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Abstract

Mutations at protein-protein recognition sites alter binding strength by

altering the chemical nature of the interacting surfaces. We present a simple

surface energy model, parameterised with empirical∆∆G values, yielding

mean energies of -48 cal.mol−1.Å−2 for interactions between hydrophobic

surfaces, -51 to -80 cal.mol−1.Å−2 for surfaces of complementary charge,

and 66 to 83 cal.mol−1.Å−2 for electrostatically repelling surfaces, relative

to the aqueous phase. This places the mean energy of hydrophobic surface

burial at -24 cal.mol−1.Å−2. Despite neglecting configurational entropy and

intramolecular changes, the model correlates with empirical binding free en-

ergies of a functionally diverse set of rigid-body interactions (r=0.66). When

used to rerank docking poses, it can place near-native solutions in the top 10

for 37% of the complexes evaluated, and 82% in the top 100. Themethod

shows that hydrophobic burial is the driving force for protein association,

accounting for 50-95% of the cohesive energy. The model is available open-

source fromhttp://life.bsc.es/pid/web/surface_energy/ and via

the CCharpPPI web serverhttp://life.bsc.es/pid/ccharppi/.

1 Introduction

When proteins interact, part of their exteriors are transferred from an aqueous en-

vironment to the microenvironment created by each others surfaces. When the

free energy of this process is positive, interfacial tension prevents aggregation at

biological concentrations. When the energy is sufficientlynegative, proteins can
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bind, as in recognition events evolved to perform and regulate biological func-

tions. Many factors drive the association of proteins, and understanding them

is crucial for many efforts, including but not limited to theestimation of bind-

ing affinity,1–9 determining the response of biological systems to mutation,10–19

modulating binding selectivity,20–33 designing new interactions,34–47 and deter-

mining the structure of macromolecular assemblies from thestructures of their

constituents.48–51 Improved modelling of interaction energy would facilitatenew

investigation in the engineering of living systems and the study of evolution.52

Since the beginning of the 19th century, it has been known that properties of

macroscopic interfaces involving liquids can be explainedin terms of surface ten-

sion - the cohesive forces that spans the bulk of the liquid, and the short-range

forces at the interface.53 By considering the forces interacting across the inter-

face as additive, relationships between parameters of manyliquid-vapour, liquid-

liquid, solid-liquid and even solid-solid interfaces can be deduced, such as contact

angles, meniscus heights, interfacial tensions, spreading coefficients, and heats

and free energies of adsorption and immersion.54–60 Interfacial tension is equiv-

alent to the excess energy per unit area relative to the bulk,the balance of which

can be determined empirically from such measurements. In the popular three-

component model of van Oss,59,60 the tension is composed of a dispersive com-

ponent, and interactions between a Lewis acid component anda Lewis base com-

ponent which, for instance, encapsulates the average effect of all orientations and

separations of hydrogen bonds or salt bridges. The nanoscopic interfaces which

characterise protein-protein interactions, adducts formed by interactions between
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neutral atoms and electron donors and acceptors (polar and charged groups), may

be considered as being composed of different types of interfaces. Each interface

type can be defined by different types of surfaces in contact,which contribute

additively to the overall binding affinity in proportion to their area. While each

complex differs in atomic detail, the interface types are common between com-

plexes, allowing the inference of interface energies from experimental data via a

system of linear equations.

Outline: In this work, we present a simple surface energy model based on a mi-

croscopic interpretations of the van Oss model. The averageper square̊Angstrom

free energy contribution of each interface type is calculated from empirical muta-

tion data, and corresponds to the energy of cohesion of the two surface types minus

their energy of solvation. Protein surfaces are partitioned according to four atom

types, corresponding to the terms in the approach of van Oss (H-bond donors,

acceptors, donor and acceptors, and neutral). In turn, thisallows the interface to

be partitioned according to the ten types of interaction that can occur between the

four surface types. Energies for each interaction type are inferred by comparing

changes in binding free energy upon mutation to changes in interaction type areas

upon mutation using an approach recently developed for inferring contact ener-

gies.61 The values are compared with estimates of the energy associated with the

burial of hydrophobic surface area from simulation,62 oil/water transfer,63–67and

small mutational studies,68–70 as well as binding efficiency values derived from

protein affinity datasets71,72 and alanine-scanning experiments.73,74 Further, we
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use the approach to estimate the contribution made by interface burial to proteins

of known binding affinity, as well as evaluate the ability of the model to rerank

docked poses derived from unbound protein-protein docking.

