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Abstract 

 

We present an updated and integrated version of our widely used protein-protein 

docking and binding affinity benchmarks. The benchmarks consist of non-

redundant, high quality structures of protein-protein complexes along with the 

unbound structures of their components. Fifty-five new complexes were added to 

the docking benchmark, 35 of which have experimentally-measured binding 

affinities. These updated docking and affinity benchmarks now contain 230 and 179 

entries, respectively. In particular, the number of antibody-antigen complexes has 

increased significantly, by 67% and 74% in the docking and affinity benchmarks, 

respectively. 

 

We tested previously developed docking and affinity prediction algorithms on the 

new cases. Considering only the top ten docking predictions per benchmark case, a 

prediction accuracy of 38% is achieved on all 55 cases, and up to 50% for the 32 

rigid-body cases only. Predicted affinity scores are found to correlate with 

experimental binding energies up to r=0.52 overall, and r=0.72 for the rigid 

complexes.  
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Introduction 

 

Protein-protein interactions are among the most important processes in biology, 

playing fundamental roles in the immune system, signaling pathways, and enzyme 

inhibition. Proteome-wide studies have revealed that most proteins interact with 

other proteins [1]. The experimental characterization of the structure of a protein-

protein complex is, however, difficult and not always successful. To complement 

experimental approaches, computational techniques for the prediction of protein 

complexes have been developed over the years, stimulated by the CAPRI experiment 

(Critical Assessment of PRedicted Interactions) [2]. Computational approaches for 

modeling protein-protein complex structures include ab-initio docking methods 

[3,4], homology-based methods based on the experimental structures of similar 

complexes [5-11], and integrative, information-driven methods [12], These 

approaches typically attempt to predict the most likely structure of a complex, but 

are not designed to predict how strongly the proteins bind or whether they bind at 

all. Thus a more complete computational description of protein-protein interaction 

also requires algorithms that can predict binding affinities. Although energy 

functions for affinity prediction and the ranking of docking poses are related, they 

are often developed specifically for their respective purposes and so far have shown 

varying and rather limited performance [13]. Example areas where scoring 

functions can be improved are entropic contributions [14], solvent effects [15], and 

the optimal combination of terms [16]. 
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Essential for the development of computational algorithms are training and test sets 

that are reliable and sufficiently large. It is computationally daunting to sift the 

Protein Data Bank for structures of protein-protein complexes; the experimental 

conditions and accuracies of these structures vary widely and are not always 

straightforward to assess, and neither is the definition of the biological unit. 

Recognizing this, various benchmarks were developed that attempt to collect a 

reliable and well-understood set of data. Our docking benchmark, which after its 

initial development [17] has seen three updates [18-20], is widely used for 

developing and assessing docking methods. Key features are the availability of both 

the complex structure and the unbound structures of the component proteins, non-

redundancy, and reliability of the data. Other benchmarks include DOCKGROUND 

[21], which also focuses on protein-protein interactions, and benchmarks that 

contain complexes of proteins with nucleic acids [22,23]. 

 

More recently we used our protein-protein docking benchmark as a starting point 

for developing a structure-based affinity benchmark [24,25], which includes the 

entries from our docking benchmark for which experimental binding affinities were 

available. The affinity benchmark has been used for the development of algorithms 

for predicting protein-protein binding free energies, with a typical correlation 

coefficient of r=0.6 with experimentally measured binding free energies [26-28]. 

 

In this paper we present updates to our docking and affinity benchmarks, of which 

the development is tightly integrated. We added 55 new protein-protein complexes 
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to the docking benchmark, for 35 of which experimental affinities could be found 

that were added to the affinity benchmark. These new additions to both 

benchmarks were then used, as an independent test set, to assess the performance 

of four docking algorithms and a large panel of affinity prediction algorithms that 

had been previously developed without seeing any of the new cases. This allowed us 

to assess the performance of docking and affinity predictions, both of which 

remained limited due to conformational changes, with an indication that low affinity 

complexes were also more challenging to dock. 

