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Abstract: Tunnel construction entails the generation of ground settlements, which can endanger 

the adjacent buildings. The prediction of damages in buildings is usually based on the classical 

Gaussian profiles for the approximation of the subsidence trough and the equivalent beam 

method for modeling the response of building walls. Current available expressions refer to walls 

aligned transversally with respect to the tunnel axis, which usually represents the worst-case 

scenario. However, approximations must be done for other building alignments, since no 

analytical expressions are available for these cases. We propose a novel equation for the 

determination of the horizontal ground strain, which departs from the equations of the classical 

Gaussian settlement profiles. The novel formulation allows the application of the equivalent 

beam method in 3D and the modeling of the tunnel advance. The results show significant 

variations of the estimated damage depending on the wall position with respect to the tunnel axis. 

The paper reviews also certain relevant aspects of building damage predictions, such as the 

influence area of settlements and the possible contribution of ground horizontal strain to damage 

reduction. A parametric analysis is further performed to create a non-linear regression model that 

allows direct estimation of the maximum tensile strain in a building wall according to input 

values of geological conditions and wall and tunnel geometries.  

Keywords: Tunnel construction, settlements, building damage, analytical prediction. 

1. Introduction

1.1 Background 

Design of urban tunnels requires the prediction of possible damages in adjacent buildings 

produced by tunneling subsidence. The use of Finite Element Models is appropriate for the 

estimation of damages, including the location and width of crack patterns (Giardina et al. 2013). 

However, primary assessments of the response of buildings to settlements can be done with the 

equivalent beam method (Burland & Wroth, 1974; Boscardin & Cording, 1989), which is widely 

used in tunneling engineering. This method models a building wall as a weightless linear elastic 

beam subjected to a given ground settlement profile. Strains in the beam are generated (a) due to 

the deflection when conforming to the settlement profile and (b) due to the ground horizontal 

strain generated on the base of the beam. The distribution of strains along the beam depends on 

the mode of deformation, which comprises a combination of bending and shear. For this reason, 

two extreme modes are typically considered in order to ascertain which is the most critical: pure 
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bending and pure shear. Maximum tensile strains in the beam due to pure bending (𝜀𝑏𝑟) and pure 

shear (𝜀𝑑𝑟) deformations are given by the following expressions derived from the elastic beam 

theory: 

𝜀𝑏𝑟 = (𝜀𝑏𝑚𝑎𝑥 + 𝜀ℎ) (1) 

𝜀𝑑𝑟 = 𝜀ℎ (1 −
𝐸

4𝐺
) + √

𝜀ℎ
2

16
(
𝐸

𝐺
)

2

+ 𝜀𝑑𝑚𝑎𝑥
2  (2) 

where 𝐸/𝐺 is the ratio between the Young and shear moduli of the wall material, 𝜀𝑏𝑚𝑎𝑥 and 

𝜀𝑑𝑚𝑎𝑥 are the maximum strains due to the deflection of the beam in pure bending and pure shear 

modes of deformation (Sec. 4) and 𝜀ℎ is the value of horizontal ground strain on the base of the 

beam, which depends on the shape of the settlement trough and on the location of the wall 

(Figure 1). This location is defined by the proximity and the alignment with respect to the tunnel 

axis (Sec. 2). The maximum tensile strain 𝜀𝑚𝑎𝑥 corresponds to the highest value between 𝜀𝑏𝑟 and 

𝜀𝑑𝑟 along the beam. Based on 𝜀𝑚𝑎𝑥, the approach of Burland et al. (1977) is used in this paper 

for classification of the damage magnitudes (Sec. 4). 

The determination of 𝜀𝑚𝑎𝑥 represents a 3D problem that depends on (a) the ground conditions, 

(b) the building geometry, (c) the tunnel geometry, (d) the building position with respect to the 

tunnel axis, (e) the location of the tunnel face and (f) the construction technology. Nevertheless, 

equivalent beam analyses are usually simplified and performed in 2D. For example, in case of 

buildings aligned transverse to the tunnel axis (𝑥-direction), data evidence has shown that the 

shape of the settlement profile 𝑆 can be closely approximated to a Gaussian probability density 

distribution (Peck, 1969). The settlement profile in the longitudinal direction (𝑦-direction) is 

usually described by a Gaussian cumulative distribution function (Attewell & Woodman, 1982). 

Settlement profiles in both directions are depicted in Figure 1.  
 

 

 

Figure 1. 3D settlement trough above an advancing tunnel. 

Expressions of ground horizontal movements in the transverse 𝑈𝑥(𝑥) and longitudinal 𝑈𝑦(𝑦) 
directions with respect to the tunnel axis were given by O’Reilly & New (1982) by assuming that 

ground particles move towards the tunnel axis. Horizontal ground strain 𝜀ℎ in the transverse 
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𝜀ℎ,𝑥𝑥(𝑥) and longitudinal 𝜀ℎ,𝑦𝑦(𝑦) directions are directly given by derivation of 𝑈𝑥(𝑥) and 

𝑈𝑦(𝑦): 

𝜀ℎ,𝑥𝑥(𝑥) =
𝑑𝑈𝑥(𝑥) 

𝑑𝑥
  (3) 

𝜀ℎ,𝑦𝑦(𝑦) =
𝑑𝑈𝑦(𝑦) 

𝑑𝑦
  (4) 

Buildings walls aligned transversally and longitudinally with respect to the tunnel axis are 

statistically representative, since many urban tunnels follow the tracks of avenues or streets. 

However, there are a significant number of buildings randomly aligned with respect to tunnel 

axes, in particular when using a Tunnel Boring Machine (TBM). The damage assessment in 

these cases is usually simplified by projecting the transverse or the longitudinal (whichever is the 

closest) settlement profile along the axis of the rotated wall, as shown in Figure 2 (Kappen J., 

2012; Camós, Molins et al. 2014). However, this practice can become unrealistic for alignments 

far from the transverse or longitudinal cases. Therefore, the determination of 𝜀ℎ and the posterior 

damage assessments using this practice may be inaccurate.  

 
Figure 2. Projection of settlement profile in case of a rotated building respect to 𝑥-direction. 

The models of Peck (1969), Attewell & Woodman (1982) and O’Reilly & New (1982) can be 

extended to obtain 3D expressions for the settlement trough, 𝑆(𝑥, 𝑦, 𝑧), the ground horizontal 

displacements, 𝑈𝑥(𝑥, 𝑦, 𝑧) and 𝑈𝑦(𝑥, 𝑦, 𝑧) and the ground horizontal strains, 𝜀ℎ,𝑥𝑥(𝑥, 𝑦, 𝑧) and 

𝜀ℎ,𝑦𝑦(𝑥, 𝑦, 𝑧) (see Sec. 2). However, no equation has been found in the literature to determine the 

resultant value of 𝜀ℎ in a particular wall alignment. Therefore, accurate estimations of 𝜀ℎ can 

only be achieved with the use of numerical simulation and hence, the complete analytical 

assessment of building damage cannot be performed. Moreover, numerical simulation is 

commonly avoided in practice due to the required computation resources and modeling expertise 

(Giardina et al. 2012).  
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1.2 Objective and approach 

The present paper proposes a novel equation for the exact determination of 𝜀ℎ in a particular wall 

alignment by applying a change of basis to the infinitesimal ground strain tensor (Sec. 2). The 

new equation departs from the equations of Peck (1969), Attewell & Woodman (1982) and 

O’Reilly & New (1982), which assume that settlement troughs produced by tunneling 

construction are Gaussian-shaped. The proposed equation is used to show the influence of the 

ground conditions and the tunnel geometry in the values of 𝜀ℎ (Sec. 3). The paper furthermore 

reviews certain relevant aspects of building damage predictions with the equivalent beam method 

in 3D, such as the influence area of settlements and the possible contribution of ground strain to 

damage reduction. The influence of the tunnel face location and the position of the building wall 

in the damage assessment is also shown by means of a parametric analysis (Sec. 4). The resulting 

data is used to create a non-linear regression model that allows the direct estimation of the 

maximum tensile strain 𝜀𝑚𝑎𝑥 in a building wall according to input parameters of the geological 

conditions and the wall and tunnel geometries (Sec. 5). 

2. Development of a novel equation for the ground horizontal strain 𝜺𝒉 in 3D 

2.1 Description of the building wall position 

The next sections describe the development of a novel equation for the determination of the 

resultant ground strain 𝜀ℎ in a particular wall alignment 𝜃 with respect to the tunnel axis. For this 

reason, the notation for the description of the building wall position is given, first for a general 

case (Sec. 2.1.1) and then for the particular case of building walls parallel to tunnel axis (Sec. 

2.1.2). 

2.1.1 General case 

A typical tunneling situation with a building wall of length 𝑙𝑏𝑢𝑖𝑙𝑑 is depicted in Figure 3. The 𝑦-

axis follows the tunnel longitudinal axis, whereas the 𝑥-axis corresponds to a transverse plane to 

the tunnel. The origin of the coordinates will be set at the intersection between the wall and the 

tunnel longitudinal axes. Note that this coordinate system refers to a particular wall and must be 

changed when other walls are analyzed.  

The tunnel face is located at coordinate 𝑦𝑠 and advances towards 𝑦 = −∞, following the criteria 

set by Attewell et al. (1986). 𝑦𝑓 represents the location of the tunnel portal.  

The wall is aligned 𝜃 degrees with respect to the tunnel transverse plane. Counterclockwise 

alignments are considered positive (𝜃 > 0). The distance between the wall reference point 𝐴̂ and 

the origin of coordinates is named 𝑑𝑜𝑟𝑖𝑔. For convenience, this distance can also take negative 

values. Wall positions can be described with this notation within a range of 𝜃 = [−90°, 90°] and 

𝑑𝑜𝑟𝑖𝑔 = (−∞,+∞). However, note that due to symmetry of the settlement trough about the 

tunnel longitudinal axis, wall positions described by 𝑑𝑜𝑟𝑖𝑔 = 𝑑𝑜𝑟𝑖𝑔1
, such that 0 > 𝑑𝑜𝑟𝑖𝑔1

≥

−𝑙𝑏𝑢𝑖𝑙𝑑 with 𝜃 = 𝜃1ϵ[−90°, 90°] are equivalent with the position described by 𝜃2 = −𝜃1 and 

𝑑𝑜𝑟𝑖𝑔2
= |𝑑𝑜𝑟𝑖𝑔1

| − 𝑙𝑏𝑢𝑖𝑙𝑑 (see cases d) and e) in Figure 4).  
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Figure 3. Parameters of tunnel and building positions (general case) 

 
Figure 4. Description of building positions according to the values of 𝜃 and 𝑑𝑜𝑟𝑖𝑔 (general case) 

2.1.2 Building wall parallel to tunnel axis  

All wall positions can be described with the notation of Sec. 2.1.1 except the cases of building 

walls parallel to the tunnel longitudinal axis. In this case, the 𝑥-axis is set at the same coordinate 

𝑦 of the wall reference point 𝐴̂ (Figure 5). The wall is located at a distance 𝑑𝑎𝑥𝑖𝑠 from the tunnel 



 6 

axis. This distance is defined in a range (−∞,+∞). Due to symmetry, the cases with 𝑑𝑎𝑥𝑖𝑠 < 0 

have the equivalent case on the positive side. Case of 𝑑𝑎𝑥𝑖𝑠 = 0 can be treated with both 

notations (the one shown in Sec. 2.1.1 and the present one). 