2 Material and Methods

2.1 Overview

With crystal structures of protein complexes for which experimental mutation data

is available,75 the protein-protein interface is calculated using Vorono¨ı decomposi-

tion76,77and the total surface area of each surface type is determined. The mutant

form is modelled and the surface type composition of the mutant is calculated.

The wild-type and mutant surfaces are used to define an expression relating the

change in surface type compositions to∆∆G, the change in binding free energy

upon mutation, where each surface types contribution to binding energy is pro-

portional to its area. Such as equation can be constructed for each mutant in our

training set, and interfacial tensions are found that maximise the agreement be-

tween experimental and theoretical energies. The process is depicted in Figure 1,

with further details given below.

2.2 Data set of changes in binding affinity upon mutation

Mutation data were taken from the SKEMPI database,75 in which 3047 exper-

imental ∆∆G values are available, in addition to their corresponding wild-type
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crystal structures. Values corresponding to unusual experimental techniques were

removed (values for the jel42-FAB/HPr complex, 2JEL, and apparent affinities for

the factor VIIa/soluble tissue factor complex, 1DAN). Thisdata set was filtered

so as to only include mutants with mutations at the interfaceregion; we classified

mutated residues according to their location using the method of Levy78 and re-

moved data for mutants containing a mutation in the protein interior or support

region of the interface, as well as mutants with more than three mutations at the

rim or core of the interface. We also removed mutants with mutations to or from

proline, due to the structural changes and energetic effects associated withφ and

ψ angle restriction. This left us with 1949 mutations as described previously.61

To model the mutant protein from the wild-type structure, side-chains were re-

placed and optimised using FoldX.79 Finally, we additionally filtered to remove

mutants with clashes upon mutation (>4.0 kcal.mol−1 in the FoldX van der Waals

repulsion term), as we aim only to model the dispersion component of the van der

Waals energy, leaving 1890∆∆G values for training the model. These data are

shown in Table S1.

2.3 Interface type calculation

Atoms were classified by an atom typing scheme similar to thatused by Jiang et

al,80 as either hydrogen bond acceptors (carbonyl oxygens in the peptide backbone

and asparagine and glutamine side-chains, carboxyl oxygens in the side-chains of

aspartic acid and glutamic acid, and theδ nitrogen of histidine), hydrogen bond

donors (amide nitrogens in the peptide backbone, the indolenitrogen in trypto-
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phan, amine nitrogens in asparagine, glutamine and lysine,theε nitrogen of histi-

dine and the guanidinium nitrogens of arginine), hydrogen bond donor and accep-

tors (alcohol oxygens of tyrosine, threonine and serine) and neutral (all remaining

atoms). Interactions between the four atom types give rise to ten interaction types.

Intermolecular atomic contact areas for each interaction type were determined us-

ing Voronoı̈ diagrams, calculated using the CAD-score program.76,77 Interface

areas for each interaction type are given in Table S1. The total intermolecular

contact area correlated with changes in solvent accessiblesurface area upon bind-

ing taken from the DockGround server,81 with slope and intercept close to unity

and zero respectively for a large set of complexes (Figure S1).

2.4 Surface energy calculation

The presented method is a model of the binding free energy components which

arise from the interacting surface, modelled as the sum of contributions from each

interaction type, which are each linearly proportional to their interaction area.

∆Gsurf =
4

∑
i=1

i

∑
j=1

γi, jAi, j (1)

where the summation runs over atom types,Ai, j is the interaction area between

atoms of typei and j, and theγi, j constant is the microscopic interfacial tension

in units of kcal.mol−1.Å−2. We calculate the interfacial tensions by relating the

change in binding free energy upon mutation,∆∆G, to the changes in interacting

surface areas. For instance, if a mutation with∆∆G = 1.5kcal.mol−1 corresponds
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to the loss of 10̊A2 of surface area between atom typei and atom typej, and the

creation of 5̊A2 of surface area between atom typei and atom typek, we can say

that 5γi,k −10γi, j = 1.5+ r, wherer is the residual error. Such an equation can be

defined for each mutant in the training set, as

∆∆Gsurf = r+
4

∑
i=1

i

∑
j=1

γi, j(A
mutant
i, j −Awild-type

i, j ) (2)