 

 

Results and Discussion 

 

Composition 

 

We added 55 cases to the docking benchmark (Table 1). PDB entries 3AAD and 

3P57 show two and three distinct binding modes, respectively. As in the previous 

versions of the benchmark, the complexes that display multiple binding modes were 

split into different cases. This represents an increase of 31% over the previous 175 

cases. We could find binding affinity data for 35 of the cases, which brought the total 

number of cases in the affinity benchmark to 179, a 24% increase. In Table 2 we 

show the composition of the updated benchmarks compared with the previous 

versions. The most noticeable increase is for antibody-antigen complexes: from 24 

cases to 40 cases in the docking benchmark and from 19 cases to 33 cases in the 
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affinity benchmark, which reflects a surging interest in antibody-based therapeutics.  

 

In the previous versions of the benchmarks, some categories are underrepresented, 

most notably the antibody-antigen cases (14%) and difficult cases (15%), while 

rigid-body cases are overrepresented (68%). Although there still is 

overrepresentation and underrepresentation in the updated benchmark, the newly 

added cases do not worsen the representation of any category, and achieve a more 

balanced composition for most categories. We examined the new cases on various 

properties related to size and flexibility of the component proteins, but only found 

the total solvent accessible surface area of the component proteins to be 

significantly smaller in docking benchmark 4 than the 55 new cases (p-value=0.05; 

Kolmogorov-Smirnov test), with average total surface areas of ~24,000 Å2 and 

~29,000 Å2, respectively. It is not clear, however, to what extent this difference 

reflects changes in the content of the PDB. Finally, the cases in the docking 

benchmark that involve NMR structures increased from 16 cases (9%) in version 4 

to 32 cases (14%) in version 5.  

 

Performance of docking algorithms 

 

Four docking algorithms (see Material and Methods) we applied to the new cases 

and their results are shown in Figure 1A. SwarmDock [29,30], PyDock [31], and 

ZDOCK [32,33] are ab-initio methods, whereas HADDOCK uses bioinformatics 

predictions to drive the docking [34], in this particular case it uses CPORT to predict 
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interface residues [35] and PARATOME [36] to identify CDR loops of antibodies (see 

Methods). Overall the success rates (at least one acceptable prediction for a 

benchmark case) ranged between 5-16% for the top prediction, 20-38% for the top 

10 predictions, and 40-67% for the top 100 predictions, comparable to the success 

rates on version 4 of the docking benchmark using SwarmDock and ZDOCK [37,38]. 

As expected, the success rate was much higher for the rigid-body category, with the 

success rates for the top 10 predictions at 31-50%, compared to 4-22% for the 

medium and difficult cases. The success rates also varied according to biological 

category, highest for enzyme containing complexes (29-41%) followed by the 

antibody / antigen complexes (13-38%) and finally the other complexes (5-36%). 

 

We observed that the performances of the different docking algorithms were 

correlated; for 25% of the rigid-body cases, not a single acceptable solution was 

found in the top 10 predictions by any of the algorithms, and for 22% cases all four 

methods succeeded. These figures are much higher than would be expected if the 

complexes with correct predictions were randomly distributed amongst the rigid-

body cases (16% and 2%, respectively). Some insight into why some interactions 

were inherently easier to dock than others, even within the rigid-body category, can 

be gleaned by focusing on the cases for which affinities are available. When all the 

docking algorithms failed to find an acceptable solution in the top 10 predictions, 

the affinity predictors also predicted weak binding energies (3EOA, 3BIW, 4M76, 

3RVW, 4GXU, 3H2V). This is either because the complexes are indeed of low affinity, 

or due to deficiencies in the energy functions used in both docking and affinity 
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prediction. The success rates were higher for enzyme containing and antibody-

antigen complexes than for other complexes, as the latter tend to form weaker 

interactions. 

 

We searched for features indicative of a successful docking outcome. We define a 

successful run as a benchmark case for which at least three out of four docking 

algorithms yielded an acceptable or better prediction in the top 100 predictions, 

while an unsuccessful docking run had at most one algorithm with an acceptable 

prediction in the top 100 predictions. We asked which features could separate the 

cases with successful docking runs from the cases with unsuccessful docking runs. 

Because a major driving force in many protein-protein docking algorithms is the 

desolvation of the protein components [28], we computed the buried interface area 

(ΔASA) upon complex formation, which is a good measure for desolvation. We 

further hypothesized that strong binders were easier to dock than weak binders. 