 
Figure 5. Parameters of tunnel and building position (case of parallel walls with respect to the tunnel 

axis).  

2.2 Description of 3D settlement Gaussian trough  

The settlement in [mm] at a certain position with coordinates 𝑥, 𝑦, 𝑧 in [m] is calculated by the 

expression (Peck, 1969; Attewell & Woodman, 1982; O’Reilly & New, 1982): 

𝑆 = −1000 · 𝑆𝑚𝑎𝑥 · 𝑒𝑥𝑝 [−
𝑥2

2 · 𝐾𝑥
2 · (𝑧0 − 𝑧)2

] · 

· [Φ (
𝑦 − (𝑦𝑠 + 𝑦0)

𝐾𝑦 · (𝑧0 − 𝑧)
) − Φ(

𝑦 − 𝑦𝑓

𝐾𝑦 · (𝑧0 − 𝑧)
)] 

(5) 

where 𝑆𝑚𝑎𝑥 is the absolute value of maximum settlement far behind the tunnel face, where the 

deformations are fully developed. It is calculated as: 

𝑆𝑚𝑎𝑥 =
𝑉𝐿 · 𝜋 · 𝑑2

√2𝜋 · 𝐾𝑥 · (𝑧0 − 𝑧) · 4
 (6) 

𝑑 and 𝑧0 are the tunnel diameter and depth of the tunnel axis in [m], respectively, with 𝑧0 being a 

positive magnitude. Φ(. ) is the standard normal cumulative distribution function. Note that term 

of Φ(. ) that contains 𝑦𝑓 becomes 0 if 𝑦𝑓 = +∞. 𝑉𝐿 is the volume ground loss per unit, 𝐾𝑥 and 

𝐾𝑦 are the non-dimensional shape parameters describing the Gaussian settlement curves in the 

transverse and longitudinal direction respectively. 𝐾𝑥 and 𝐾𝑦 depend on the type of soil: high 

values of the parameter indicate flat/broad settlement curves (stiff or soft silty clays), whereas 

low values indicate sharp/narrow settlement curves (granular soils). The products 𝐾𝑥 · 𝑧0 and 

𝐾𝑦 · 𝑧0 determine the location of the inflection points 𝑖𝑥 = 𝑖𝑦 = 𝑖 of the Gaussian curves. Note 
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that settlements 𝑆 in Eq. (5) are considered to be negative along the 𝑧-axis. It is important to keep 

this sign convention for the correct application of related equations of ground horizontal 

displacements and strain (see Secs. 2.3-2.4). However, references to settlement magnitudes will 

be expressed in absolute values throughout the paper.  

It is commonly assumed that the settlement above the tunnel face corresponds to half the 

maximum settlement 𝑆𝑚𝑎𝑥, which occurs at a distance far behind from the tunnel face. However, 

it has been shown that this value can be lower depending on the type of ground and the 

construction technology (Nomoto et al. 1995, Fargnoli et al. 2013). For example, the tunnel 

pressure of a TBM shield in soft soils restricts the ground movements on the heading, so that the 

major part of the settlements is related to the tail void. For this reason, a new parameter 𝑦0 has 

been introduced in the original equation in order to model the shift of the longitudinal settlement 

profile with respect to the tunnel face position (Figure 6). This parameter can be deduced from 

the equation of Attewell & Woodman (1982) for the surface longitudinal settlement at the tunnel 

centerline (𝑥 = 𝑧 = 0), with the tunnel portal location far from tunnel face (𝑦𝑓 = +∞). This 

profile is described by a Gaussian cumulative distribution function: 

|𝑆(𝑥 = 𝑧 = 0, 𝑦)| = 𝑆𝑚𝑎𝑥 ∙ Φ (
𝑦 − 𝑦0

𝑖𝑦
) (7) 

 
Figure 6. Longitudinal settlement profiles for 𝛿 =0.2 (solid line) and 𝛿 =0.5 (dashed line) 

The settlement above the tunnel face (𝑦 = 𝑦𝑠) is:  

|𝑆(𝑥 = 𝑧 = 0, 𝑦 = 𝑦𝑠)| = 𝑆𝑚𝑎𝑥 ∙ Φ (
𝑦𝑠 − 𝑦0

𝑖𝑦
) (8) 

Rearranging Eq. (8) and setting 𝑖𝑦 = 𝐾𝑦 · 𝑧0, the expression of the shift of the longitudinal 

settlement results in: 

𝑦0 = −Φ−1(𝛿) · 𝐾𝑦 · 𝑧0 (9) 
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where 𝛿 is the ratio between the surface settlement above the tunnel face and the maximal 

settlement 𝑆𝑚𝑎𝑥 at infinite distance behind of the face:  

𝛿 =
|𝑆(𝑥 = 𝑧 = 0, 𝑦 = 𝑦𝑠)|

|𝑆(𝑥 = 𝑧 = 0, 𝑦 = +∞)|
=

|𝑆(𝑥 = 𝑧 = 0, 𝑦 = 𝑦𝑠)|

𝑆𝑚𝑎𝑥
 (10) 

An example of shifted longitudinal settlement profile for a δ ratio equal to 0.2 is also shown in 

Figure 6.   

2.3 Ground horizontal displacements 

Horizontal displacements in [mm] in the transverse (𝑈𝑥) and longitudinal (𝑈𝑦) directions with 

respect to the tunnel axis at a certain position with coordinates 𝑥, 𝑦, 𝑧 in [m] are given by 

(O’Reilly & New,1982): 

𝑈𝑥 =
𝑥

𝑧0 − 𝑧
· 𝑆 (11) 

𝑈𝑦 = 1000 ·
𝑉𝐿 · 𝑑2

8 · (𝑧0 − 𝑧)
· 

· [𝑒𝑥𝑝 (
−(𝑦 − (𝑦𝑠 + 𝑦0))

2
− 𝑥2

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

) − 𝑒𝑥𝑝(
−(𝑦 − (𝑦𝑓))

2

− 𝑥2

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

)] 

(12) 

Where 𝑆 is given by Eq. (5). 

2.4 Ground horizontal strains 

2.4.1 Equations for the 3D field  

The fields of strains (per unit) in the transverse (𝜀ℎ,𝑥𝑥) and longitudinal (𝜀ℎ,𝑦𝑦) directions respect 

to the tunnel axis are directly given by derivation of the field of ground displacements: 

𝜀ℎ,𝑥𝑥 =
𝜕𝑈𝑥

𝜕𝑥
=

𝑆

1000

𝑧0 − 𝑧
· (1 − (

𝑥2

𝐾𝑥
2 · (𝑧0 − 𝑧)2

)) 
(13) 

 

𝜀ℎ,𝑦𝑦 =
𝜕𝑈𝑦

𝜕𝑦
= 

𝑉𝐿 · 𝑑2

8 · (𝑧0 − 𝑧)
· [(

−2𝑦 + 2(𝑦𝑠 + 𝑦0)

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

) · 𝑒𝑥𝑝 (
−(𝑦 − (𝑦𝑠 + 𝑦0))

2
− 𝑥2

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

)

− (
−2𝑦 + 2(𝑦𝑓)

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

) · 𝑒𝑥𝑝(
−(𝑦 − (𝑦𝑓))

2

− 𝑥2

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

)] 

(14) 

The resultant of 𝜀ℎ along an alignment 𝜃 in the range (−90°, 0°) ∪ (0°, 90°) is not directly given 

with Eqs. (13) and (14). For this reason, a basis transformation of the infinitesimal strain tensor 
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is used to find the resultant value 𝜀ℎ̂,𝑥𝑥̂ in a direction 𝑥̂ that matches with the building wall 

alignment 𝜃 for which 𝜀ℎ is being determined.  

Let 𝜺 be the infinitesimal strain tensor described with the orthonormal basis {𝒆𝟏, 𝒆𝟐, 𝒆𝟑}, where 

𝒆1 = (1,0,0), 𝒆2 = (0,1,0), 𝒆3 = (0,0,1) represent the directions 𝑥, 𝑦, 𝑧 of the reference 

Cartesian coordinate system (note that 𝑆 ≡ 𝑈𝑧): 

 

𝜺 = [

𝜀ℎ,𝑥𝑥 𝜀ℎ,𝑥𝑦 𝜀ℎ,𝑥𝑧

𝜀ℎ,𝑦𝑥 𝜀ℎ,𝑦𝑦 𝜀ℎ,𝑦𝑧

𝜀ℎ,𝑧𝑥 𝜀ℎ,𝑧𝑦 𝜀ℎ,𝑧𝑧

] =

[
 
 
 
 
 
 

𝜕𝑈𝑥

𝜕𝑥

1

2
(
𝜕𝑈𝑥

𝜕𝑦
+

𝜕𝑈𝑦

𝜕𝑥
)

1

2
(
𝜕𝑈𝑥

𝜕𝑧
+

𝜕𝑆

𝜕𝑥
)

1

2
(
𝜕𝑈𝑦

𝜕𝑥
+

𝜕𝑈𝑥

𝜕𝑦
)

𝜕𝑈𝑦

𝜕𝑦

1

2
(
𝜕𝑈𝑦

𝜕𝑧
+

𝜕𝑆

𝜕𝑦
)

1

2
(
𝜕𝑆

𝜕𝑥
+

𝜕𝑈𝑥

𝜕𝑧
)

1

2
(
𝜕𝑆

𝜕𝑦
+

𝜕𝑈𝑦

𝜕𝑧
)

𝜕𝑆

𝜕𝑧 ]
 
 
 
 
 
 

 

  

(15) 

According to the tensor transformation theory, the infinitesimal strain tensor described in a new 

orthonormal basis 𝒆̂𝟏, 𝒆̂𝟐, 𝒆̂𝟑 is given by: 

𝜺̂ = 𝑳𝜺𝑳𝑻 (16) 

And, 

𝜺̂ = [

𝜀ℎ̂,𝑥𝑥̂ 𝜀ℎ̂,𝑥𝑦̂ 𝜀ℎ̂,𝑥𝑧̂

𝜀ℎ̂,𝑦𝑥̂ 𝜀ℎ̂,𝑦𝑦̂ 𝜀ℎ̂,𝑦𝑧̂

𝜀ℎ̂,𝑧𝑥̂ 𝜀ℎ̂,𝑧𝑦̂ 𝜀ℎ̂,𝑧𝑧̂

] (17) 

Where the components of matrix 𝑳 are defined as: 

𝑙𝑖𝑗 = 𝑒̂𝑖 · 𝑒𝑗  (18) 

If the vector 𝒆̂𝟏 matches the longitudinal direction 𝑥̂ of a wall with alignment 𝜃, the new 

orthonormal basis is then given by 𝒆̂𝟏 = (cos 𝜃 , sin 𝜃 , 0), 𝒆̂𝟐 = (−sin 𝜃 , cos 𝜃 , 0), 𝒆̂𝟑 = 𝒆𝟑 =
(0,0,1). Then, the components of the tensor transformation matrix 𝑳 result in: 𝑙11 = cos 𝜃, 𝑙12 =
sin 𝜃, 𝑙13 = 0, 𝑙21 = −sin 𝜃, 𝑙22 = cos 𝜃, 𝑙23 = 0, 𝑙31 = 0, 𝑙32 = 0 and 𝑙33 = 1. Note that the 

change of basis represents a rotation of 𝜃 degrees counterclockwise about 𝒆3. 