Using this series of equations, we calculateγ̂, the vector ofγ values which

minimise the sum square of the residual errors,∑r2, thus yielding the interfacial

tension values which give the greatest agreement with the experimental binding

free energy changes upon mutation, given model assumptions. This is achieved

using least squares as described in Moal and Fernández-Recio61

γ̂ = (ATA)−1ATE (3)

whereA is a matrix of changes in interaction type areas upon mutation andE

is a vector of∆∆G values.Unlike in our previous study, a weight matrix was not

included as it did not improve the model. This is likely due tothe much smaller

number of parameters being fit, resulting in a model that is less susceptible to fit-

ting towards overrepresented residues, complexes and families. To improve the

stability of the training and derive model parameter deviations, bootstrap aggre-

gating was performed;82 1000 bootstrap samples of the mutation were taken and

used to obtain model parameters via equation 3, from which final γ̂ values were

found by averaging.
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In terms of physical interpretation, the calculated surface energy is dominated

by effects relating to interface desolvation and the enthalpy arising from the phys-

ical contact of the binding partners. We justify this interpretation by considering

the other sources of energy in the context of the model; all the mutations used

correspond to those for which binding is observed for both the wild-type and mu-

tant protein, and thus the rotational, translational and backbone restrictions are

similar in both, and their entropic contributions approximately cancel. The same

holds for side-chain restriction of residues away from the mutated site. Regard-

ing the change in binding configurational entropy upon mutation for the the side-

chain being mutated, estimates of the entropy of conformationally unrestricted

side-chains83–86 are around 0.9 kcal.mol−1. In the training data, some of this

contribution is cancelled when subtracting the wild-type energy from the mutant.

In addition, side-chains are already somewhat conformationally restricted in the

folded unbound state, and residual flexibility still existsin the bound, thus the dif-

ference in side-chain entropy change of the mutated residueis likely to be small.

Given that the model is unlikely to be able to infer this component using changes

in surface area types, it is unlikely to contribute significantly to the calculated

surface energies.

2.5 Absolute binding affinity benchmark

Experimental affinity data for a total of 240 complexes was taken from two data

sources. The binding affinity benchmark reported in Kastritis et al87 has data

for 144 non-redundant high resolution complexes, for whichunbound structures
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are also available. Six complexes were removed: 2OZA, due tolarge disorder-

to-order transitions upon binding, 2PTC and 2SNI, proteaseinhibitors whose

anomalously high affinity likely relate to interactions with the catalytic machin-

ery, 1BRS, due to the high electrostatic association contribution of residues not

at the binding interface,88 2O3B, due to the presence of non-standard residues

and an ion at the binding interface, and 1EER, due to its poor wwPDB X-ray

Structure Validation Report including a large number of Ramachandran outliers,

clashes and non-rotameric side-chains. The affinity benchmark is subclassified by

conformational similarity to the unbound structures, as flexible (interface RMSD

>1.0Å) or rigid (interface RMSD<1.0Å), as reported in Kastritis et al.87 The

benchmark is also subclassified as validated or non-validated, depending on the

confidence with which the experimental values are know, withvalidated affini-

ties being those for which similar values have been reportedin the literature by

at least two research groups or experimental techniques, and can thus be thought

of as a consensus in the literature, as described in Moal et al.3 The second set

of binding affinity data used is a set of 113 complexes reported in Chen et al.71

Complexes already in the affinity benchmark were removed, aswere four protein-

peptide complexes involving non-standard amino acids (2R0Y, 1QNG, 2WFJ and

3JVK), leaving 102 complexes. These were further subdivided by interface size

into 72 small (<1800Å2) and 30 large (>1800Å2) complexes.Only two of the

complexes in the Chen set had high homology with those in the affinity benchmark

(>45% sequence identity and>5 matched amino acids). One of these, 1OP9, is

a lysozyme/antibody complex similar to 1VFB. Examination of the structure re-
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vealed that the two antibodies target different epitopes. The other is the colicin E9

/ IM9 interaction 2VLQ, which is similar to 1EMV and the non-cognate E9 / IM2

interaction, 2WPT, which is six orders of magnitude lower inaffinity. Removing

2VLQ from the data set resulted in an insignificant improvement in the correlation

(r increases by 0.003), and thus has no effect on the conclusions reached.

In applying the surface energy model to absolute binding affinity data, equa-

tion 1 was used. All complexes, affinities and interface typeareas are given in

Table S2.