Indeed ΔASA and experimentally measured binding free energy achieved a good 

separation of the two sets of cases with successful and unsuccessful docking runs 

(Figure 2). Note that the correlation between ΔASA and the experimental binding 

energy is low, as reported in Figure 1B and discussed below. These two features 

were individually mildly predictive of docking success (for example, the seven 

strongest binders all resulted in successful docking runs), the combination of them 

could almost cleanly separate the successful and unsuccessful docking runs. Below 

the separating line, 79% docking runs were successful, and above the line the 

docking performance drops to 31%. The outlier 2GAF [39] has the largest interface 
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area of all the cases and a binding energy stronger than any of the other cases with 

unsuccessful docking runs. Below we discuss this complex in more detail. 

 

Performance of affinity prediction algorithms 

 

The change in buried surface area, ΔASA, does not correlate well with binding 

energy (r=–0.16), even for the rigid complexes (I-RMSD < 1.0Å, r=–0.28), due to 

complexes with large ΔASA but low affinity, such as the snpA protease / inhibitor 

complex (4HX3), as well as high affinity complexes with low surface area such as the 

C836 (3L5W) and carlumab (4DN4) antibodies, which are highly optimized for 

cytokine binding. Similarly, the binding energy does not correlate highly with I-

RMSD (r=–0.24), and only a small improvement is found using a minimal linear 

model combining ΔASA and I-RMSD (r=0.31) [40]. We further evaluated a number of 

prediction methods that include the specific geometry and composition of the 

interaction (Figure 1B). This yielded overall correlations of up to r=0.53, with a 

predictive power much higher for rigid complexes, up to r=0.75, than for the flexible 

cases, up to r=0.53. The best performing methods were trained using either the first 

version of the affinity benchmark [25] or using changes in affinity upon mutation 

[41], yet these functions yielded lower correlations on the new benchmark cases 

than the best correlation of r=0.63 previously reported for the original affinity 

benchmark [26,27,42]. The correlations were lower for the statistical potentials and 

docking scores.  
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For some of the complexes, the predictions were consistently poor across all 

methods. All methods underestimated the affinities for the antibody / 

hemagglutinin complex (4GXU), which features a glycosylated asparagine at the 

periphery of the interface, the C3D / integrin α-M complex (4M76), for which the 

interaction is mediated via a Ca2+ ion at the core of the interface, and the efalizumab 

/ integrin α-L complex (3EOA), which is the most rigid interaction in the benchmark 

(I-RMSD = 0.39 Å). On the other hand, all methods overestimated the affinities for 

the actin / twinfilin (3DAW), AL-57 / integrin α-L (3HI6), TolA / G3P (2X9A) and 

HIF2 / ARNT (3F1P) complexes, all of which have high flexibility, for which the 

energy penalty of conformational rearrangement may not be well estimated. 

 

Highlighted case: Poly(A) polymerase VP55 / Vaccinia protein VP39 (2GAF) 

 

Figure 2 shows that the combination of experimentally measured binding energy 

and buried surface area forms a good indicator for a successful docking run. The 

complex of Poly(A) polymerase VP55 and Vaccinia protein VP39 (2GAF) [39], 

however, is a striking outlier. Only a single docking protocol was successful, despite 

2GAF having the largest buried surface area of all complexes and stronger binding 

than any of the other complexes that had at most one successful docking run. 

Furthermore, this complex belongs to the rigid-body category, with an I-RMSD of 

0.69 Å, and we did not find co-factors or other aspects that might complicate the 

docking. We studied 2GAF in more detail to understand the poor docking 

performance. Inspection of the structure (Figure 3) suggests that the difficulty may 
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be related to the deep cavity of the receptor being completely filled by the ligand. To 

quantify this, we calculated the degree of encapsulation of a protein by its binding 

partner using Cα atoms, and performed the same calculation for all the benchmark 

cases in Figure 2. We found that 39 residues of the vaccinia protein VP39 are within 

the cavity of the Poly(A) polymerase VP55 (indicated in blue in Figure 3). This is the 

highest number observed in the set of proteins considered for Figure 2; 4FQI and 

3BX7 have 25 and 12 residues encapsulated, respectively, while all other proteins 

have fewer than ten residues within the cavities (39 proteins show zero resides). 