By multiplying matrices, the resultant horizontal strain along a particular wall alignment 𝜃 is 

given by: 

𝜀ℎ ≡ 𝜀ℎ̂,𝑥𝑥̂ = cos2 𝜃 · 𝜀ℎ,𝑥𝑥 + sin2 𝜃 · 𝜀ℎ,𝑦𝑦 + 2 · cos 𝜃 sin 𝜃 · 𝜀ℎ,𝑥𝑦 (19) 

Note that if the wall is perpendicular to the tunnel axis (i.e. 𝜃 = 0°), Eq. (19) reduces to 𝜀ℎ =
𝜀ℎ,𝑥𝑥, whereas if the wall is aligned with the tunnel longitudinal axis (i.e. 𝜃 = ±90°), Eq. (19) 

reduces to 𝜀ℎ = 𝜀ℎ,𝑦𝑦. By definition of the infinitesimal strain tensor, 𝜀ℎ,𝑥𝑦 is given by: 

 

𝜀ℎ,𝑥𝑦 = 𝜀ℎ,𝑦𝑥 =
1

2
(
𝜕𝑈𝑥

𝜕𝑦
+

𝜕𝑈𝑦

𝜕𝑥
) (20) 
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Terms 
𝜕𝑈𝑥

𝜕𝑦
 and 

𝜕𝑈𝑦

𝜕𝑥
 in Eq.(20) are given by derivation of Eqs. (11) and (12) (check Annex A for 

further details on the development of Eq. (21)): 

 

𝜕𝑈𝑥

𝜕𝑦
=

𝑥

𝑧0 − 𝑧
· (−𝑆𝑚𝑎𝑥) · (𝑒𝑥𝑝 (−

𝑥2

2 · 𝐾𝑥
2 · (𝑧0 − 𝑧)2

)) · 

·

(

 
 1

√2𝜋
𝑒−

(
𝑦−(𝑦𝑠+𝑦0)

𝐾𝑦·(𝑧0−𝑧)
)

2

2 · (
1

𝐾𝑦 · (𝑧0 − 𝑧)
) −

1

√2𝜋
𝑒−

(
𝑦−𝑦𝑓

𝐾𝑦·(𝑧0−𝑧)
)

2

2 · (
1

𝐾𝑦 · (𝑧0 − 𝑧)
)

)

 
 

· 

(21) 

 

And, 

 

𝜕𝑈𝑦

𝜕𝑥
=

𝑉𝐿 · 𝑑2

8 · (𝑧0 − 𝑧)
· 

·
(−2𝑥)

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

[𝑒𝑥𝑝 (
−(𝑦 − (𝑦𝑠 + 𝑦0))

2
− 𝑥2

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

) − 𝑒𝑥𝑝 (
−(𝑦 − (𝑦𝑓))

2

− 𝑥2

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

)] 

 

(22) 

2.4.2 Equations for building walls parallel to tunnel axis 

If the determination of settlements, ground horizontal displacements and strains is performed for 

the case of walls parallel to tunnel axis (𝑆𝑝𝑎𝑟, 𝑈𝑦,𝑝𝑎𝑟 and 𝜀ℎ,𝑝𝑎𝑟, respectively) the latter 

expressions are reduced to a 2D problem: 

𝑆𝑝𝑎𝑟 = −1000 · 𝑆𝑚𝑎𝑥 · 𝑒𝑥𝑝 [−
𝑑𝑎𝑥𝑖𝑠

2

2 · 𝐾𝑥
2 · (𝑧0 − 𝑧)2

] · 

· [𝛷 (
𝑦 − (𝑦𝑠 + 𝑦0)

𝐾𝑦 · (𝑧0 − 𝑧)
) − 𝛷 (

𝑦 − 𝑦𝑓

𝐾𝑦 · (𝑧0 − 𝑧)
)] 

(23) 

 

𝑈𝑦,𝑝𝑎𝑟 = 1000 ·
𝑉𝐿 · 𝑑2

8 · (𝑧0 − 𝑧)
· 

· [𝑒𝑥𝑝 (
−(𝑦 − (𝑦𝑠 + 𝑦0))

2
− 𝑑𝑎𝑥𝑖𝑠

2

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

) − 𝑒𝑥𝑝(
−(𝑦 − (𝑦𝑓))

2

− 𝑑𝑎𝑥𝑖𝑠
2

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

)] 

(24) 

 

𝜀ℎ,𝑝𝑎𝑟 ≡ 𝜀ℎ̂,𝑥𝑥,̂ 𝑝𝑎𝑟 =
𝜕𝑈𝑦,𝑝𝑎𝑟

𝜕𝑦
= (25) 
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𝑉𝐿 · 𝑑2

8 · (𝑧0 − 𝑧)
· [(

−2𝑦 + 2(𝑦𝑠 + 𝑦0)

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

) · 𝑒𝑥𝑝 (
−(𝑦 − (𝑦𝑠 + 𝑦0))

2
− 𝑑𝑎𝑥𝑖𝑠

2

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

)

− (
−2𝑦 + 2(𝑦𝑓)

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

) · 𝑒𝑥𝑝(
−(𝑦 − (𝑦𝑓))

2

− 𝑑𝑎𝑥𝑖𝑠
2

2 · 𝐾𝑦
2 · (𝑧0 − 𝑧)2

)] 

where 𝑑𝑎𝑥𝑖𝑠 is the horizontal distance between tunnel and wall longitudinal axes shown in 

section 2.1.2. Note that 𝜀ℎ̂,𝑥𝑥,̂ 𝑝𝑎𝑟 corresponds to 𝜀ℎ,𝑦𝑦 of Section 2.4.1. 

2.4.3 Definition of sagging and hogging deflection zones 

The nature of ground horizontal strains 𝜀ℎ (compressive or tensile) has implications on the 

damage assessment. This nature is defined by the curvature or concavity of the settlement 

profile: zones with upwards concavity are known as sagging deflection zones, whereas 

downwards concavity refers to hogging deflection. The inflection points of the Gaussian 

settlement profiles delimit these zones. Sagging zones imply the generation of compressive 

strains (𝜀ℎ < 0) and hence, a favorable contribution to damage reduction. Hogging zones imply 

the generation of tensile strains (𝜀ℎ > 0), which will increase damages on the wall (Burland, 

2008). In the remainder of the paper, compressive ground strains will be written as 𝜀ℎ− and 

tensile, 𝜀ℎ+.   

3. Variation of ground horizontal strain 𝜺𝒉 with the alignment 𝜽 

3.1 Introduction 

Next sections go deeper into the variation of the ground horizontal strain 𝜀ℎ with the alignment 

𝜃, which may play a key role in the building damage assessment. The novel formulation shown 

in Sec. 2.4.1 is used for this purpose. For the ease of illustration, a particular example of the 

evolution of 𝜀ℎ with 𝜃 during the tunnel face approximation is shown in Sec. 3.2. 𝜀ℎ is further 

calculated for a wide range of ground conditions and tunnel geometries in a parametric analysis. 

The goal is to determine critical values of 𝜃, regarding the value of 𝜀ℎ (Sec. 3.3). Optimization 

techniques are used for this objective. 

In the following we limit ourselves to the case of 𝐾𝑥 = 𝐾𝑦 = 𝐾, as it is often assumed in 

tunneling design (Attewell et al., 1986). The tunnel portal is considered at infinite distance from 

the face, i.e. 𝑦𝑓 = +∞. 

3.2 Representation of the field of ground horizontal strain 𝜀ℎ  

Equations (13), (14) and (20)-(22) are referred to the Cartesian coordinate system with 

components 𝑥, 𝑦 and 𝑧. However, cylindrical coordinates will be here used instead for making 

easier the visualization of the next plots. The following transformation is applied: 

{
𝑥 = 𝑟 · 𝑐𝑜𝑠 𝜃
𝑦 = 𝑟 · 𝑠𝑖𝑛 𝜃

𝑧 = 𝑧
 (26) 
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where 𝑟 is the horizontal distance between the 𝑧-axis and whichever ground point 𝑃̂ located 

along the rotated 𝑥̂-axis. The position of 𝑃̂ can be described then by the coordinates (𝑟𝑃̂, 𝜃𝑃̂, 𝑧𝑃̂). 

However, the following analysis is only performed at ground surface, i.e. 𝑧 = 0 and hence, 

coordinates of 𝑃̂ can be given only by (𝑟𝑃̂, 𝜃𝑃̂) (see Figure 7).  

 
Figure 7. Parameters of the change from Cartesian to cylindrical coordinates 

An example of settlement profile 𝑆 and the correspondent ground horizontal strains 

𝜀ℎ,𝑥𝑥, 𝜀ℎ,𝑦𝑦, 𝜀ℎ,𝑥𝑦 in the new cylindrical coordinates is shown in Figure 8. The resultant strain 

𝜀ℎ ≡ 𝜀𝑥̂𝑥̂ along the considered alignment (𝜃 = 60°) is given by Eq. (19). The tunnel face location 

for this particular case is 𝑦𝑠 = 0m, the tunnel diameter is 𝑑=12m, the tunnel depth is 𝑧0=20m, 

the trough width parameter is 𝐾=0.3, the ground volume loss is 𝑉𝐿=1% and the ratio between the 

settlement at the face and at the tail is 𝛿=0.3.  

