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Abstract

Mutations at protein-protein recognition sites alter fiigdstrength by
altering the chemical nature of the interacting surfaces.pvésent a simple
surface energy model, parameterised with empiddsG values, yielding
mean energies of -48 cal.mdlA 2 for interactions between hydrophobic
surfaces, -51 to -80 cal.mdl.A~2 for surfaces of complementary charge,
and 66 to 83 cal.moft.A~2 for electrostatically repelling surfaces, relative
to the aqueous phase. This places the mean energy of hydhioghoface
burial at -24 cal.moi'.A~2. Despite neglecting configurational entropy and
intramolecular changes, the model correlates with engibimding free en-
ergies of a functionally diverse set of rigid-body interans (r=0.66). When
used to rerank docking poses, it can place near-nativei@oduin the top 10
for 37% of the complexes evaluated, and 82% in the top 100.nié¢thod
shows that hydrophobic burial is the driving force for pimotassociation,
accounting for 50-95% of the cohesive energy. The modelddabie open-
source fronhttp://life.bsc.es/pid/web/surface_energy/and via

the CCharpPPl web senettp://life.bsc.es/pid/ccharppi/.

1 Introduction

When proteins interact, part of their exteriors are tramstefrom an aqueous en-
vironment to the microenvironment created by each othefacses. When the
free energy of this process is positive, interfacial tengcevents aggregation at

biological concentrations. When the energy is sufficiendgative, proteins can
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bind, as in recognition events evolved to perform and regutéological func-
tions. Many factors drive the association of proteins, andeustanding them
is crucial for many efforts, including but not limited to tlestimation of bind-
ing affinity™ determining the response of biological systems to mutdfo
modulating binding selectivi§®323 designing new interactior®é7 and deter-
mining the structure of macromolecular assemblies fromsthectures of their
constituent$€3 Improved modelling of interaction energy would facilitatew
investigation in the engineering of living systems and tielg of evolutior?2
Since the beginning of the 19th century, it has been knowhpitugerties of
macroscopic interfaces involving liquids can be explaimeigrms of surface ten-
sion - the cohesive forces that spans the bulk of the liquad, the short-range
forces at the interfac® By considering the forces interacting across the inter-
face as additive, relationships between parameters of tgunigl-vapour, liquid-
liquid, solid-liquid and even solid-solid interfaces candeduced, such as contact
angles, meniscus heights, interfacial tensions, sprgachefficients, and heats
and free energies of adsorption and immerSih®? Interfacial tension is equiv-
alent to the excess energy per unit area relative to the thékpalance of which
can be determined empirically from such measurements. drptipular three-
component model of van 053¢ the tension is composed of a dispersive com-
ponent, and interactions between a Lewis acid componera &wegvis base com-
ponent which, for instance, encapsulates the average effali orientations and
separations of hydrogen bonds or salt bridges. The nanmsicierfaces which

characterise protein-protein interactions, adducts éatimy interactions between



neutral atoms and electron donors and acceptors (polarterded groups), may
be considered as being composed of different types of atest Each interface
type can be defined by different types of surfaces in contalich contribute

additively to the overall binding affinity in proportion tbeir area. While each
complex differs in atomic detail, the interface types arenowmn between com-
plexes, allowing the inference of interface energies froaqmeeimental data via a

system of linear equations.

Outline: In this work, we present a simple surface energy model based-
croscopic interpretations of the van Oss model. The avevagsquaréingstrom
free energy contribution of each interface type is caleddtom empirical muta-
tion data, and corresponds to the energy of cohesion of theuwace types minus
their energy of solvation. Protein surfaces are partitibaecording to four atom
types, corresponding to the terms in the approach of van B4®(d donors,
acceptors, donor and acceptors, and neutral). In turnatlows the interface to
be partitioned according to the ten types of interaction¢ha occur between the
four surface types. Energies for each interaction typergegred by comparing
changes in binding free energy upon mutation to changegareiction type areas
upon mutation using an approach recently developed forrinfg contact ener-
gies®? The values are compared with estimates of the energy assdeiéth the
burial of hydrophobic surface area from simulatfril/water transfef3%7 and
small mutational studié®¥? as well as binding efficiency values derived from

protein affinity datasef3/72 and alanine-scanning experimefis? Further, we



use the approach to estimate the contribution made by aueiffurial to proteins
of known binding affinity, as well as evaluate the ability bétmodel to rerank

