architecture and Compilation 12 (2010).

37

[9] M. Duranton, D. Black-Schaffer, K. De Bosschere, J. Maebe, The HIPEAC

vision for advanced computing in horizon 2020 (2013).

[10] M. Ben Belgacem, B. Chopard, A hybrid hpc/cloud distributed infrastruc-

ture: Coupling ec2 cloud resources with hpc clusters to run large tightly

coupled multiscale applications, Future Generation Computer Systems

(2014).

[11] S. Benedict, Performance issues and performance analysis tools for hpc

cloud applications: a survey, Computing 95 (2013) 89–108.

[12] R. Lepère, D. Trystram, G. J. Woeginger, Approximation algorithms for

scheduling malleable tasks under precedence constraints, International

Journal of Foundations of Computer Science 13 (2002) 613–627.

[13] E. Blayo, L. Debreu, G. Mounie, D. Trystram, Dynamic load balancing for

ocean circulation model with adaptive meshing, in: Euro-Par99 Parallel

Processing, Springer, 1999, pp. 303–312.

[14] S. S. Vadhiyar, J. J. Dongarra, SRS: A framework for developing malleable

and migratable parallel applications for distributed systems, Parallel Pro-

cessing Letters 13 (2003) 291–312.

[15] K. R. Mayes, M. Luján, G. D. Riley, J. Chin, P. V. Coveney, J. R. Gurd,

Towards performance control on the Grid, Philosophical Transactions of

the Royal Society A: Mathematical, Physical and Engineering Sciences 363

(2005) 1793–1805.

[16] L. A. Rao, J. Weissman, MPI-Based Adaptive Parallel Grid Services, 2003.

[17] C. Huang, O. Lawlor, L. V. Kale, Adaptive MPI, in: Languages and

Compilers for Parallel Computing, Springer, 2004, pp. 306–322.

[18] K. El Maghraoui, B. K. Szymanski, C. Varela, An architecture for recon-

figurable iterative MPI applications in dynamic environments, in: Parallel

Processing and Applied Mathematics, Springer, 2006, pp. 258–271.

38

[19] K. El Maghraoui, T. J. Desell, B. K. Szymanski, C. A. Varela, Dynamic

malleability in iterative MPI applications, in: 7th Int. Symposium on

Cluster Computing and the Grid, 2008, pp. 591–598.

[20] K. El Maghraoui, T. J. Desell, B. K. Szymanski, C. A. Varela, The Internet

Operating System: Middleware for adaptive distributed computing, Inter-

national Journal of High Performance Computing Applications 20 (2006)

467–480.

[21] G. Utrera, J. Corbalan, J. Labarta, Implementing malleability on MPI

jobs, in: Proceedings of the 13th International Conference on Parallel

Architectures and Compilation Techniques, IEEE Computer Society, 2004,

pp. 215–224.

[22] C. McCann, J. Zahorjan, Processor allocation policies for message-passing

parallel computers, volume 22, ACM, 1994.

[23] M. C. Cera, Y. Georgiou, O. Richard, N. Maillard, P. O. Navaux, Support-

ing malleability in parallel architectures with dynamic CPUSETs mapping

and dynamic MPI, in: Distributed Computing and Networking, Springer,

2010, pp. 242–257.

[24] M. P. I. Forum, MPI: a message passing interface standard, volume 8,

1994, pp. 165–414.

[25] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.

Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, et al., Open

MPI: Goals, concept, and design of a next generation MPI implementation,

in: Recent Advances in Parallel Virtual Machine and Message Passing In-

terface, Springer, 2004, pp. 97–104.

[26] M. C. Cera, Y. Georgiou, O. Richard, N. Maillard, P. O. Navaux, et al.,

Supporting MPI malleable applications upon the OAR resource man-

ager, in: Colibri: Colloque d’Informatique: Brésil/INRIA, Coopérations,

Avancées et Défis, 2009.

39

[27] M. C. Cera, Providing adaptability to MPI applications on current parallel

architectures, Ph.D. thesis, Universidade Federal do Rio Grande do Sul,

2012.

[28] C. Leopold, M. Süß, Observations on MPI-2 support for hybrid mas-

ter/slave applications in dynamic and heterogeneous environments, in:

Recent Advances in Parallel Virtual Machine and Message Passing Inter-

face, Springer, 2006, pp. 285–292.