It can be seen that sagging zone extends from 𝑟 = 0m to 𝑟 ≈ 17m and that 𝜀ℎ is there 

compressive (negative). Hogging deflection and hence, tensile (positive) values of 𝜀ℎ, start at 

𝑟 ≈ 17m. The curves of 𝜀ℎ,𝑥𝑥 and 𝜀ℎ correspond to the profile of ground strain for 𝜃 = 0° and 

𝜃 = 60°, respectively. Note the substantial difference between the positive peak values of both 

curves at 𝑟 ≈ 22m. This reduction respect to the transverse case may imply notable variations in 

the estimation of building damage, as it will be shown later in Sec. 4. 
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Figure 8. Plot of settlement profile S and ground strains 𝜀ℎ,𝑥𝑥, 𝜀ℎ,𝑦𝑦, 𝜀ℎ,𝑥𝑦 and resultant 𝜀ℎ at 𝜃=60° for 

𝑦𝑠=0m (𝑉𝐿=1%, 𝐾=0.3, 𝛿=0.3, 𝑧0=20m, 𝑑=12m). 

The variation of 𝜀ℎ with the alignment 𝜃 and the position 𝑟 for different tunnel face locations is 

depicted in Figure 9. Note that this Figure represents the extension of Figure 8 for all possible 

values of 𝜃. It can be seen that the maximum absolute values of 𝜀ℎ+ and 𝜀ℎ− are given along 𝜃 =
90° for 𝑟 ≈17m and 𝑟 ≈30m, respectively, when tunnel face is at 𝑦𝑠=+20m (Figure 9a). For 

90° > 𝜃 > 45°, 𝜀ℎ+ and 𝜀ℎ− tend to decrease, and for 𝜃 < 45°, both 𝜀ℎ+ and 𝜀ℎ− become 

negligible. Therefore, the effect of the excavation when 𝑦𝑠=+20m can only be noticed at 

alignments close to the longitudinal tunnel axis.  

If the tunnel face advances till 𝑦𝑠=0m, the maximum absolute value of compressive strain 𝜀ℎ− is 

then given at 𝑟 ≈7m for 𝜃 ≈ 50° (Figure 9b). The maximum value of 𝜀ℎ+ is given at 𝜃 ≈ -90°. 
The intersection of a vertical plane at 𝜃 =60° with the plot of 𝜀ℎ would result in the curve shown 

in Figure 8. Note also that the less critical 𝜃 in terms of 𝜀ℎ+ (i.e the range of 𝜃 for which 𝜀ℎ+ is 

minimum) is around 𝜃 ≈ 60°-70°. 

When tunnel face is located at 𝑦𝑠=-20m, both maximum absolute values of 𝜀ℎ+ and 𝜀ℎ− occur at 

𝜃 = 0° for 𝑟 = 0m and 𝑟 ≈12m, respectively (Figure 9c). It can be seen that 𝜀ℎ is 0 for all 𝑟 if 

𝜃 = +90°. The reason is that the settlement along this alignment is fully developed and hence, 

the settlement profile curvature is 0. 
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Figure 9. Plot of 𝜀ℎ for all 𝜃 and 𝑟 if tunnel location is at a) 𝑦𝑠=+20m, b) 𝑦𝑠=0m and c) 𝑦𝑠=-20m 

(𝑉𝐿=1%, 𝐾=0.3, 𝛿=0.3, 𝑧0=20m, 𝑑=12m). 

3.3 Determination of critical values of 𝜃 

The generation of the plots shown in Sec. 3.2 allows identifying possible critical values of 𝜃 

concerning the maximum absolute values of 𝜀ℎ+ and 𝜀ℎ−. For this purpose, the field of 𝜀ℎ is 

generated in a parametric analysis for a wide range of ground conditions and tunnel geometries. 

For every case, the position (𝑟, 𝜃) of the maximum absolute values of 𝜀ℎ+ and 𝜀ℎ− is determined 

by means of optimization techniques. The analysis includes values of 𝐾 from 0.2 to 0.7 every 

0.05; ground volume losses 𝑉𝐿 equal to 0.5%, 1%, 1.5% and 2%, which are typical values 

considered in tunneling engineering; 𝛿 ratios equal to 0.5 (as generally assumed) and 𝛿=0.3 for 

the case of soft soils; tunnel diameters 𝑑 equal to 8, 10 and 12m and tunnel axis depths 𝑧0 equal 

to 20, 30 and 40m. The location of the tunnel face 𝑦𝑠 spans from +20m to -20m every 10m to 

simulate the different phases of approximation and underpass of the tunnel face beneath a 

building wall.  

The results show that for tunnel face locations 𝑦𝑠 > 0 (i.e. tunnel face approaching to the origin 

of coordinates), the alignment for which 𝜀ℎ+ is maximum is 𝜃 = 90°, whereas for 𝑦𝑠 < 0 (i.e 

tunnel face has underpassed the origin of coordinates), it is 𝜃 = 0°. The ratio between the 

maximum 𝜀ℎ+ at 𝜃 = 0° and the maximum 𝜀ℎ+ at 𝜃 = 90° is usually between 1.5 and 2. Then, it 

is clear that the most critical alignment according to the value of 𝜀ℎ+ is the transverse direction 

with respect to the tunnel axis.  

Regarding the compressive strains 𝜀ℎ−, the maximum absolute values are given at 𝜃 = 0° when 

the tunnel face location is 𝑦𝑠 < 0. However, the trend is not so clear when the tunnel face 

location is 𝑦𝑠 > 0. Highest absolute values of 𝜀ℎ− are found in a range of alignments between 

𝜃 = 50° and 𝜃 = 90°, depending on the geological conditions and the tunnel geometry. The ratio 
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between the maximum absolute value of 𝜀ℎ− at 𝜃 = 0° and at 𝜃 ≈ 50°-90° is between 3 and 4. 

Therefore, the maximum contribution of compressive ground strain 𝜀ℎ− to damage reduction is 

also at 𝜃 = 0°. 

3.4 Discussion 

The presented results show the influence of the alignment 𝜃 on the tensile 𝜀ℎ+ and compressive 

𝜀ℎ− ground horizontal strains. According to the parametric analysis, the maximum absolute 

values of both 𝜀ℎ+ and 𝜀ℎ− are generated for advanced tunnel face locations (i.e. 𝑦𝑠 < 0) at 𝜃 =
0°. Therefore, 𝜃 = 0° is defined as the worst-case scenario regarding 𝜀ℎ+. However, 𝜃 = 0° can 

give also the maximal contribution of compressive strains 𝜀ℎ− to building damage reduction, but 

this contribution is generally neglected when using the equivalent beam model, as a conservative 

practice (see Sec. 4). Hence, 𝜃 = 0° is considered to be the most critical alignment regarding 𝜀ℎ, 

independently of the contribution of 𝜀ℎ−. Less critical (lower) values of 𝜀ℎ+ may be generated at 

alignments in between 𝜃 = 0° and 90°. This fact can entail a reduction of the estimated damage 

when analyses are performed along the real wall alignments 𝜃, instead of doing approximations 

with the transverse case 𝜃 = 0°, as it is usually done in tunneling design.   

4. Relevant aspects of building response modeling in 3D 

4.1 Introduction 

Sections 2 and 3 showed how to deal with the determination of ground horizontal strain 𝜀ℎ in a 

particular wall alignment 𝜃. As seen, this represents a 3D problem governed by the ground 

properties, the construction technology, the tunnel geometry and the tunnel face position. Once 

the 2D settlement profile and the correspondent 𝜀ℎ are determined, the building response is 

modeled with the equivalent beam method from Burland & Wroth (1974) in order to assess the 

damages that ground subsidence can produce to the walls. This method is widely used in 

engineering practice, but however, designers are often not aware of certain aspects that may be 

critical on the damage predictions.   

The present section reviews the application of the equivalent beam method with an advancing 

tunnel in 3D according to the relative position of the building with respect to the tunnel (Sec. 

4.2). The delimitation of the influence area of settlements and its effect on the predictions of 

building damage is analyzed in Sec. 4.3. The contribution of the ground horizontal strain in 

sagging zones to damage reduction is analyzed in Sec. 4.4. The influence of the tunnel face 

location 𝑦𝑠 and the building wall alignment 𝜃 is studied in Sec. 4.5.  

4.2 Application of the equivalent beam method in 3D 

Maximum tensile strains in the beam for pure bending (𝜀𝑏𝑟) and pure shear (𝜀𝑑𝑟) modes of 

deformation (Eqs. (1)-(2)) require the calculation of maximum strains due to the deflection of the 

beam in pure bending, 𝜀𝑏𝑚𝑎𝑥, and pure shear, 𝜀𝑑𝑚𝑎𝑥, which are given by the expressions of 

Burland & Wroth (1974): 

𝜀𝑏𝑚𝑎𝑥 =

∆

𝑙

(
𝑙

12𝑡
+

3𝐼

2𝑎𝑙𝐻

𝐸

𝐺
)

 (27) 
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𝜀𝑑𝑚𝑎𝑥 =

∆

𝑙

(1 +
𝐻𝑙2

18𝐼

𝐺

𝐸
)

 (28) 

where 𝐻 is the beam height, 𝐼 is the inertia per unit length which is equal to 𝐻3/12, 𝑡 is the 

position of the neutral axis and 𝑎 is the location of the fiber where strains are calculated. In case 

of sagging deflection, the neutral axis is assumed to be at middle height (𝑡 = 𝐻/2). In case of 

hogging deflection, the neutral axis is assumed to be at the top fiber (𝑡 = 𝐻) (Figure 10). Strains 

are calculated in the most critical fiber from the position of the neutral axis, so that 𝑎 = 𝑡 in both 

cases. ∆/𝑙 are the maximum deflection ratios for the respective deflection zone: 𝑙 is the 

horizontal distance between two reference points and ∆ is the relative deflection between these 

two points. This relative deflection is given by the difference between the settlement profile and 

the straight lines connecting the settlements at the building extremes and at the inflection points. 

The calculation of Eqs. (1)-(2) and (27)-(28) is performed separately for the zones of the building 

undergoing sagging deflection and for the zones undergoing hogging deflection (Mair et al., 

1996). The 3D field of settlements is described by Gaussian curves and therefore, the number of 

inflection points located along the position of a building can be 0, 1 or 2, depending on its length 

𝑙𝑏𝑢𝑖𝑙𝑑, on the distance from building reference point 𝐴̂ to the origin of coordinates 𝑑𝑜𝑟𝑖𝑔 and on 

the alignment 𝜃 with respect to the tunnel axis.  This entails the following cases: 

a) The building is subjected only to sagging (short buildings located above the tunnel axis; 

no inflection points are located along the building). 

b) The building is subjected only to hogging (buildings located far from the tunnel 

longitudinal axis; no inflection points are located along the building). 

c) The building is subjected to sagging and hogging (building starts in the zone above the 

tunnel (sagging) and reaches the hogging deflection zone; 1 inflection point is located 

along the building).  

d) The central part of the building is subjected to sagging and its laterals to hogging (2 

inflection points are located along the building).  