docked poses derived from unbound protein-protein docking

2 Material and Methods

2.1 Overview

With crystal structures of protein complexes for which expental mutation data
is availabléZ® the protein-protein interface is calculated using Vonateomposi-
tion?677 and the total surface area of each surface type is deterniledmutant
form is modelled and the surface type composition of the ntutacalculated.
The wild-type and mutant surfaces are used to define an estpreelating the
change in surface type compositionsAG, the change in binding free energy
upon mutation, where each surface types contribution tdibghenergy is pro-
portional to its area. Such as equation can be constructeshfih mutant in our
training set, and interfacial tensions are found that méenthe agreement be-
tween experimental and theoretical energies. The prosas=picted in Figurgl 1,

with further details given below.

2.2 Data set of changes in binding affinity upon mutation

Mutation data were taken from the SKEMPI datab&sa which 3047 exper-

imental AAG values are available, in addition to their correspondintglaype



crystal structures. Values corresponding to unusual @xgeatal techniques were
removed (values for the jel42-FAB/HPr complex, 2JEL, anplaipnt affinities for
the factor Vlla/soluble tissue factor complex, 1DAN). Thista set was filtered
so as to only include mutants with mutations at the interfagéon; we classified
mutated residues according to their location using the atett Levy’® and re-
moved data for mutants containing a mutation in the protei@arior or support
region of the interface, as well as mutants with more thaeetlmutations at the
rim or core of the interface. We also removed mutants withations to or from
proline, due to the structural changes and energetic sféegociated witkp and
 angle restriction. This left us with 1949 mutations as desct previousl{?!
To model the mutant protein from the wild-type structureleschains were re-
placed and optimised using Fol&% Finally, we additionally filtered to remove
mutants with clashes upon mutatias4.0 kcal.mot ! in the FoldX van der Waals
repulsion term), as we aim only to model the dispersion carepbof the van der
Waals energy, leaving 189G values for training the model. These data are

shown in Table S1.

2.3 Interface type calculation

Atoms were classified by an atom typing scheme similar toukatl by Jiang et
al’® as either hydrogen bond acceptors (carbonyl oxygens ingpiide backbone
and asparagine and glutamine side-chains, carboxyl o%yigaghe side-chains of
aspartic acid and glutamic acid, and iheitrogen of histidine), hydrogen bond

donors (amide nitrogens in the peptide backbone, the inditiegen in trypto-
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phan, amine nitrogens in asparagine, glutamine and lygiae,nitrogen of histi-
dine and the guanidinium nitrogens of arginine), hydrogemdbdonor and accep-
tors (alcohol oxygens of tyrosine, threonine and serind)reautral (all remaining
atoms). Interactions between the four atom types giveoisertinteraction types.
Intermolecular atomic contact areas for each interactipa tvere determined us-
ing Voronoi diagrams, calculated using the CAD-score mog®-/ Interface
areas for each interaction type are given in Table S1. Tled totermolecular
contact area correlated with changes in solvent accessibigce area upon bind-
ing taken from the DockGround sen®rwith slope and intercept close to unity

and zero respectively for a large set of complexes (Figuje S1

2.4 Surface energy calculation

The presented method is a model of the binding free energyooents which
arise from the interacting surface, modelled as the summfitwtions from each

interaction type, which are each linearly proportionalheit interaction area.

4 i
AGgyrf = Z 'Zl VA (1)
i=1j=

where the summation runs over atom typ&s,is the interaction area between
atoms of typa and j, and they ; constant is the microscopic interfacial tension
in units of kcal.mof.A—2. We calculate the interfacial tensions by relating the
change in binding free energy upon mutatiGAG, to the changes in interacting

surface areas. For instance, if a mutation vlifkG = 1.5kcal.mof! corresponds



to the loss of 182 of surface area between atom tyipend atom typg, and the
creation of A2 of surface area between atom tyipend atom typd, we can say
that 5/ x — 10y j = 1.5+, wherer is the residual error. Such an equation can be

defined for each mutant in the training set, as

AAGgyi=1 + Z Z y i(A mutant |Id type) 2)

Using this series of equations, we calculgehe vector ofy values which
minimise the sum square of the residual errqrs?, thus yielding the interfacial
tension values which give the greatest agreement with tperarental binding
free energy changes upon mutation, given model assumptiis is achieved

using least squares as described in Moal and Fernandeéd®Rec

y=(ATA)'ATE (3)

whereA is a matrix of changes in interaction type areas upon mutatiaE
is a vector ofAAG values.Unlike in our previous study, a weight matrix was not
included as it did not improve the model. This is likely dughie much smaller
number of parameters being fit, resulting in a model thatss &isceptible to fit-
ting towards overrepresented residues, complexes andidanilo improve the
stability of the training and derive model parameter déoret, bootstrap aggre-
gating was performe® 1000 bootstrap samples of the mutation were taken and
used to obtain model parameters via equdtion 3, from whic fivalues were

found by averaging.