2.6 Docking decoys

The docking decoys used for reranking were previously generated using the flex-

ible guided docking algorithm SwarmDock89–91 using the standard protocol, ap-

plied to 176 unbound structures in the protein-protein docking benchmark 4.0.92

Decoys were classified as high quality, medium quality, acceptable or incorrect

according to the CAPRI criteria.93 Complexes for which acceptable or better so-

lutions could not be found were not considered, resulting indecoy sets for 123

complexes, of around 500 poses each. Each pose was scored andranked using

equation 1, and clustered as per the standard procedure.89
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3 Results and Discussion

3.1 Surface free energies

After fitting the model, the Pearson correlation with the∆∆G data is 0.40 (Fig-

ure S2). While low, this value compares reasonably with similar studies. For

instance, using the same source data set and removing outliers in the P1 position

of the trypsin-BPTI complex, one study achieved correlations of 0.47 to 0.55.18 In

another study predicting the effects of mutation on foldingfree energy, Dehouck

et al compared their methods to five others with similarly modest correlations

of 0.27 to 0.48.94 Nevertheless, most the derived surface energy values, which

are displayed and tabulated in Figure 2, are intuitively plausible given the error

estimates. For instance, favourable interactions are observed between opposing

charges (-51, -65 and -79 cal.mol1.Å−2 for acceptor/donor, donor/hydroxyl and

acceptor/hydroxyl interactions respectively) and between hydrophobic surfaces (-

48 cal.mol1.Å−2), and unfavourable energies between like charges (+64 and +83

cal.mol1.Å−2 for donor/donor and acceptor/acceptor interactions respectively),all

of which are true even at the extremes of the 95% confidence interval (1.96σ ).

The total sum of absolute change in interactions area acrossthe data set amounts

to 3152 nm2. However, this is not equally distributed across interaction types.

For instance, 42% of this corresponds to the creation or removal of interactions

between two hydrophobic surfaces, with a further 41% corresponding to polar-

neutral interactions, and 10% corresponding to acceptor-donor surface. Thus, the

corresponding error estimates are lowest for these types ofinteraction. On the
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other hand, the relative rarity of hydroxyl groups means that their interactions

are less represented in the data set and less confidence can beascribed to their

energies. For instance, there is only 6nm2 of change in hydroxyl-hydroxyl sur-

face in the training set, and the surface energy for this interaction type at the

95% confidence interval could be anywhere between -97 and +99cal.mol−1.Å−2,

revealing virtually nothing about this interaction. Further, accounting for the er-

rors in the low values for the hydroxyl-acceptor and hydroxyl-donor interactions

the energy could reasonably be as high as the -40 cal.mol−1.Å−2 mark, a range

which eclipses the more precise energy calculated for the acceptor-donor interac-

tion, -50 cal.mol−1.Å−2, and the estimate of Guharoy and Chakrabarti73 at -52

cal.mol−1.Å−2.

While the interaction types discussed above are in accordance with chemical

intuition, it would seem hard, at first glance, to reconcile the seemingly low en-

ergies of neutral-polar interactions, considering the rarity of unpaired hydrogen

bond donors and acceptors at protein cores; the energies forthe neutral-acceptor

and neutral-donor interaction types are small, and the neutral-hydroxyl interac-

tion appears stabilising, even after accounting for errors. However neutral-polar

contacts are common in protein-protein interactions, whose interfaces are inter-

mediate in composition between the protein core and non-interacting surface.95–98

There are a number of considerations which should be made. Firstly, one major

difference between binding free energies and the microscopic surface free energy

model derived here is that the latter ignores destabilisingentropy effects. Transla-

tional and rotational degrees of freedom are also lost and only partially recovered
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as internal modes. Further entropic penalties arise from restricting the number

of accessible rotameric states and fluctuations within accessible rotamers, as well

as global modes. Assuming that the magnitude of these effects is approximately

equivalent in the wild-type and mutant structures in the training data, the near-

zero energies reported here are negligible considering thewhole binding process.