Therefore, the total length of the building wall 𝑙𝑏𝑢𝑖𝑙𝑑 can be decomposed in three parts: 𝑙ℎ𝑜𝑔1
, 

𝑙ℎ𝑜𝑔2
 and 𝑙𝑠𝑎𝑔 (Figure 10), so that three different deflection ratios can be defined: ∆ℎ𝑜𝑔1

/𝑙ℎ𝑜𝑔1
, 

 ∆ℎ𝑜𝑔2
/𝑙ℎ𝑜𝑔2

 and ∆𝑠𝑎𝑔/𝑙𝑠𝑎𝑔. Determination of 𝜀ℎ in Eqs. (1)-(2) is also performed separately 

along the length of building zones undergoing sagging and hogging deflection.  

The damage on the building wall is then determined depending on the maximum strain 𝜀𝑚𝑎𝑥: 

𝜀𝑚𝑎𝑥 = max [𝜀𝑏𝑟
𝑠𝑎𝑔, 𝜀𝑑𝑟

𝑠𝑎𝑔, 𝜀𝑏𝑟
ℎ𝑜𝑔,1, 𝜀𝑑𝑟

ℎ𝑜𝑔,1, 𝜀𝑏𝑟
ℎ𝑜𝑔,2, 𝜀𝑑𝑟

ℎ𝑜𝑔,2] 
(29) 

 

where 𝜀𝑏𝑟
𝑠𝑎𝑔

, 𝜀𝑏𝑟
ℎ𝑜𝑔,1

 and 𝜀𝑏𝑟
ℎ𝑜𝑔,2

 are the maximum bending strains in sagging and hogging in the 

three zones, obtained using Eq. (27) and 𝜀𝑑𝑟
𝑠𝑎𝑔

, 𝜀𝑑𝑟
ℎ𝑜𝑔,1

 and 𝜀𝑑𝑟
ℎ𝑜𝑔,2

 are the maximum shear strains 

in sagging and hogging, obtained using Eq. (28).  
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𝜀𝑚𝑎𝑥 is further compared with strain thresholds 𝜀𝑙𝑖𝑚 that define different categories of damage 

according to the severity of affection and the typical associated damage, as it can be seen in 

Table 1.  

Table 1. Classification of damage (Burland et al., 1977) 

Category 

of damage 

Normal degree 

of severity 

Typical damage Tensile strain 

𝜺𝒎𝒂𝒙 (%) 

𝜺𝒍𝒊𝒎(%) 

0 Negligible Hair cracks less than 0.1mm 0 – 0.050 0.050 

1 Very slight Fine cracks up to 1mm 0.050 – 0.075 0.075 

2 Slight Cracks easily filled up to 5mm 0.075 – 0.150 0.150 

3 Moderate Cracks from 5 to 15mm 0.150 – 0.300 0.300 

4 Severe Extensive repair works. Cracks from 15 to 25mm > 0.300 - 

5 Very severe Partial or complete rebuilding. Cracks > 25mm - - 

 

 

Figure 10. Equivalent beam model – Description of building geometry and deflection ratios 

4.3 Effect of the influence area of settlements on building damage predictions  

4.3.1 Settlement cut-off  

The influence area of a tunnel construction is defined as the zone where ground subsidence can 

be generated. Therefore, the infrastructures and buildings inside this area may require a damage 

assessment prior to the tunnel construction. This area is defined in some tunnel projects as a band 

of 50m of width at every side of the tunnel axis, but however, other criteria can be used. For 

example, construction projects in the L9 metro tunnel in Barcelona contained damage 

assessments only for buildings likely to be affected by settlements higher than 10mm. This limit 

was reduced to 5mm if the building was of cultural or historical interest. 
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In Gaussian-shaped settlements troughs, the highest settlements are generated above the tunnel 

axis and their magnitude decrease exponentially with the distance to tunnel axis. For this reason, 

buildings can be subjected to high settlements at one side and to negligible at the other. As 

mentioned in Sec. 4.2, the equivalent beam method needs the calculation of deflections, which 

depend on the value of settlements at the locations of inflection points and building extremes. 

Considering the whole length of a building could lead to unreliable estimations of damage due to 

an overestimation of the deflections ∆, usually in the zones of hogging.  

To address this, Mair et al. (1996) proposed to consider the 1mm settlement line to be the limit of 

the zone of influence. This value was selected in base of the accuracy of monitoring instruments 

placed along the tunnel track to control ground movements, which is generally around ±1mm. In 

cases where the building wall overpasses the 1mm area, only the part of the wall subjected to 

settlements |𝑆| ≥1mm is considered. This hypothesis has implications in the calculation of the 

maximum tensile strain value 𝜀𝑚𝑎𝑥 due to the possible variation of the considered lengths 𝑙ℎ𝑜𝑔1
, 

𝑙ℎ𝑜𝑔2
, 𝑙𝑠𝑎𝑔, deflection ratios ∆𝑠𝑎𝑔/𝑙𝑠𝑎𝑔, ∆ℎ𝑜𝑔1

/𝑙ℎ𝑜𝑔1
, ∆ℎ𝑜𝑔2

/𝑙ℎ𝑜𝑔2
 (Figure 11) and wall geometry 

ratios 𝑙𝑠𝑎𝑔/𝐻, 𝑙ℎ𝑜𝑔1
/𝐻 and 𝑙ℎ𝑜𝑔2

/𝐻. Moreover, this change of 𝑙/𝐻 can produce substantial 

variations on the determination of the most critical mode of deflection, i.e. bending or shear 

(Burland, 2008). For example, Netzel (2009) show the effect of the influence area in a long 

structure subjected to subsidence for which the bending strains generated in the beam due to 

deflection were a 75% higher for the long structure, i.e. considering all the range of settlement, 

than for the short one, i.e. considering the 1mm settlement line.   

 
Figure 11. Influence area of settlement troughs and disregarded parts of the building 

However, neglecting a part of the building has also implications on the value of ground 

horizontal strain 𝜀ℎ. Its magnitude decays with the distance to tunnel axis and therefore, 

neglecting the zones where settlements are lower than 1mm will give higher 𝜀ℎ+ mean values. 

This will increase the predicted bending 𝜀𝑏𝑟 and shear 𝜀𝑑𝑟 strains (Eqs. (1)-(2)) and hence, the 

estimated damages in the building will also be higher.  

The effect of considering the 1mm settlement line is analyzed now by means of a comprehensive 

parametric study. For notation convenience, disregarding settlements lower than 1mm will be 

written as cut-off 𝐶1, whereas including all settlements will be written as cuttoff 𝐶0. A wide 
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range of geological conditions, tunnel geometries, building position and building geometry is 

analyzed here (Table 2) to show the differences when considering each criterion. Crossing all the 

variable values gives a total number of 1,404,480 analyzed cases. The most critical value of 𝜀𝑚𝑎𝑥 

along all the tunnel face positions 𝑦𝑠 is calculated using both criteria 𝐶0 and 𝐶1.  

Table 2. Variable values of the parametric analysis showing the influence of the settlement cut-off 

Variable [units] Description Analyzed values 

𝐾 [-] Trough width parameter From 0.2 to 0.7, every 0.05 

𝑉𝐿 [%] Ground volume loss  0.05, 1, 1.5, 2   

𝛿 [-] Longitudinal settlement shift ratio 0.3, 0.5 

𝑧0 [m] Tunnel axis depth 20, 30, 40  

𝑑 [m] Tunnel diameter 6, 8, 10, 12 

𝐿 [m] Building wall length 10, 20, 30, 40 

𝑑𝑜𝑟𝑖𝑔  [m] Distance from origin of coordinates 

to wall reference point 𝐴̂ 

6, 8, 10, 12 

𝐻 [m] Building wall height 3, 6, 9, 12, 15 

𝜃 [deg] Building wall alignment From 90° to -90°, every 10° 

𝑦𝑠 [m] Tunnel face location From 60m to -60m, every 5m 

The results show a 49% of cases where the estimated 𝜀𝑚𝑎𝑥 is the same using both 𝐶0 or 𝐶1, 

whereas 𝜀𝑚𝑎𝑥 is lower using 𝐶1 in a 37% of cases and higher in the resting 14%. However, the 

resulting categories of damage are the same in the 94% of cases, showing that differences of 

𝜀𝑚𝑎𝑥 do not generally give significant variations on the damage category estimation. The other 

6% of cases give higher or lower categories depending on the values of 𝑙𝑏𝑢𝑖𝑙𝑑, 𝑑𝑜𝑟𝑖𝑔𝑖𝑛 and 

𝑙𝑏𝑢𝑖𝑙𝑑/𝐻. Table 3 summarizes the differences in the categories and the most relevant parameters 

of the corresponding buildings. Note that these are the most significant observable parameters of 

the buildings and do not exclude other possible values to produce the same differences on the 

damage category estimation.   

Table 3. Differences of the estimated category of damage according to the considered settlement cut-off 

Difference of estimated 

category of damage 

(𝐶1- 𝐶0)  

Percentage of total 

number of cases 

Relevant characteristics of buildings 

+4  0.001% 𝑙𝑏𝑢𝑖𝑙𝑑/𝐻 = 13; 𝑑𝑜𝑟𝑖𝑔 =10m;  𝑙𝑏𝑢𝑖𝑙𝑑 =40m 

+3 0.032%   𝑙𝑏𝑢𝑖𝑙𝑑/𝐻 = 10,13; 𝑑𝑜𝑟𝑖𝑔 =20m;  𝑙𝑏𝑢𝑖𝑙𝑑 =40m 

+2 0.423%  𝑙𝑏𝑢𝑖𝑙𝑑/𝐻 = 6,10,13; 𝑑𝑜𝑟𝑖𝑔 =20m;  𝑙𝑏𝑢𝑖𝑙𝑑 =40m  

+1 2.668% 𝑙𝑏𝑢𝑖𝑙𝑑/𝐻 = 4,6,10 and 13; 𝑑𝑜𝑟𝑖𝑔 =15m;  𝑙𝑏𝑢𝑖𝑙𝑑 =30 and 40m 

0 94.279% All types 

-1 2.578% 𝑙𝑏𝑢𝑖𝑙𝑑/𝐻 = from 1 to 3; 𝑙𝑏𝑢𝑖𝑙𝑑 =20, 30 and 40m 

-2 0.017% 𝑙𝑏𝑢𝑖𝑙𝑑/𝐻 = from 1 to 3; 𝑙𝑏𝑢𝑖𝑙𝑑 =20 and 30m  
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Cases of more than one category of difference represent only the 0.6% of cases. However, the 

analysis show extreme cases with substantial different estimation of the damage. Cases of +4 

categories of difference using 𝐶1 refer to long one-floor buildings starting at tunnel axis. Note 

also that 𝐶0 could give higher categories in cases of buildings with low 𝑙𝑏𝑢𝑖𝑙𝑑/𝐻 ratios. 

The criteria 𝐶1 of Mair et al. (1986) avoids the underestimation of the ground horizontal strain 𝜀ℎ 

and thus, it would be more appropriate for the majority of cases. In the remainder of the paper, 

the analyses will be performed following this criterion.  