In terms of physical interpretation, the calculated swefacergy is dominated
by effects relating to interface desolvation and the epthatising from the phys-
ical contact of the binding partners. We justify this intefation by considering
the other sources of energy in the context of the model; allntutations used
correspond to those for which binding is observed for bothwmiid-type and mu-
tant protein, and thus the rotational, translational anckbane restrictions are
similar in both, and their entropic contributions approately cancel. The same
holds for side-chain restriction of residues away from theated site. Regard-
ing the change in binding configurational entropy upon maitefior the the side-
chain being mutated, estimates of the entropy of confoonatly unrestricted
side-chain®*% are around 0.9 kcal.mot. In the training data, some of this
contribution is cancelled when subtracting the wild-typergy from the mutant.
In addition, side-chains are already somewhat conformalip restricted in the
folded unbound state, and residual flexibility still existshe bound, thus the dif-
ference in side-chain entropy change of the mutated res&dilesly to be small.
Given that the model is unlikely to be able to infer this comguat using changes
in surface area types, it is unlikely to contribute signifity to the calculated

surface energies.

2.5 Absolute binding affinity benchmark

Experimental affinity data for a total of 240 complexes wa&tafrom two data
sources. The binding affinity benchmark reported in Kdstet af? has data

for 144 non-redundant high resolution complexes, for whinbound structures
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are also available. Six complexes were removed: 20ZA, duarge disorder-
to-order transitions upon binding, 2PTC and 2SNI, protdakéitors whose
anomalously high affinity likely relate to interactions kvithe catalytic machin-
ery, 1BRS, due to the high electrostatic association daution of residues not
at the binding interfacé® 203B, due to the presence of non-standard residues
and an ion at the binding interface, and 1EER, due to its paePBB X-ray
Structure Validation Report including a large number of Rahandran outliers,
clashes and non-rotameric side-chains. The affinity beackim subclassified by
conformational similarity to the unbound structures, asilfie (interface RMSD
>1.0A) or rigid (interface RMSD<1.08), as reported in Kastritis et & The
benchmark is also subclassified as validated or non-validatepending on the
confidence with which the experimental values are know, witlhdated affini-
ties being those for which similar values have been repartete literature by
at least two research groups or experimental techniquds;amthus be thought
of as a consensus in the literature, as described in Moal%tTale second set
of binding affinity data used is a set of 113 complexes repairteChen et af?
Complexes already in the affinity benchmark were removedigas four protein-
peptide complexes involving non-standard amino acids 2RQNG, 2WFJ and
3JVK), leaving 102 complexes. These were further subdd/ioleinterface size
into 72 small £1800A2) and 30 large ¥1800A2) complexesOnly two of the
complexesin the Chen set had high homology with those inftimétg benchmark
(>45% sequence identity angs matched amino acids). One of these, 10P9, is

a lysozyme/antibody complex similar to 1VFB. Examinatidrihe structure re-
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vealed that the two antibodies target different epitopé® dther is the colicin E9
/ IM9 interaction 2VLQ, which is similar to 1LEMV and the nowgnate E9 / IM2
interaction, 2WPT, which is six orders of magnitude loweatffinity. Removing
2VLQ from the data set resulted in an insignificant improvetiethe correlation
(rincreases by 0.003), and thus has no effect on the conalsiseached.

In applying the surface energy model to absolute bindingiffdata, equa-
tion[1 was used. All complexes, affinities and interface tgpeas are given in

Table S2.