Secondly, evolutionary pressures to maintain hydrogen bonding seem weaker for

protein-protein interactions than for folds, as structural interologs comparisons

show that intermolecular hydrogen bonds are not highly conserved.99 Further,

interface rim residues, which constitute half of the data set, are partially solvent

exposed, unlike protein interiors. Even the core interfaceresidues themselves are

frequently in contact with buried waters, which are commonly trapped at inter-

faces.100

One aspect of this work pertains to the magnitude of the hydrophobic fac-

tor in stabilising proteins and their assemblies, postulated by Langmuir101 and

brought to the fore by Kauzmann.102 How this manifests in protein-protein inter-

actions, where hydrophobic patches in protein-protein interactions vary greatly in

size,103,104geometry and interspersal of hydrophilic group, remains anunsolved

problem.105 Nevertheless the magnitude of the hydrophobic effect, as determined

by amino acid oil/water transfer experiments, is proportional to the area of buried

hydrophobic surface, with initial estimates of 24 cal.mol−1.Å−2.63 However, dif-

ferent solvents give different transfer energies and it is uncertain whether the in-

terior of a binding interface can be modelled as an organic liquid, or how best

to relate transfer energies to protein desolvation energies.106 Thus, estimates vary
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from 8 to 46 cal.mol−1.Å−2.64–67 Recourse has been made to estimating the effect

through molecular simulation, yielding a similar estimateof 24 cal.mol−1.Å−2,62

and through mutation experiments. These latter investigations have only been un-

dertaken on a small number of mutations in specific systems, again yielding a

range of values, from 18.5 to 46 cal.mol−1.Å−2.68–70 The results presented here,

averaged over 1890 mutation, indicate a mean hydrophobic energy of 24 +/- 2.4

cal.mol−1.Å−2, lending support to the median values derived from transfer, simu-

lation and single mutation approaches.

3.2 Application to absolute binding affinities

The model was applied to the complexes with experimentally determined affinity,

with results shown in Figure 3 and correlations summarised in Table 1. As the

model does not account for intramolecular energy changes, the correlations with

the rigid complexes are higher than with the flexible, as expected. Further, the

correlations with the validated data is higher than for the complexes for which

affinities were reported only once, or for which conflicting affinities exist within

the literature. Indeed, the only category for which the correlation is not significant

is the intersection between the unvalidated set and the set of flexible complexes.A

number of recent empirical affinity models have been traineddirectly from affinity

data, achieving correlations in the range of 0.45-0.65, andup to around 0.7 when

considering only rigid-body interactions.2,3,6,107 Although these binding energy

models are not directly comparable to the surface energy model presented here,

they give an indication of the abilities of current empirical functions.
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One salient observation is that the proposed model generates energies that are

much lower than observed. This of itself comes as no surprise, as the model

does not account for changes in rotational, translational and conformational en-

tropy changes. However, observing the least-squares trendline in Figure 3A, this

discrepancy arises from a shallow slope. If the regression could be reliably extrap-

olating to the intercept, this would lead to the absurd conclusion that even with-

out any interacting surface area, the proteins would have a binding affinity of -5

kcal.mol−1. This is surprising, as the loss of external (rotational andtranslational)

entropy depends only on the restriction in protein orientation and position relative

to the binding partner, which should be roughly constant andnot related to size of

the binding surface; the cost of this is on the order of 10 to 15kcal.mol−1, under

the reasonable assumption that unbound proteins are translationally and rotation-

ally unrestricted and amenable to the Sackur-Tetrode equation,108even accounting

for residual freedom,109 although some experimental data suggests lower penal-

ties. This physical implausibility is also observed applying linear least square

regression to all the parameters which correlate with binding affinity in a previ-

ous study,3 as well as the empirically trained models of Audie and Scarlata7 and,

despite indications in the text suggesting otherwise, Horton and Lewis.8 Further

investigation into this apparent missing energy is required.

Conformational entropy is harder to calculate or derive a ballpark estimate

for. Generally, this also decreases upon binding due to restrictions of global back-

bone motions, the number of accessible rotameric states andwithin-rotamer mo-

tions.110–112 Although more variable, a difference is to be expected between the
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flexible and rigid categories of interactions. The rigid category is composed of

proteins which either have limited flexibility or are flexible and have observed

apo structures that are, by chance, crystalographically fixed into a conformation

near their holo structure. The flexible category, on the other hand, only contains

proteins that are inherently flexible. Thus, in the latter, we would expect a greater

disparity in magnitude between the calculated surface energies and observed bind-

ing free energies, which is indeed the case (Figure 3A).

3.3 The Hydrophobic effect drives binding

The model offers a method of partitioning the attractive forces by surface type.