4.4 Considering the contribution of ground horizontal strain in sagging zones 

The nature of strain in sagging zones is compressive and therefore, it can contribute to damage 

reduction. For conservativeness, this contribution is usually neglected and thus the value of 𝜀ℎ− 

is considered to be equal to 0. This section analyzes which is the effect of considering the mean 

value of 𝜀ℎ− along the sagging zone.  

The values of 𝜀𝑚𝑎𝑥 for the cases of the parametric study shown in Sec. 4.3 are recalculated with 

this new assumption and further compared. The results show that considering the mean value of 

𝜀ℎ− (instead of neglecting it) give the same value of 𝜀𝑚𝑎𝑥 in the 78.6% of cases, a lower value in 

a 14.3% and a higher value in the resting 7.1%. This increase of 𝜀𝑚𝑎𝑥 is given in some cases 

where 𝜀𝑑𝑟 is higher than 𝜀𝑏𝑟. This is so, because considering the mean value of 𝜀ℎ− will always 

give lower values of 𝜀𝑏𝑟 (Eq. (1)), but not of 𝜀𝑑𝑟 (Eq. (2)). Indeed, low values of 𝜀𝑑𝑚𝑎𝑥 in 

sagging (named 𝜀𝑑𝑚𝑎𝑥
𝑠𝑎𝑔

) and high mean values of 𝜀ℎ− can lead in higher values of 𝜀𝑑𝑟 in sagging 

(named 𝜀𝑑𝑟
𝑠𝑎𝑔

), with respect to the case of neglecting 𝜀ℎ−. This is shown in Figure 12, where the 

difference of 𝜀𝑑𝑟
𝑠𝑎𝑔

 considering one or the other criteria is depicted. Negative differences of 𝜀𝑑𝑟
𝑠𝑎𝑔

 

indicate that 𝜀𝑑𝑟
𝑠𝑎𝑔

 is higher in the case of neglecting the contribution of 𝜀ℎ− (i.e. the same 

behavior as in 𝜀𝑏𝑟). Contrarily, positive differences indicate that 𝜀𝑑𝑟
𝑠𝑎𝑔

 is higher in the case of 

considering the contribution of 𝜀ℎ−. This can occur for example in long buildings subjected to 

very sharp profiles for which the generated ground strain 𝜀ℎ− is high and 𝜀𝑑𝑚𝑎𝑥
𝑠𝑎𝑔

 is low. Note that 

the plot in Figure 12 does not refer to any particular ground and tunnel parameters, but to a 

general range of values of 𝜀𝑑𝑚𝑎𝑥
𝑠𝑎𝑔

 and 𝜀ℎ− introduced in Eq. (2). 

The variations of 𝜀𝑚𝑎𝑥 considering one or the other criteria keep however the estimated category 

of damage in the 97.63% of the total cases. Again, the most significant characteristics of 

buildings that give differences in the estimated categories of damage are described in Table 4.  

Table 4. Difference of estimated category of damage according the value of 𝜀ℎ in sagging zones 

Difference of estimated 

category of damage 

(𝜀ℎ− = mean) - (𝜀ℎ− = 0)  

Percentage of 

total number of 

cases 

Relevant characteristics of buildings 

+2 0.004% 𝑙𝑏𝑢𝑖𝑙𝑑/𝐻 = 0.7, 1; 𝑑𝑜𝑟𝑖𝑔 =0m, -10m;  𝑙𝑏𝑢𝑖𝑙𝑑 =10m 

+1 0.065%   𝑙𝑏𝑢𝑖𝑙𝑑/𝐻 = 1; 𝑑𝑜𝑟𝑖𝑔 =-10m, 0m, 5m;  𝑙𝑏𝑢𝑖𝑙𝑑 =10m  

0 97.631%  All types  

-1 1.948%   𝑙𝑏𝑢𝑖𝑙𝑑/𝐻 = 1 to 3; 𝑑𝑜𝑟𝑖𝑔 =-10m, 0m, 5m;  𝑙𝑏𝑢𝑖𝑙𝑑 =20m, 30m 

-2 0.352%   𝑙𝑏𝑢𝑖𝑙𝑑/𝐻 = 1 to 3 ; 𝑑𝑜𝑟𝑖𝑔 =-10m, 0m, 5m;  𝑙𝑏𝑢𝑖𝑙𝑑 =20m 
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Note that neglecting the contribution of the ground strain in sagging will be generally 

conservative, although in some cases it could lead to an underestimation of the damage.  

 
Figure 12. Difference of predicted 𝜀𝑑𝑟

𝑠𝑎𝑔
 when the contribution of 𝜀ℎ− is considered or neglected. 

4.5 Influence of the tunnel face location 𝑦𝑠  and alignment 𝜃 on 𝜀𝑚𝑎𝑥 

The novel equation proposed in this paper (Eq. (19)) in combination with the Gaussian 

approximations of the settlement trough and the equivalent beam model allow the determination 

of 𝜀𝑚𝑎𝑥 in walls located in whichever position with respect to the tunnel axis. The present 

section analyzes particularly the influence of the alignment 𝜃 and the tunnel face location 𝑦𝑠 in 

the assessment of 𝜀𝑚𝑎𝑥. 

Figure 13a) shows an example of the evolution of 𝜀𝑚𝑎𝑥 when the tunnel face advances to 𝑦 →
−∞ for different wall alignments 𝜃. The ground parameters and the tunnel geometry are the 

same as in the example shown in Sec. 3. The building length is 𝐿=30m and the height is 𝐻=3m. 

The building corner is located in the origin of coordinates, so that 𝑑𝑜𝑟𝑖𝑔 =0m. The material ratio 

𝐸/𝐺 is 2.6, as it is usually assumed for masonry buildings (Burland, 2008).  

It can be seen that at 𝜃=+90°, the value of 𝜀𝑚𝑎𝑥 starts to increase for earlier tunnel face locations 

(approx. at 𝑦𝑠 ≈55m). The maximum value of 𝜀𝑚𝑎𝑥 is reached when 𝑦𝑠 is in the range of 

[+25m,+50m] and then it decreases again till zero. This behavior is explained by the fact that 

after the tunnel underpass, the longitudinal settlement is fully developed and hence the curvature 

is zero, so that both Δ and 𝜀ℎ become zero. Obviously, the plot of 𝜀𝑚𝑎𝑥 for 𝜃=-90° at Figure 13b) 

is identical with a shift in the 𝑦− direction.  

For 𝜃=+60°, +30° and 0°, the maximum value of 𝜀𝑚𝑎𝑥 is given after the tunnel face underpass 

beneath the building. However, note that 𝜀𝑚𝑎𝑥 and the associated categories of damage will be 

substantially different for the three alignments: category 2 for 𝜃=+60°, category 3 for 𝜃=+30° 
and category 4 for 𝜃=0°. For 𝜃=-60° and 𝜃=-30°, 𝜀𝑚𝑎𝑥 tends to the same values as for the 

corresponding positive alignments. However, the peak values that are achieved during the tunnel 
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face underpass are different, which make pictures non identical. This variation is more 

significant in the case of 𝜃=-60°: the peak value of 𝜀𝑚𝑎𝑥 is given at earlier 𝑦𝑠 than for 𝜃=+60°.  

 

 
Figure 13. Evolution of 𝜀𝑚𝑎𝑥 for an advancing tunnel face from 𝑦𝑠 =70m to 𝑦𝑠 = −70m for a) 𝜃 =+90°, 
+60°, +30°, 0° and b) 𝜃 =-90°, -60°, -30°, 0° (𝐿 =30m, 𝑑𝑜𝑟𝑖𝑔 =0m, 𝐻 =3m, 𝐸/𝐺 =2.6, 𝑧0 =20m, 

𝑑 =12m, 𝐾 =0.3, 𝑉𝐿 =1%, 𝛿 =0.3).  

It is also of interest to observe the variation of 𝜀𝑚𝑎𝑥 with 𝜃 for fixed tunnel face locations 𝑦𝑠. For 

this purpose, the plot of 𝜀𝑚𝑎𝑥 for a range of 𝜃 between [+90°,-90°] and 𝑦𝑠=+30, +10, 0 and -30m 

is depicted in dashed lines in Figure 14. It can be seen that the most critical alignment is 𝜃 =90° 
when tunnel face is approaching to the building (𝑦𝑠=+30) and 𝜃 =0° for the rest of 𝑦𝑠.  
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The envelope of the maximum value of 𝜀𝑚𝑎𝑥 for each position of tunnel face 𝑦𝑠 is depicted in the 

same figure with a solid line. As it could be expected, the peak value of 𝜀𝑚𝑎𝑥 is given at 𝜃 =0°. 
This agrees with the alignment for which the tensile ground horizontal strain 𝜀ℎ+ was maximal 

(shown in Sec. 3). Moreover, it is evident that the maximum deflections Δ will also be given 

along 𝜃 =0°. The interesting point here is to see the notably reduction of damage that can be 

given for 𝜃 ≠0°. Minimum damages are achieved for wall alignments close to 𝜃 ≈+65°, which 

matches with the direction of minimum 𝜀ℎ+ that was shown in Sec. 3.2. The reduction of 𝜀𝑚𝑎𝑥 in 

this case is about the 70%, which implies a difference of 2 categories of damage with respect to 

the transverse case.  

Note that all the presented results refer to a particular example that was chosen for illustrations 

purposes. The value of 𝜃 plays here a key role in the assessment of damage but however, the 

influence of 𝜃 may not be so critical for other combination of ground parameters, building 

locations and tunnel and building geometries. It is also important to note that the present novel 

formulation does not conflict with the typical analyses that assume the building located 

transverse to the tunnel axis. As it has been shown, this represents the worst-case scenario but 

however, significant reductions of estimated damage may be achieved if the real wall alignment 

𝜃 is considered, thus avoiding possible overestimation of predicted damages.  

 
Figure 14. Envelope of 𝜀𝑚𝑎𝑥 for an advancing tunnel face from 𝜃 =90° to -90° for 𝑦𝑠 =+30m, +10m, 0m 

and -30m (𝐿 =30m, 𝑑𝑜𝑟𝑖𝑔 =0m, 𝐻 =3m, 𝐸/𝐺 =2.6, 𝑧0 =20m, 𝑑 =12m, 𝐾 =0.3, 𝑉𝐿 =1%, 𝛿 =0.3). 