2.6 Docking decoys

The docking decoys used for reranking were previously geadrusing the flex-
ible guided docking algorithm SwarmDd&&2? using the standard protocol, ap-
plied to 176 unbound structures in the protein-protein drupbenchmark 4.82
Decoys were classified as high quality, medium quality, ptadgde or incorrect
according to the CAPRI criteri& Complexes for which acceptable or better so-
lutions could not be found were not considered, resultindenoy sets for 123
complexes, of around 500 poses each. Each pose was scorednded using

equatiorilL, and clustered as per the standard proc&3ure.
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3 Results and Discussion

3.1 Surface free energies

After fitting the model, the Pearson correlation with &G data is 0.40 (Fig-
ure S2). While low, this value compares reasonably with Isinstudies. For
instance, using the same source data set and removingrsutligne P1 position
of the trypsin-BPTI complex, one study achieved corretatiof 0.47 to 0.558 In
another study predicting the effects of mutation on foldireg energy, Dehouck
et al compared their methods to five others with similarly esidcorrelations
of 0.27 to 0.4&4 Nevertheless, most the derived surface energy valubih
are displayed and tabulated in Figlite 2, are intuitivelyugpible given the error
estimates. For instance, favourable interactions arerebddoetween opposing
charges (-51, -65 and -79 cal.rhdl 2 for acceptor/donor, donor/hydroxyl and
acceptor/hydroxyl interactions respectively) and betwiegdrophobic surfaces (-
48 cal.mo’rﬁiz), and unfavourable energies between like charges (+64 88d +
cal.mot.A~2 for donor/donor and acceptor/acceptor interactions tsfay), all

of which are true even at the extremes of the 95% confideneevadt(1.9ar).
The total sum of absolute change in interactions area atimessata set amounts
to 3152 nm. However, this is not equally distributed across intemctiypes.
For instance, 42% of this corresponds to the creation or vahud interactions
between two hydrophobic surfaces, with a further 41% cpoeding to polar-
neutral interactions, and 10% corresponding to accepinodsurface. Thus, the

corresponding error estimates are lowest for these typasteraction. On the
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other hand, the relative rarity of hydroxyl groups meang thair interactions
are less represented in the data set and less confidence eacrtized to their
energies. For instance, there is only 6nafi change in hydroxyl-hydroxyl sur-
face in the training set, and the surface energy for thigacten type at the
95% confidence interval could be anywhere between -97 antai99olL.A2,
revealing virtually nothing about this interaction. Fuathaccounting for the er-
rors in the low values for the hydroxyl-acceptor and hydtetkynor interactions
the energy could reasonably be as high as the -40 cal’ndot2 mark, a range
which eclipses the more precise energy calculated for tbepor-donor interac-
tion, -50 cal.mot1.A=2 and the estimate of Guharoy and Chakra%aut -52
cal.motA-2.

While the interaction types discussed above are in accoedaith chemical
intuition, it would seem hard, at first glance, to reconclile seemingly low en-
ergies of neutral-polar interactions, considering théyarf unpaired hydrogen
bond donors and acceptors at protein cores; the energidiseforeutral-acceptor
and neutral-donor interaction types are small, and theralelnydroxyl interac-
tion appears stabilising, even after accounting for erréfswever neutral-polar
contacts are common in protein-protein interactions, whaoterfaces are inter-
mediate in composition between the protein core and nardnting surfac@%8
There are a number of considerations which should be madstlyi-bne major
difference between binding free energies and the microssapface free energy
model derived here is that the latter ignores destabilisimgopy effects. Transla-

tional and rotational degrees of freedom are also lost ahdpamtially recovered
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as internal modes. Further entropic penalties arise frastricing the number
of accessible rotameric states and fluctuations withinssibke rotamers, as well
as global modes. Assuming that the magnitude of these gfifeepproximately
equivalent in the wild-type and mutant structures in thening data, the near-
zero energies reported here are negligible considering/tiide binding process.
Secondly, evolutionary pressures to maintain hydrogemingrseem weaker for
protein-protein interactions than for folds, as strudtiméerologs comparisons
show that intermolecular hydrogen bonds are not highly eomsi?® Further,
interface rim residues, which constitute half of the data @e partially solvent
exposed, unlike protein interiors. Even the core interfasédues themselves are
frequently in contact with buried waters, which are commadrdpped at inter-
faces!0