In order to investigate the driving forces in protein adhesion, it was applied to

4434 interactions downloaded from the DockGround server.81 A sequence iden-

tity cutoff of 30% was used to remove redundancies on each chain, and complexes

with less that 2.5̊A resolution or interface areas outside of the 500-6000Å2 were

also filtered. The relative contributions from the various components are shown in

Figure 4. Energy from hydrophobic contacts was by far the greatest contributor,

constituting 50% to 95% of the negative energy. This is in agreement with earlier

studies where a smaller number of systems were investigated.113,114

The computed surface energies correlate strongly with buried surface area

(r=0.9), which in turn also correlates with binding affinity(Table 1). The dif-

ferences between the two metrics yield slightly greater correlation for the model

compared to the buried area, although this is not statistically significant (p=0.13,

t=-1.14, significance of difference between paired correlations test, rxy=0.43, rxz=0.4,
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ryz=0.9, n=240).

3.4 Re-ranking docked poses

Proteins are able to locate and form long lasting complexes with their specific

binding partners while not binding to the many other proteins which they en-

counter and make transient interactions with. Thus, a critical test of a binding

model is its ability to distinguish specific binding modes from non-specific modes.

Although the correlations of the presented model with the absolute binding affin-

ity data reported above are only marginally higher than those for buried surface

area, the latter fails this test. Distinguishing between specific and non-specific

binding is closely related to the problem of ranking of docked poses, to which

the model was applied. Results are shown in Table 2. Top 1/10/100 acceptable

or better success rates correspond to 11%, 37% and 82% of the 123 complexes

for which such a solution could be found by SwarmDock.Performing the same

clustering and ranking procedure using only buried surfacearea gave success rates

of 4%, 25% and 67%. Our success rate correspondsto 8%, 26% and 57% of the

whole benchmark of 176 complexes.92 For comparison, the highest performing

model reported in Moal and Fernández-Recio61 had success rates of 6%, 11% and

56% using the same decoy set, and the reported success rates for decoys generated

using the PatchDock-FireDock protocol on the same benchmark were 10%, 24%

and 49%.115 Thus, the model performs comparably to a popular docking protocol

despite not being optimised for this task.

To investigate whether the docking performance was influenced by training
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the potential using mutations for the complexes being docked, we recalculated the

potential and reranked the decoys for the 32 complexes for which such mutations

existed in the training set. In these cases, mutations in thecomplex being docked

were omitted from the training, as were those in homologous proteins (>45%

sequence identity in both chains). The training sets for therecalculated potentials

contained at least 1706 mutations, and only small changes inthe surface energies

were observed. The top 10 acceptable or better success rate was the same as when

the potential was trained with all mutants, indicating thathaving these data in the

training set does not influence docking success, and that themodel is robust to

small perturbations in the training set.

4 Conclusion

In summary, we have presented a simple interacting surface energy model based

on interactions between four different surface patches (neutral, donor, acceptor

and donor/acceptor), in which the energy of interacting surfaces is proportional to

the interacting surface area. Constants of proportionality are derived using muta-

tions for which experimental changes in binding free energies are available, and

changes in interaction areas are modelled byin silico mutagenesis from wild-type

crystal structures. The model yields realistic parametersfor electrostatic repelling

and attracting surfaces, and hydrophobic burial energy in quantitative agreement

with value derived from oil/water transfer, simulation andsmall mutational stud-

ies. When applied across whole binding interfaces, the model yields values which
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correlate with absolute binding free energies, as the interacting surface makes a

major contribution to the overall energy of binding. The model gives slightly

stronger correlations than total buried surface area, although it distinguishes itself

from the measure by being able to rank docked poses, thereby discriminating be-

tween specific and non-specific binding modes. Applied to a larger data set, the

method indicates that the hydrophobic force is the major driver of protein binding,

in accord with previous studies.113,114 The model is accessible via the CCharPPI

web server116 and an open source implementation can be downloaded to be run

locally fromhttp://life.bsc.es/pid/web/surface_energy/.
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Figure 1: An overview of the model derivation procedure, exemplified using

the mutation of P1 leucine ofStreptomyces griseus protease B (SGPB) to aspar-

tic acid, in the interaction with the turkey ovomucoid thirddomain (OMTKY3).