Presumably the tight fit seen in 2GAF renders the mouth of the energy funnel 

narrow, which may impact the ability of docking algorithms to find and enter the 

energy funnel. In addition, the tight fit may cause difficulty for grid-based methods 

(ZDOCK, PyDock), because even small deviations from the ideal position, resulting 

from the discreet rigid-body conformational parameters, may cause clashes that 

prevent favorable scores. Indeed, for a run with a finer rotational sampling (6° vs. 

the default of 15°), ZDOCK found a high-accuracy prediction at rank 23. SwarmDock 

was able to find a solution in the top 5. Small conformational changes allowed by 

SwarmDock, which may have alleviated steric clashes at the funnel entrance, could 

have facilitated a smoother entry to the binding funnel. Indeed, the lowest frequency 

normal mode corresponds to the opening of the binding cavity, allowing ligand 

insertion. In the case of HADDOCK, it was the low quality of the bioinformatics 

predictions for the ligand binding site (recall of 7%) that prevented the sampling of 

near-native solutions. Docking with center-of-mass or random ambiguous 

interaction restraints (two ab-initio docking modes of HADDOCK) does generate 
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acceptable solutions in the top 50 (data not shown). In general, it appears that the 

poor performance of the docking algorithms for 2GAF is caused by the inability to 

correctly sample or find the native orientation of the ligand within the receptor 

cavity. This makes 2GAF an exception to the general consensus in the field that 

failures of docking protocols are caused either by inaccuracies of the scoring 

functions (including explicit solvation and entropy effects) or the difficulty of 

modeling protein conformational changes [43,44]. 

 

 

Conclusions  

 

We have presented updated versions to our widely used protein-protein docking 

and affinity benchmarks with respectively 55 and 35 new entries. This represents 

relative increases of 31% and 24% cases, respectively compared with the previous 

versions. The updated benchmarks have slightly improved the balance with respect 

to both complex types and the range of conformational changes between bound and 

unbound forms. They are available from the following sites: 

http://zlab.umassmed.edu/benchmark (docking benchmark) and 

http://bmm.cancerresearchuk.org/~bmmadmin/Affinity (affinity benchmark).  

 

We analyzed the performance of four different docking methods and a 

comprehensive set of state-of-the-art protein-protein complex affinity prediction 

methods. We found that the newly added complexes provide a challenging test set 
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for both docking and affinity prediction algorithms: Structure predictions success 

rates and correlations with experimentally obtained affinities are lower than 

reported using previous versions of the benchmark. These updated benchmarks will 

aid the community in improving these algorithms and increasing our understanding 

of biomolecular interactions.  

 

 

Methods 

 

Benchmark construction 

 

We collected new structures for our benchmarks from the Protein Data Bank (PDB) 

[45] using a semiautomatic pipeline. We first used the BLAST sequence homology 

search tool [46] to find protein-protein complexes for which the experimental 

structures of both the complex and the unbound component proteins were 

available. We also used the SACS resource [47] to collect a candidate list of antibody-

antigen complexes. These complexes were then filtered using various quality 

criteria: (1) the complex structure needed to be determined by X-ray 

crystallography, the unbound structures by either X-ray crystallography or nuclear 

magnetic resonance (NMR); (2) the sequence identity between bound and unbound 

chains needed to be at least 96% with an alignment coverage larger than 80%; (3) 

the X-ray resolution needed to be 3.25 Å or better; (4) chains needed to consist of at 

least 30 residues.  
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While constructing the previous versions of our docking benchmark [17-20], we 

deemed two complexes redundant when the pairs of interacting domains were the 

same at the SCOP [48] family level. Antibody-antigen complexes were considered 

redundant only when the SCOP families of the antigens were identical, and at least 

80% of the antigen interface residues were shared between the two complexes. We 

used SCOPe 2.03 [49] (previously named SCOP 1.75C), which represented a limited 

update with respect to the 1.75 release used for the first four versions of the docking 

benchmark. To further compensate for the lack of SCOP coverage for the most 

recently solved PDB structures, we inferred their SCOP family level assignments 

using the older PDB entries with identical sequences and known SCOP IDs.  