One aspect of this work pertains to the magnitude of the Iplvbic fac-
tor in stabilising proteins and their assemblies, postddty Langmuit?? and
brought to the fore by Kauzma#ffi2 How this manifests in protein-protein inter-
actions, where hydrophobic patches in protein-proteieradtions vary greatly in
size,mmgeometry and interspersal of hydrophilic group, remainsrasolved
problem®® Nevertheless the magnitude of the hydrophobic effect, tesiéned
by amino acid oil/water transfer experiments, is propoidido the area of buried
hydrophobic surface, with initial estimates of 24 cal.mof 263 However, dif-
ferent solvents give different transfer energies and inisewtain whether the in-
terior of a binding interface can be modelled as an orgaqiaidi, or how best

to relate transfer energies to protein desolvation ens#§feThus, estimates vary
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from 8 to 46 cal.mot.A 26467 Recourse has been made to estimating the effect
through molecular simulation, yielding a similar estimat@4 cal.mot1.A~2/62

and through mutation experiments. These latter investigahave only been un-
dertaken on a small number of mutations in specific systeganayielding a
range of values, from 18.5 to 46 cal.mélA 26870 The results presented here,
averaged over 1890 mutation, indicate a mean hydropholiggrof 24 +/- 2.4
cal.mol.A~2, lending support to the median values derived from transfieru-

lation and single mutation approaches.

3.2 Application to absolute binding affinities

The model was applied to the complexes with experimentatgmnined affinity,
with results shown in Figurel 3 and correlations summarisetiable[1. As the
model does not account for intramolecular energy changes;drrelations with
the rigid complexes are higher than with the flexible, as etqe Further, the
correlations with the validated data is higher than for thenplexes for which
affinities were reported only once, or for which conflictirf§raties exist within
the literature. Indeed, the only category for which the elation is not significant
is the intersection between the unvalidated set and thd 8exkilble complexesA
number of recent empirical affinity models have been tradiezttly from affinity
data, achieving correlations in the range of 0.45-0.65,untb around 0.7 when
considering only rigid-body interactioR$l197 Although these binding energy
models are not directly comparable to the surface energyehmdsented here,

they give an indication of the abilities of current empitiftanctions.
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One salient observation is that the proposed model gesezatrgies that are
much lower than observed. This of itself comes as no surpasehe model
does not account for changes in rotational, translationdl@nformational en-
tropy changes. However, observing the least-squares lirenoh Figure BA, this
discrepancy arises from a shallow slope. If the regressiaidde reliably extrap-
olating to the intercept, this would lead to the absurd casioh that even with-
out any interacting surface area, the proteins would haveding affinity of -5
kcal.molL. This is surprising, as the loss of external (rotational madslational)
entropy depends only on the restriction in protein orieate&nd position relative
to the binding partner, which should be roughly constantreostdelated to size of
the binding surface; the cost of this is on the order of 10 t&dd.mol1, under
the reasonable assumption that unbound proteins aredtimmsllly and rotation-

ally unrestricted and amenable to the Sackur-Tetrode @o¥€ even accounting

for residual freedorA®® although some experimental data suggests lower penal-

ties. This physical implausibility is also observed apptylinear least square
regression to all the parameters which correlate with Ipigéiffinity in a previ-
ous study? as well as the empirically trained models of Audie and Staftand,
despite indications in the text suggesting otherwise, ¢toend Lewi$ Further
investigation into this apparent missing energy is reqlire

Conformational entropy is harder to calculate or derive Bphek estimate
for. Generally, this also decreases upon binding due tactshs of global back-
bone motions, the number of accessible rotameric statesgvdhith-rotamer mo-

tions21C+112 Although more variable, a difference is to be expected betwtbe
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flexible and rigid categories of interactions. The rigideggdry is composed of
proteins which either have limited flexibility or are flexéband have observed
apo structures that are, by chance, crystalographicakyfirto a conformation
near their holo structure. The flexible category, on the roffaed, only contains
proteins that are inherently flexible. Thus, in the lattez,would expect a greater
disparity in magnitude between the calculated surfaceygseand observed bind-

ing free energies, which is indeed the case (Figure 3A).

3.3 The Hydrophobic effect drives binding

The model offers a method of partitioning the attractivecés by surface type.
In order to investigate the driving forces in protein adbaesit was applied to
4434 interactions downloaded from the DockGround sé#¥ek.sequence iden-
tity cutoff of 30% was used to remove redundancies on eadn clwad complexes
with less that 2.4 resolution or interface areas outside of the 500-688@vere
also filtered. The relative contributions from the varioasponents are shown in
Figurel4. Energy from hydrophobic contacts was by far thatgst contributor,
constituting 50% to 95% of the negative energy. This is ireagrent with earlier
studies where a smaller number of systems were investig&ted*

The computed surface energies correlate strongly withedusurface area
(r=0.9), which in turn also correlates with binding affiniffable[1). The dif-
ferences between the two metrics yield slightly greateratation for the model
compared to the buried area, although this is not statiltisgnificant (p=0.13,

t=-1.14, significance of difference between paired cotiata test, ,=0.43, x,=0.4,
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ryz=0.9, n=240).