[29] R. Sudarsan, C. J. Ribbens, ReSHAPE: A framework for dynamic resizing

and scheduling of homogeneous applications in a parallel environment, in:

Parallel Processing, 2007. ICPP 2007. International Conference on, IEEE,

2007, pp. 44–44.

[30] R. Sudarsan, C. J. Ribbens, Design and performance of a scheduling frame-

work for resizable parallel applications, Parallel Computing 36 (2010) 48–

64.

[31] MPI Forum, Message Passing Interface (MPI) Forum Home Page, 2009.

URL: http://www.mpi-forum.org/.

[32] P. Mucci, S. Browne, C. Deane, G. Ho, PAPI: A portable interface to

hardware performance counters, in: Proceedings of the Department of

Defense HPCMP Users Group Conference, 1999, pp. 7–10.

[33] N. Radcliffe, L. Watson, M. Sosonkina, A comparison of alternatives for

communicating with spawned processes, in: Proceedings of the 49th Annual

Southeast Regional Conference, ACM, 2011, pp. 132–137.

[34] G. Martin, M.-C. Marinescu, D. E. Singh, J. Carretero, FLEX-MPI: an

MPI extension for supporting dynamic load balancing on heterogeneous

non-dedicated systems, in: International European Conference on Parallel

and Distributed Computing, EuroPar, 2013.

40

[35] J. Dongarra, Overview of PVM and MPI,

http://www.netlib.org/utk/people/JackDongarra/pdf/pvm-mpi.pdf

(1998).

[36] M. Beltran, A. Guzman, J. Bosque, Dealing with heterogeneity in load

balancing algorithms, in: ISPDC’06, IEEE, 2006, pp. 123–132.

[37] J. Mart́ınez, F. Almeida, E. Garzón, A. Acosta, V. Blanco, Adaptive load

balancing of iterative computation on heterogeneous nondedicated systems,

The Journal of Supercomputing 58 (2011) 385–393.

[38] R. Buyya, et al., High Performance Cluster Computing: Architectures and

Systems (Volume 1), Prentice Hall, Upper SaddleRiver, NJ, USA 1 (1999)

999.

[39] A. Alexandrov, M. F. Ionescu, K. E. Schauser, C. Scheiman, LogGP:

incorporating long messages into the LogP modelone step closer towards

a realistic model for parallel computation, in: Proceedings of the seventh

annual ACM symposium on Parallel algorithms and architectures, ACM,

1995, pp. 95–105.

[40] T. Kielmann, H. E. Bal, K. Verstoep, Fast measurement of LogP parame-

ters for message passing platforms, in: Parallel and Distributed Processing,

Springer, 2000, pp. 1176–1183.

[41] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,

R. Subramonian, T. Von Eicken, LogP: Towards a realistic model of parallel

computation, volume 28, ACM, 1993.

[42] R. W. Hockney, The communication challenge for MPP: Intel Paragon and

Meiko CS-2, Parallel computing 20 (1994) 389–398.

[43] R. Thakur, R. Rabenseifner, W. Gropp, Optimization of collective commu-

nication operations in MPICH, International Journal of High Performance

Computing Applications 19 (2005) 49–66.

41

[44] R. Thakur, W. D. Gropp, Improving the performance of collective oper-

ations in MPICH, in: Recent Advances in Parallel Virtual Machine and

Message Passing Interface, Springer, 2003, pp. 257–267.

[45] G. B. Dantzig, Linear programming and extensions, Princeton university

press, 1998.

[46] G. Staples, TORQUE resource manager, in: Proceedings of the 2006

ACM/IEEE conference on Supercomputing, ACM, 2006, p. 8.

[47] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, D. H.

Epema, Performance analysis of cloud computing services for many-tasks

scientific computing, Parallel and Distributed Systems, IEEE Transactions

on 22 (2011) 931–945.

[48] A. Petitet, R. Whaley, J. Dongarra, A. Cleary, HPL–a portable implemen-

tation of the high–performance Linpack benchmark for distributed–memory

computers, http://www.netlib.org/benchmark/hpl (2005).

[49] G. Mart́ın, M.-C. Marinescu, D. E. Singh, J. Carretero, Leveraging social

networks for understanding the evolution of epidemics, BMC Syst Biol 5

(2011).

[50] M. U. Guide, The mathworks, Inc., Natick, MA 5 (1998).

[51] T. A. Davis, Y. Hu, The University of Florida sparse matrix collection,

ACM Trans. Math. Softw. 38 (2011) 1:1–1:25.

42