 

We manually investigated the candidate complexes extensively, consulting the 

literature associated with the PDB entries. We checked whether any residues were 

missing or mutated in the interface (allowing such residues only if binding would 

not be affected), and whether co-factors that affect binding were present or 

compatible in both bound and unbound forms. The starting point for the manual 

step was the first biological assembly listed in the PDB, although in a number of 

cases these were not accurate and an alternative assembly had to be used. When 

multiple entries were available for a complex or a component protein, we chose the 

entry that had the best overall structure quality. This was to some extent a 

subjective criterion, as we had to balance all the aforementioned features in the 

decision. For component proteins with NMR structures we chose the model that had 
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the lowest interface root mean square deviation (I-RMSD) from the bound structure. 

Finally, we prepared structure files that included the fewest protein chains that 

correctly reflected the binding process, aligned the bound and unbound structures, 

and retained only those HETATM fields that we deemed biologically relevant. 

 

We evaluated several properties from the structure files. The change in solvent 

accessible surface area (ΔASA) upon complex formation was calculated using the 

NACCESS algorithm [50]. The I-RMSD was calculated by superposing the unbound 

component proteins onto their bound forms, using the Cα atoms for residues that 

had any atom within 10 Å of any atom of the binding partner. We also assessed the 

expected difficulty of a benchmark entry for protein-protein docking algorithms 

[17-20]. Complexes with I-RMSD > 2.2 Å were considered difficult, and complexes 

with I-RMSD < 1.5 Å were considered rigid-body if their fnon-nat [51] were < 0.40. All 

other complexes were considered to be of medium docking difficulty.  

 

We then used the set of complexes as a starting point for extending the structural 

affinity benchmark. For many entries, affinities were reported multiple times either 

by different groups or using different techniques. These measurements were mostly 

in mutual accordance with one another, typically within one order of magnitude in 

terms of equilibrium constant. When selecting the value to include in the 

benchmark, priority was given to affinities reported for samples matching the 

sequences of the reported structures of the complexes. When this criterion could 

not be met or still resulted in multiple values preference was based on sequence 
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similarity and the measurement method. As in the first version of the affinity 

benchmark, most affinities were measured using surface plasmon resonance, 

isothermal titration calorimetry, or spectroscopic methods. The affinities of four 

new cases were measured using the more recent thermophoresis and bio-layer 

interferometry technologies. We also collected experimental conditions and 

additional thermodynamic and kinetic data whenever available. Affinities were 

measured at a pH in the 7–8 range, typically within the 20–25°C temperature range, 

and with an ionic strength of around 150 mM. In the context of affinity prediction 

we consider complexes with I-RMSD < 1.0 Å as rigid-body and the remaining 

complexes flexible. 

 

Docking algorithms 

 

ZDOCK is an FFT-based rigid-body docking algorithm that performs a grid-based 

exhaustive search with a 15° or 6° rotational sampling in three-dimensional (3D) 

rotational space and a 1.2 Å sampling in the 3D translational space [32,33,38,52]. 

For each combination of the three rotational angles, the best scoring prediction in 

the translational space is retained, yielding 3600 or 54000 predictions for the 15° 

and the 6° sampling respectively. Here we report results obtained using the 15° 

sampling. We used ZDOCK version 3.0.2 that uses the IFACE [53] scoring function 

and the advanced 3D convolution library [54]. 
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SwarmDock is a flexible docking method employing a population-based memetic 

algorithm that combines a modified particle swarm optimization global search with 

an adaptive random local search [29,30]. Elastic network normal mode analysis is 

used to model flexibility, and the algorithm simultaneously optimizes translational, 

quaternion and normal coordinates, using the DComplex statistical potential as 

objective function [55]. The algorithm was run at the SwarmDock server [37]; 

swarms are initialized around ca. 120 points surrounding the receptor and the 

algorithm was run four times from each starting point for 600 iterations. The lowest 

energy solutions found in each run were ranked using the centroid potential of Tobi 

[56] and clustered, retaining only the lowest energy member of each cluster. 