The consideration of the wall alignment 𝜃 has practical implications in tunneling design, for 

example in the choice of the tunnel depth. For this particular example, if the damage assessment 

is done for 𝜃 =0°, the minimum tunnel depth 𝑧0 for which 𝜀𝑚𝑎𝑥 does not cross the threshold of 

category 0 of damage (𝜀𝑙𝑖𝑚 =0.050%) is 50m. On the contrary, if the wall alignment is for 

example 𝜃 =60°, the minimum depth that fulfills damage requirements is 30m (consider that 

neither the diameter 𝑑 nor the expected volume loss 𝑉𝐿 can be decreased). The difference of 20m 

of depth may have important economical implications, since construction costs of tunnels 

increase with the depth.  Obviously, other less drastic measures could be implemented to avoid 
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this large increase of depth, such as the construction of retaining walls or the stabilization of 

ground with grout injection. Nevertheless, their effect cannot be taken into account with the 

presented methodology.   

 
Figure 15. Evolution of 𝜀𝑚𝑎𝑥 for an advancing tunnel face from 𝜃 =90° to -90° at different 𝑧0 for the 

most critical tunnel face location 𝑦𝑠 (𝐿 =30m, 𝑑𝑜𝑟𝑖𝑔 =0m, 𝐻 =3m, 𝐸/𝐺 =2.6, 𝑑 =12m, 𝐾 =0.3, 

𝑉𝐿 =1%, 𝛿 =0.3).  

All the proposed models in Sections 2, 3 and 4 can be used in combination with reliability 

techniques to take into account the uncertainty regarding the settlement trough models and the 

building response, as shown in Camós, Špačková et al. (2014).  

5. Non-linear parametric regression model for direct estimation of 𝜺𝒎𝒂𝒙 

The process of determining 𝜀𝑚𝑎𝑥 comprises several steps including (1) the determination of the 

settlement trough according to tunnel geometry and ground conditions, (2) the determination of 

the influence area where |𝑆| ≥1mm, (3) the delimitation of zones subjected to sagging and 

hogging deflection, (4) the determination of the profile of 𝜀ℎ and (5) the calculation of deflection 

ratios ∆/𝐿. No expression has been found in the literature to directly estimate the value of 𝜀𝑚𝑎𝑥 

for given input parameters 𝑉𝐿, 𝐾, 𝑧0, 𝑑, 𝐿, 𝐻 and 𝑑𝑜𝑟𝑖𝑔. For this reason, the results generated in 

the parametric analysis of Sec. 4 are used to adjust a non-linear parametric regression model 

(named 𝜀𝑚𝑎𝑥,𝑓𝑖𝑡) that fits the output values of 𝜀𝑚𝑎𝑥 for every combination of ground, tunnel and 

building wall. The proposed model has been inspired in the equations for describing the 

Gaussian settlement profile in the transverse direction with respect to the tunnel axis and applies 

only for the case 𝜃 = 0°. Therefore, only the value of 𝜀𝑚𝑎𝑥 at 𝑦𝑠 = −∞ (i.e. the most critical) is 

considered: 

 

𝜀𝑚𝑎𝑥,𝑓𝑖𝑡 = 𝐴 · 𝑒𝑥𝑝(𝐵) 

 (30) 
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where,  

 

𝐴 =
𝑉𝐿 · 𝑑2

𝐾2 · 𝑧0
2 · 𝐻𝛼1 

 
(31) 

And, 

𝐵 = 𝛼2 + 𝛼3

𝐿

𝐻
+ 𝛼4𝑑𝑜𝑟𝑖𝑔 + 𝛼5 (

𝐿

𝐻
)
2

+ 𝛼6𝑑𝑜𝑟𝑖𝑔

𝐿

𝐻
+ 𝛼7𝑑𝑜𝑟𝑖𝑔

2 + 𝛼8𝐿
2𝑑𝑜𝑟𝑖𝑔 + 𝛼9𝑑𝑜𝑟𝑖𝑔𝐿 

+𝛼10𝑑𝑜𝑟𝑖𝑔
2 𝐿 + 𝛼11𝐾𝑧0 + 𝛼12(𝐾𝑧0)

2 + 𝛼13𝐾𝑧0𝑑𝑜𝑟𝑖𝑔 + 𝛼14𝐻 

 

(32) 

where 𝐿, 𝐻, 𝑧0, 𝑑 and 𝑑𝑜𝑟𝑖𝑔 are given in [m], 𝑉𝐿 is introduced per unit value and 𝐾 is non-

dimensional. The output value of 𝜀𝑚𝑎𝑥,𝑓𝑖𝑡 is directly given in [%]. The regression coefficients 𝛼𝑖 

obtained by least squares estimation (Smyth, 2006) are summarized in Table 5 for cases of 

𝑑𝑜𝑟𝑖𝑔 ≥0 and 𝑑𝑜𝑟𝑖𝑔 <0. The purpose of this separation is the improvement the adjustment. The 

range of variable values for which the model is applicable is: 𝑉𝐿 from 0.5% to 2%, 𝐾 from 0.25 

to 0.7, 𝑧0 from 20m to 40m, 𝑑 from 8m to 12m, 𝐿 from 10m to 40m, 𝐻 from 3m to 15m and 

𝑑𝑜𝑟𝑖𝑔 from -40m to 20m.  

Table 5. Regression coefficients for the determination of 𝜀𝑚𝑎𝑥 with Eq. (30)-(32) (𝜃 = 0°). 
 𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 

𝑑𝑜𝑟𝑖𝑔 ≥ 0 0.75188       -0.65019       0.24838      -0.049307      -0.011983     -0.0011347     -0.0065007     

𝑑𝑜𝑟𝑖𝑔 < 0 0.95388       -0.17492       0.20823      -0.020049      -0.0078135     0.00094454     -0.0031526      

 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12 𝛼13 𝛼14 

𝑑𝑜𝑟𝑖𝑔 ≥ 0 -3.0141·10-6     -0.0013133     4.0938·10-5     0.27747      -0.017491     0.016701      -0.052683      

𝑑𝑜𝑟𝑖𝑔 < 0 6.1548·10-5       -0.002026     6.7886·10-5       0.061016      -0.0073386     -0.0037471     -0.0796      

 

The case of 𝑑𝑜𝑟𝑖𝑔 ≥0 has been adjusted with 28800 observations and shows a coefficient of 

determination 𝑅2=0.91. The case of 𝑑𝑜𝑟𝑖𝑔 <0 is adjusted with 38400 observations with 𝑅2=0.92. 

The predicted values of 𝜀𝑚𝑎𝑥,𝑓𝑖𝑡 match in category of damage in the 81% of cases with the 

categories given by the exact results of 𝜀𝑚𝑎𝑥. Differences of 1 category of damage are given in 

the 16% of cases and differences of 2 categories or more in about the 3%.  

In general terms, the proposed equation represents well the variation of 𝜀𝑚𝑎𝑥 with the input 

parameters in the majority of cases. However, the value of 𝜀𝑚𝑎𝑥,𝑓𝑖𝑡 may be overestimated if 𝜀𝑚𝑎𝑥 

is expected to be very low. This can occur for example with walls positioned far from the tunnel 

axis (i.e. with high positive values of 𝑑𝑜𝑟𝑖𝑔). For this reason, the use of this expression should be 

limited to cases of preliminary assessments of damage.  

6. Conclusion 

The paper proposes a novel equation for the determination of the ground horizontal strain along 

an alignment 𝜃 with respect to the tunnel axis. This equation comes from the application of the 

strain tensor theory to the classical Gaussian models that describe the settlement troughs 

generated by tunnel construction. The proposed methodology allows the modeling of the effect 
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of the tunnel face advance on the settlement profiles, as well as applying the equivalent beam 

method for whichever position of the building walls in 3D.  

Building damage predictions usually assume that walls are located transverse to the tunnel axis 

(𝜃 =0°). This represents the worst-case scenario and a conservative practice. The reason is 

because ground horizontal strain and deflections are maximal along this alignment. The novel 

formulation allows considering the real building wall alignment 𝜃 and hence, the possibility of 

reducing the estimated damage on buildings, which can be significant for some cases. An 

example was shown where the reduction of 𝜀𝑚𝑎𝑥 was about the 70%.   

The presented formulation allows also determining the position of the tunnel face 𝑦𝑠 along the 

tunnel track for which damages in walls are maximal. In cases of 𝜃 =0°, the most critical 

position 𝑦𝑠 is always at 𝑦𝑠 → −∞, i.e. after the tunnel face underpass beneath the building. 

However, in cases where 𝜃 ≠0°, the value of 𝑦𝑠 that maximizes 𝜀𝑚𝑎𝑥 can be given during the 

tunnel approach and hence, an iterative analysis should be performed to determine it. A general 

procedure is developed to calculate the most critical tunnel face location. For example, in case of 

longitudinal buildings with respect to the tunnel axis, the most critical situation tends to be when 

the tunnel face reaches the building corner. 

Furthermore, a comprehensive parametric analysis has been performed for a wide range of 

geological conditions, walls and tunnel geometries in order to review relevant aspects of building 

damage predictions in 3D. The importance of delimiting the influence area of settlements has 

been shown. Overestimation of deflections ∆ and underestimation of tensile ground strain 𝜀ℎ+ 

may occur in case of long buildings subjected to a high variation of differential settlements along 

its length. To avoid this, the part of the buildings subjected to settlements lower than 1mm 

should be disregarded.  

The data generated in the parametric analysis is used to create a non-linear regression model for 

making preliminary damage assessments. The model allows direct estimation of the maximum 

tensile strain 𝜀𝑚𝑎𝑥 in building walls aligned 𝜃 =0° for given input values of geological 

conditions and wall and tunnel geometries. The presented model shows a good fit of the data and 

foresees the category of damage correctly in more than 80% of the cases.  
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ANNEX 

A. Development of Eq. (21) 

Application of Eq. (19) requires the calculation of the term  
𝜕𝑈𝑥

𝜕𝑦
, given in Eq. (21). It has been 

assumed that: 

𝜕𝑈𝑥

𝜕𝑦
=

𝜕 (
𝑥

𝑧0−𝑧
· 𝑆)

𝜕𝑦
=

𝜕 (
𝑥

𝑧0−𝑧
· 𝑆)

𝜕𝑦
=

𝑥

𝑧0 − 𝑧
·
𝜕𝑆

𝜕𝑦
 

 

(A.1) 

where: 

𝜕𝑆

𝜕𝑦
= −𝑆𝑚𝑎𝑥 · 𝑒𝑥𝑝 [−

𝑥2

2 · 𝐾𝑥
2 · (𝑧0 − 𝑧)2

] · 

·
𝜕

𝜕𝑦
([Φ(

𝑦 − (𝑦𝑠 + 𝑦0)

𝐾𝑦 · (𝑧0 − 𝑧)
) − Φ(

𝑦 − 𝑦𝑓

𝐾𝑦 · (𝑧0 − 𝑧)
)]) 

(A.2) 

Focusing on the derivatives: 

𝜕

𝜕𝑦
([Φ(

𝑦 − (𝑦𝑠 + 𝑦0)

𝐾𝑦 · (𝑧0 − 𝑧)
) − Φ(

𝑦 − 𝑦𝑓

𝐾𝑦 · (𝑧0 − 𝑧)
)]) 

=
𝜕 [Φ(

𝑦−(𝑦𝑠+𝑦0)

𝐾𝑦·(𝑧0−𝑧)
)] 

𝜕𝑦
−

𝜕 [Φ(
𝑦−𝑦𝑓

𝐾𝑦·(𝑧0−𝑧)
)] 

𝜕𝑦
 

(A.3) 

Renaming these two derivatives as C and D: 

𝐶 =
𝜕 [Φ(

𝑦−(𝑦𝑠+𝑦0)

𝐾𝑦·(𝑧0−𝑧)
)] 

𝜕𝑦
 

(A.4) 

𝐷 =
𝜕 [Φ(

𝑦−𝑦𝑓

𝐾𝑦·(𝑧0−𝑧)
)] 

𝜕𝑦
 

(A.5) 

Φ corresponds to the standard normal cumulative distribution function: 

Φ = ∫
1

√2𝜋
𝑒−

𝑚2

2 𝑑𝑚
𝑓(𝑦)

−∞

 
(A.6) 

where 𝑚 is an auxiliary integration variable.  