Voronoı̈ diagrams (left) are constructed for the wild-typeand mutant protein. The

P1 residue is shown, as is OMTKY3 Pro-138, with which it interacts. The dia-

grams are used to calculate interaction type areas (centre), the difference between

which are the changes in interaction type area upon mutation(top right). These are

used to construct a linear equation for this mutant (bottom right). In this case, the

mutation is dominated by a loss of 87.4Å2 area between neutral surfaces, and the

gain of 84.7Å2 of interaction between neutral surface and H-bond acceptorsur-

face, with smaller changes between other surfaces, such as acceptor-acceptor sur-

face. Such an equation is generated for each mutation, whichare collectively used

to find theγ values which best agree with the experimental∆∆G data. Voronoı̈

images created using Voroprot.117

Figure 2: Surface energies values (γ̂, cal.mol−1.Å−2) and standard deviations

(σ ) derived from the bootstrap aggregating for all interaction types. Also shown

are the sum of absolute changes in interaction area (nm2).

Figure 3:Model applied to the absolute binding free energy data. (A) The val-

idated set of high confidence affinities, with rigid complexes as black circles and

the flexible as blue stars. Standard error incalculated∆Gsurf are estimated usingσ

values derived from bootstrap aggregation, and error in experimental is set to 0.4
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kcal.mol−1 as suggested in Kastritis et al.87 For the sake of clarity, error bars are

omitted for the flexible complexes. (B) The model applied to the combined affin-

ity benchmark, categorised as rigid high-confidence (rhc), flexible high-confidence

(fhc), other rigid (rlc), other flexible (flc), small (s) and large (l).

Figure 4: Model applied to DockGround complexes, indicating the magnitude

of the components in each of the 4434 interactions. Interactions are ordered by

buried surface area.
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N rPred rBSA pPred pBSA

rhc 23 0.71 -0.70 <10−4 0.0001
fhc 30 0.39 -0.36 0.017 0.026
rlc 42 0.48 -0.47 0.0007 0.0009
flc 43 0.10 0.02 0.26 0.45
s 72 0.37 -0.41 0.0007 0.0002
l 30 0.51 -0.28 0.002 0.083

All 240 0.43 -0.40 <10−4
<10−4

Table 1: Correlations and significance of correlations for the model applied to
absolute binding free energy data, for the presented model and for buried surface
area. Categories as per Figure 3A.

Number Percent
High Medium Acceptable High Medium Acceptable

Top 1 0 7 14 0.0 5.7 11.4
Top 5 3 20 33 2.4 16.3 26.8
Top 10 5 28 46 4.1 22.8 37.4
Top 50 5 46 77 4.1 37.4 62.6
Top 100 5 57 101 4.1 46.3 82.1

All 7 71 121 5.7 57.7 98.4

Table 2: The performance of the model when applied to the ranking of docked
poses. Success rates are shown in terms of the number of hits and the percentage
of hits, in the top 1/5/10/50/100/all after clustering and ranking. Hits are defined
as high quality, medium quality or better, and acceptable quality or better, as per
the CAPRI criteria.93
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Figure 1: An overview of the model derivation procedure, exemplified using the
mutation of P1 leucine ofStreptomyces griseus protease B (SGPB) to aspartic
acid, in the interaction with the turkey ovomucoid third domain (OMTKY3).
Voronoı̈ diagrams (left) are constructed for the wild-typeand mutant protein. The
P1 residue is shown, as is OMTKY3 Pro-138, with which it interacts. The dia-
grams are used to calculate interaction type areas (centre), the difference between
which are the changes in interaction type area upon mutation(top right). These are
used to construct a linear equation for this mutant (bottom right). In this case, the
mutation is dominated by a loss of 87.4Å2 area between neutral surfaces, and the
gain of 84.7Å2 of interaction between neutral surface and H-bond acceptorsur-
face, with smaller changes between other surfaces, such as acceptor-acceptor sur-
face. Such an equation is generated for each mutation, whichare collectively used
to find theγ values which best agree with the experimental∆∆G data. Voronoı̈
images created using Voroprot.117
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Figure 3: Model applied to the absolute binding free energy data. (A) The vali-
dated set of high confidence affinities, with rigid complexesas black circles and
the flexible as blue stars. Standard error incalculated∆Gsurf are estimated usingσ
values derived from bootstrap aggregation, and error in experimental is set to 0.4
kcal.mol−1 as suggested in Kastritis et al.87 For the sake of clarity, error bars are
omitted for the flexible complexes. (B) The model applied to the combined affin-
ity benchmark, categorised as rigid high-confidence (rhc), flexible high-confidence
(fhc), other rigid (rlc), other flexible (flc), small (s) and large (l).
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of the components in each of the 4434 interactions. Interactions are ordered by
buried surface area.
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