 

PyDock [31] is a protein-protein docking protocol built upon FTDock [57], an FFT 

based method that searches for geometrically complementary rigid-body poses in 

the translational and rotational space. FTDock predicts 10,000 poses which are then 

scored using an empirical potential composed of electrostatic interaction 

(Coulombic energy with a distance-dependent dielectric constant ε = 4.0r and 

charges specified by the AMBER94 force field [58], truncated to be in between 1.0 

and -1.0 kcal/mol), desolvation (based on atomic solvation parameters optimized 

for rigid-body docking), and a limited (10%) contribution from the van der Waals 

energy (6-12 Lennard-Jones potential with atomic parameters from the AMBER94 

force field, truncated to be below 1.0 kcal/mol). 
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HADDOCK (High Ambiguity Driven DOCKing) [34] is a semi-flexible docking 

protocol that uses bioinformatics predictions and biochemical/biophysical 

interaction data to drive the docking process. It uses CNS (Crystallography and NMR 

system) [59] as its structure calculation engine. The protocol consists of three steps: 

i) randomization of orientation and rigid-body docking via energy minimization 

driven by interaction restraints (it0), ii) semi-flexible refinement in the torsional 

angle space in which side-chain and backbone atoms of the interface residues are 

allowed to move (it1) and iii) Cartesian dynamics refinement in explicit solvent, 

typically water. The final structures are clustered using the pairwise backbone 

ligand interface RMSD and the resulting clusters ranked according to the HADDOCK 

score (weighted sum of the restraint energy, the van der Waals and electrostatic 

energies based on OPLS parameters [60] and a desolvation energy term [61]). Note 

that in the docking performance analysis presented here, no clustering was 

performed and individual models were selected based on their HADDOCK score. 

 

We used the HADDOCK web server [62], outputting 10000/400/400 models for the 

three stages of the protocol. Restraints to drive the docking were derived from 

bioinformatics predictions by CPORT [35], except for the antibody-antigen 

complexes for which complementarity-determining regions (CDRs) identified with 

PARATOME [36] were defined as active, and all solvent-accessible residues of the 

antigen were used as passive residues to define ambiguous interaction restraints to 

drive the docking. The predicted interfaces (and their recall and precision) used for 
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docking are available at the SBGRid Data Bank, along with all docking decoys and 

HADDOCK input files from the deposited HADDOCK docking set [63]. 

 

Affinity prediction algorithms 

 

ZAPP predicts protein-protein binding free energies using a linear combination of 

nine energy terms and a constant [26]. Only one term uses the unbound structures 

in addition to the complex structures, while the other eight terms only require the 

complex structure.  

 

ConsBind is an affinity prediction method based on machine learning in which the 

predicted affinity is a consensus of four learners [42]: multivariate adaptive 

regression splines (MARS), random forest regression (RF), radial basis function 

(RBF) interpolation, and an M5' regression tree (M5'). The learners were trained 

using 143 of the 144 affinities in the previous affinity benchmark [25] with all 108 

features extracted from the bound structures using the CCharPPI web server [64]. 

Information from the unbound structures was not used. The final consensus score is 

the arithmetic mean of the four learners. 

 

Solvebind is a binding affinity prediction method based on the global surface model 

of Kastritis et al. [27], combining the number of atoms in the interface (NAtomsINT ) 

and the percentages of charged and polar residues in the non-interacting surface 

(%AAcharNIS and %AApolNIS): 
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-logKd = α . %AApolNIS + β . %AAcharNIS + γ . NAtomsINT + δ 

 

with α = 0.0857, β = -0.0685, γ = 0.0262, and δ = 3.0125 (obtained after four-fold 

cross-validation based on the rigid-body complexes of the previous affinity 

benchmark [25]). Properties of the non-interacting surface were found to correlate 

with affinity [13,27] and may regulate solvation and electrostatic contributions to 

binding affinity [27,65]. 

 

Besides the aforementioned binding affinity prediction methods developed in our 

groups, we also assessed the minimal affinity model of Janin (ΔASA/RMSD) [40], 

buried surface area (ΔASA), the DOPE [66] and DComplex [55] statistical potentials, 

the PyDock [31], SIPPER [67], ZDOCK [68] and FireDock [69] docking scores, as well 

as contact potentials (ΔΔG_AW, ΔΔG_AU, ΔΔG_CW, ΔΔG_CU) [41] and a surface 

energy model (ΔΔG_V) [70] derived from mutation data. 