The field of ground displacements (and hence, the strain tensor 𝜺) at a particular depth 𝑧 is given 

for each combination of ground conditions and tunnel geometry values (𝐾𝑥, 𝐾𝑦, 𝑦0, 𝑧0, 𝑉𝐿, 𝐷, 𝑦𝑠 

and 𝑦𝑓).  Therefore, the derivatives C and D in Eq. (A.3) will depend only on the variable 𝑦. The 

functions 𝑓𝐶(𝑦) and 𝑓𝐷(𝑦) at 𝐶 and 𝐷 are: 
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𝑓𝐶(𝑦) =
𝑦 − (𝑦𝑠 + 𝑦0)

𝐾𝑦 · (𝑧0 − 𝑧)
 

(A.7) 

 

𝑓𝐷(𝑦) =
𝑦 − 𝑦𝑓

𝐾𝑦 · (𝑧0 − 𝑧)
 

 

(A.8) 

In this case, the Leibniz integral rule applies (Abramowitz et al., 1972): 

𝑑

𝑑𝑦
(∫ 𝑔(𝑚)𝑑𝑚

𝑓2(𝑦)

𝑓1(𝑦)

) = 𝑔[𝑓2(𝑦)] · 𝑓2
′(𝑦) − 𝑔[𝑓1(𝑦)] · 𝑓1

′(𝑦) 

 

(A.9) 

where 𝑓1, 𝑓2 are 𝑔 are generic functions that depend on 𝑦 and 𝑓1
′ and 𝑓2

′ are the correspondent 

derivatives respect to 𝑦. Since the lower bound of both integrals in 𝐶 and 𝐷 is −∞, 𝑓1
′ = 0 and 

Eq. (A.9) results in: 

𝑑

𝑑𝑦
(∫ 𝑔(𝑚)𝑑𝑚

𝑓2(𝑦)

−∞

) = 𝑔[𝑓2(𝑦)] · 𝑓2
′(𝑦) 

 

(A.10) 

So that, if 𝑓2 ≡ 𝑓𝐶(𝑦), 

𝐶 =
𝑑 [Φ(

𝑦−(𝑦𝑠+𝑦0)

𝐾𝑦·(𝑧0−𝑧)
)] 

𝑑𝑦
=

1

√2𝜋
𝑒−

(
𝑦−(𝑦𝑠+𝑦0)

𝐾𝑦·(𝑧0−𝑧)
)

2

2 · (
1

𝐾𝑦 · (𝑧0 − 𝑧)
) 

 

(A.11) 

And if 𝑓2 ≡ 𝑓𝐷(𝑦), 

𝐷 =
𝑑 [Φ(

𝑦−𝑦𝑓

𝐾𝑦·(𝑧0−𝑧)
)] 

𝑑𝑦
=

1

√2𝜋
𝑒−

(
𝑦−𝑦𝑓

𝐾𝑦·(𝑧0−𝑧)
)

2

2 · (
1

𝐾𝑦 · (𝑧0 − 𝑧)
) 

 

(A.12) 

Then, the component of the strain tensor is finally obtained: 

 

𝜕𝑈𝑥

𝜕𝑦
=

𝑥

𝑧0 − 𝑧
· (−𝑆𝑚𝑎𝑥) · (𝑒𝑥𝑝 (−

𝑥2

2 · 𝐾𝑥
2 · (𝑧0 − 𝑧)2

)) · (𝐶 − 𝐷) 

which is equivalent to Eq. (21). 

 

(A.13) 

B. Notation 

 

𝑎  Height of the equivalent beam fiber where strains are calculated  

𝐶0   Cutt-off 0 (settlements lower than 1mm are included) 
𝐶1   Cutt-off 1 (settlements lower than 1mm are disregarded) 
𝑑   Tunnel diameter 
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𝑑𝑎𝑥𝑖𝑠   Distance from tunnel longitudinal axis to a parallel building wall  

𝑑𝑜𝑟𝑖𝑔   Distance from origin of coordinates to building 

𝐸/𝐺   Material elastic / shear modulus ratio  
𝐻   Building height 

𝐼   Inertia per unit length of the equivalent beam 

𝑖𝑥 (or 𝑖) Distance from origin to inflection point in the transverse direction to tunnel axis 
𝑖𝑦   Distance from origin to inflection point in the longitudinal direction to tunnel axis 
𝐾𝑥 (or 𝐾) Settlement profile shape parameter in the transverse direction to tunnel axis 
𝐾𝑦   Settlement profile shape parameter in the longitudinal direction to tunnel axis 
𝑙ℎ𝑜𝑔1

   Building length in hogging zone 1 
𝑙ℎ𝑜𝑔2

   Building length in hogging zone 2 

𝑙𝑏𝑢𝑖𝑙𝑑   Building length 
𝑙  Horizontal distance between two reference points 

𝑙𝑠𝑎𝑔   Building length in sagging zone  

𝑟  Horizontal distance between the 𝑧-axis and whichever point  
𝑟𝑃̂  Horizontal distance between the 𝑧-axis and whichever ground point 𝑃̂  
𝑆   Settlement 
𝑆𝑚𝑎𝑥   Maximal settlement 

𝑆𝑝𝑎𝑟   Settlement for buildings walls parallel to tunnel axis 

𝑡  Position of neutral axis in the equivalent beam 

𝑡ℎ𝑜𝑔  Position of neutral axis in the hogging zone of the equivalent beam 

𝑡𝑠𝑎𝑔  Position of neutral axis in the sagging zone of the equivalent beam 

𝑈𝑥  Ground horizontal movements in the transverse direction (to tunnel axis) 

𝑈𝑦  Ground horizontal movements in the longitudinal direction (to tunnel axis) 

𝑈𝑦,𝑝𝑎𝑟   Ground horizontal movements for buildings walls parallel to tunnel axis 

𝑉𝐿   Ground volume loss 

𝑥   𝑥-coordinate 
𝑥̂   𝑥̂-coordinate 
𝑦   𝑦-coordinate 
𝑦0   Horizontal shift of longitudinal settlement profile 
𝑦𝑓   Distance from origin of coordinates to tunnel end 
𝑦𝑠   Distance from origin of coordinates to tunnel face 

𝑧   𝑧-coordinate 
𝑧0   Depth of tunnel axis  
𝑧𝑃̂  Depth of whichever ground point 𝑃̂  
Δ  Relative deflection between two reference points 

Δ/𝑙  Deflection ratio 

∆𝑠𝑎𝑔/𝑙𝑠𝑎𝑔  Deflection ratio in sagging zone 

∆ℎ𝑜𝑔1
/𝑙ℎ𝑜𝑔1

  Deflection ratio in hogging zone 1 

∆ℎ𝑜𝑔2
/𝑙ℎ𝑜𝑔2

  Deflection ratio in hogging zone 2 

𝛿   Ratio between surface settlement above tunnel face and maximal settlement at 

infinite distance of the face 
𝜀𝑏𝑚𝑎𝑥   Maximum tensile strain in the equivalent beam due to bending 

𝜀𝑏𝑟
ℎ𝑜𝑔,1

   Maximum bending strain in hogging zone 1 
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𝜀𝑏𝑟
ℎ𝑜𝑔,2

   Maximum bending strain in hogging zone 2 

𝜀𝑏𝑟
𝑠𝑎𝑔

   Maximum bending strain in sagging zone  
𝜀𝑏𝑟   Resultant extreme fiber strain in bending, accounting for ground strain 
𝜀𝑑𝑚𝑎𝑥   Maximum tensile strain in the equivalent beam due to shear 

𝜀𝑑𝑚𝑎𝑥
𝑠𝑎𝑔

   Maximum tensile strain in the equivalent beam due to shear in sagging zone 

𝜀𝑑𝑟
ℎ𝑜𝑔,1

   Maximum shear strain in hogging zone 1 

𝜀𝑑𝑟
ℎ𝑜𝑔,2

   Maximum shear strain in hogging zone 2 

𝜀𝑑𝑟
𝑠𝑎𝑔

   Maximum shear strain in sagging zone 
𝜀𝑑𝑟   Resultant extreme fiber strain in shear, accounting for ground strain 
𝜀ℎ

𝑠𝑎𝑔
   Resultant horizontal ground strain at surface in sagging zone 

𝜀ℎ   Resultant horizontal ground strain  
𝜀ℎ+   Tensile horizontal ground strain  
𝜀ℎ−   Compressive horizontal ground strain  
𝜀ℎ,𝑝𝑎𝑟  Resultant horizontal ground strain for buildings walls parallel to tunnel axis 

𝜀𝑙𝑖𝑚   Limit strain value for damage classification  

𝜀𝑚𝑎𝑥   Maximum strain in the equivalent beam  

𝜀𝑚𝑎𝑥,𝑓𝑖𝑡  Adjusted maximum strain in the equivalent beam (non-linear regression model) 

𝜀ℎ,𝑥𝑥   Component 𝑥𝑥 of ground strain infinitesimal tensor 

𝜀ℎ̂,𝑥𝑥̂   Component 𝑥𝑥̂ of ground strain infinitesimal tensor 

𝜀ℎ̂,𝑥𝑥,̂ 𝑝𝑎𝑟  Component 𝑥𝑥̂ of ground strain infinitesimal tensor for buildings walls parallel to 

tunnel axis 

𝜀ℎ,𝑥𝑦   Component 𝑥𝑦 of ground strain infinitesimal tensor 

𝜀ℎ,𝑦𝑦   Component 𝑦𝑦 of ground strain infinitesimal tensor 

𝜃   Building alignment respect to 𝑥 axis 
𝜃𝑃̂  Alignment of whichever ground point 𝑃̂  
Φ(·)   Cumulative standard normal distribution function 
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