3.4 Re-ranking docked poses

Proteins are able to locate and form long lasting complex#s their specific
binding partners while not binding to the many other prateivhich they en-
counter and make transient interactions with. Thus, acatitiest of a binding
model is its ability to distinguish specific binding modesfrnon-specific modes.
Although the correlations of the presented model with theoalie binding affin-
ity data reported above are only marginally higher thanehfos buried surface
area, the latter fails this test. Distinguishing betweeactfr and non-specific
binding is closely related to the problem of ranking of datkmses, to which
the model was applied. Results are shown in Table 2. Top 10DCAcceptable
or better success rates correspond to 11%, 37% and 82% oR&ecmplexes
for which such a solution could be found by SwarmDoé&lerforming the same
clustering and ranking procedure using only buried surésea gave success rates
of 4%, 25% and 67%. Our success rate corresptm@%0, 26% and 57% of the
whole benchmark of 176 complex®.For comparison, the highest performing
model reported in Moal and Fernandez-RE%inad success rates of 6%, 11% and
56% using the same decoy set, and the reported successoralesdys generated
using the PatchDock-FireDock protocol on the same bendhmeare 10%, 24%
and 49%15 Thus, the model performs comparably to a popular dockintppod
despite not being optimised for this task.

To investigate whether the docking performance was infleery training
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the potential using mutations for the complexes being dboke recalculated the
potential and reranked the decoys for the 32 complexes fahwduch mutations
existed in the training set. In these cases, mutations iocdhglex being docked
were omitted from the training, as were those in homologautems 45%
sequence identity in both chains). The training sets forélealculated potentials
contained at least 1706 mutations, and only small changieisurface energies
were observed. The top 10 acceptable or better successaath@same as when
the potential was trained with all mutants, indicating thating these data in the
training set does not influence docking success, and thahtael is robust to

small perturbations in the training set.

4 Conclusion

In summary, we have presented a simple interacting surfaesyg model based
on interactions between four different surface patchesat(ak donor, acceptor
and donor/acceptor), in which the energy of interactindesas is proportional to
the interacting surface area. Constants of proportignafié derived using muta-
tions for which experimental changes in binding free eresrgire available, and
changes in interaction areas are modelledhaylico mutagenesis from wild-type
crystal structures. The model yields realistic paramdterslectrostatic repelling
and attracting surfaces, and hydrophobic burial energyantjtative agreement
with value derived from oil/water transfer, simulation asrdall mutational stud-

ies. When applied across whole binding interfaces, the inoelds values which
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correlate with absolute binding free energies, as theantarg surface makes a
major contribution to the overall energy of binding. The rabdives slightly
stronger correlations than total buried surface areagafth it distinguishes itself
from the measure by being able to rank docked poses, therstayndinating be-
tween specific and non-specific binding modes. Applied tageladata set, the
method indicates that the hydrophobic force is the majaedof protein binding,

in accord with previous studié43'214 The model is accessible via the CCharPPI
web servért® and an open source implementation can be downloaded to be run

locally fromhttp://life.bsc.es/pid/web/surface_energy/!|
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Figure[1: An overview of the model derivation procedure,regbfied using
the mutation of P1 leucine @treptomyces griseus protease B (SGPB) to aspar-
tic acid, in the interaction with the turkey ovomucoid thddmain (OMTKY3).
\Voronoi diagrams (left) are constructed for the wild-tymel mutant protein. The
P1 residue is shown, as is OMTKY3 Pro-138, with which it iat#s. The dia-
grams are used to calculate interaction type areas (cetiteejlifference between
which are the changes in interaction type area upon mutétpmight). These are
used to construct a linear equation for this mutant (bottigity. In this case, the
mutation is dominated by a loss of 8724 area between neutral surfaces, and the
gain of 84.7A2 of interaction between neutral surface and H-bond accegptor
face, with smaller changes between other surfaces, suattaptar-acceptor sur-
face. Such an equation is generated for each mutation, vainéctollectively used
to find they values which best agree with the experime®AG data. Voronoi

images created using Voroprgt!

Figure[2: Surface energies valugs ¢al.mol-.A~2) and standard deviations
(o) derived from the bootstrap aggregating for all interatctigpes. Also shown

are the sum of absolute changes in interaction areg)(nm

Figure[3:Model applied to the absolute binding free enepad(A) The val-
idated set of high confidence affinities, with rigid compkexes black circles and
the flexible as blue stars. Standard errocafculated\Gg s are estimated using

values derived from bootstrap aggregation, and error irexyental is set to 0.4
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kcal.mol ! as suggested in Kastritis et®l.For the sake of clarity, error bars are
omitted for the flexible complexes. (B) The model appliedit® tombined affin-
ity benchmark, categorised as rigid high-confidengg (flexible high-confidence

(fhe), other rigid (rc), other flexible (fc), small (s) and large (I).
Figurel4: Model applied to DockGround complexes, indigatite magnitude

of the components in each of the 4434 interactions. Intenastare ordered by

buried surface area.
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N rIpred BSA  Ppred  PBsA

e | 23 0.71 -0.70 <10* 0.0001
fe | 30 0.39 -0.36 0.017 0.026
ne | 42 0.48 -0.47 0.0007 0.0009
fe | 43 0.10 0.02 0.26 0.45
s | 72 0.37 -0.41 0.0007 0.0002
| | 30 051 -0.28 0.002 0.083
All | 240 0.43 -0.40 <104 <10*

Table 1: Correlations and significance of correlations fer mmodel applied to
absolute binding free energy data, for the presented madeiax buried surface
area. Categories as per Figlte 3A.

Number Percent
High Medium Acceptable High Medium Acceptable

Top 1 0 7 14 0.0 5.7 11.4
Top 5 3 20 33 2.4 16.3 26.8
Top10| 5 28 46 4.1 22.8 37.4
Top50| 5 46 77 4.1 37.4 62.6
Top 100| 5 57 101 4.1 46.3 82.1
All 7 71 121 5.7 57.7 98.4

Table 2: The performance of the model when applied to the ranking ckeld
poses. Success rates are shown in terms of the number ohtite@percentage
of hits, in the top 1/5/10/50/100/all after clustering aadking. Hits are defined
as high quality, medium quality or better, and acceptabbdityuor better, as per
the CAPRI criterid
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Figure 1: An overview of the model derivation procedure,negified using the
mutation of P1 leucine oftreptomyces griseus protease B (SGPB) to aspartic
acid, in the interaction with the turkey ovomucoid third dam (OMTKY3).
\Voronoi diagrams (left) are constructed for the wild-tymel mutant protein. The
P1 residue is shown, as is OMTKY3 Pro-138, with which it iat#s. The dia-
grams are used to calculate interaction type areas (cetiteejlifference between
which are the changes in interaction type area upon mutétpmight). These are
used to construct a linear equation for this mutant (bottigity. In this case, the
mutation is dominated by a loss of 8724 area between neutral surfaces, and the
gain of 84.7A2 of interaction between neutral surface and H-bond accegtor
face, with smaller changes between other surfaces, suaiteptar-acceptor sur-
face. Such an equation is generated for each mutation, vainéctollectively used
to find they values which best agree with the experime®AG data. Voronoi
images created using Voroprgt!
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Figure 2: Surface energies valués(ﬁal.morl.,&_z) and standard deviationg)

derived from the bootstrap aggregating for all interactyges. Also shown are
the sum of absolute changes in interaction aregnm
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(A) Complexes with high confidence affinities
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Figure 3: Model applied to the absolute binding free enemad(A) The vali-
dated set of high confidence affinities, with rigid compleasdlack circles and
the flexible as blue stars. Standard erraraiculated\Gg, s are estimated using
values derived from bootstrap aggregation, and error irexyental is set to 0.4
kcal.mol ! as suggested in Kastritis et®l.For the sake of clarity, error bars are
omitted for the flexible complexes. (B) The model appliedi® tombined affin-
ity benchmark, categorised as rigid high-confidengg (flexible high-confidence
(fhe), other rigid (rc), other flexible (f.), small (s) and large (I).
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Figure 4. Model applied to DockGround complexes, indigatine magnitude
of the components in each of the 4434 interactions. Intenastare ordered by
buried surface area.
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