 

 

Supplementary material 

 

CDR definition used for docking antibody-antigen complexes with HADDOCK, 

predicted affinities listed by benchmark entry, experimental conditions of the 
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affinities measurements, and the full references to the experimentally measured 

affinities. 

 

The docking benchmark is hosted at http://zlab.umassmed.edu/benchmark, and the 

affinity benchmark at http://bmm.cancerresearchuk.org/~bmmadmin/Affinity 
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Figure legends 

 

Figure 1. (A) Performance of four docking algorithms on the new cases in the 

benchmarks, showing whether acceptable/medium/high quality structures 

evaluated using the CAPRI criteria were present in the top 1/5/10/50/100 

predictions for each case (denoted by T1, T5, T10, T50, and T100, respectively). Also 

shown are the overall success rates (bottom), complex type (left) and binding 

energy where available (far left). The complexes are ordered first by the difficulty 

category, then by I-RMSD. (B) Evaluation of affinity prediction methods. Complexes 

are ordered by increasing experimental affinities, to which the predicted affinities 

were fitted using linear regression in order to compare the performance of various 

prediction methods. The performances are grouped using a weighted average 

linkage agglomerative clustering algorithm (bottom). Correlations against the 

experimental data are shown at the top, for all the new benchmark cases as well as 

for the flexible complexes (I-RMSD ≥ 1.0 Å) only or for the rigid complexes (I-RMSD 

< 1.0Å) only. Also shown are the I-RMSD values (right), complex type (left), and the 

docking success rate at top 10 predictions (far left). 

 

Figure 2. Interface area vs. experimental binding energy of the benchmark cases 

with successful docking runs (green; at least three docking protocols yielding 

acceptable predictions in the top 100) or unsuccessful docking runs (red; at most 

one docking protocol yielding acceptable predictions in the top 100). 
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Figure 3: Crystal structure (2GAF) of the complex of Poly(A) polymerase (orange) 

VP55 and Vaccinia protein VP39 (blue and cyan). Vaccinia protein VP39 residues 

that are within the Poly(A) polymerase cavity are colored blue, while the residues 

outside the cavity are colored cyan. 

 

 

Tables 

 

Table 1: New cases in the docking benchmark 5 and affinity benchmark 2. 

 

Table 2: Composition of the updated docking and affinity benchmarks (in 

parentheses are values for the previous versions of the benchmarks, docking v4 and 

affinity v1). 

  



Complex PDB (a)
Class
(b)

Unbound
PDB 1

Component 1
Unbound
PDB 2

Component 2
iRMSD
(Å)
(c)

∆ASA
(Å2)
(d)

Kd (M)
∆G
(kcal/mol)
(e)

Temp.
(K)

pH
Method
(f)

Ref.
(g)

3H2V A:E OX 3MYI A Vinculin tail domain 1WI6 A(8) Raver1 RRM1 domain 0.8 1263 2.21e-5 -6.31 296.0 8 ITC 1

3DAW A:B OX 1IJJ A Alpha actin 2HD7 A(5)
Twinfilin-1 C-terminal do-
main

1.49 2323 2e-5 -6.41 SA 2

4HX3 BD:A EI 4HWX AB
Neutral proteinase in-
hibitor ScNPI

1C7K A Zinc endoprotease 0.9 2086 6e-6 -7.41 310.0 7.4 SA 3

3HI6 XY:B A 3HI5 HL AL-57 Fab fragment 1MJN A Integrin alpha-L I domain 1.65 1871 4.7e-6 -7.27 7.4 SPR 4
2X9A D:C OR 1S62 A(8) TolA C-terminal domain 2X9B A G3P TolA binding domain 1.33 1571 4.4e-6 -7.31 298.0 7 SA 5

3R9A AC:B OR 1H0C AB
Alanine-glyoxylate amino-
transferase

2C0M A
PEX5P TPR repeat do-
main

1.91 1926 3.5e-6 -7.44 298.0 7.5 ITC 6

1M27 AB:C OX 1D4T AB SAP-SLAM Complex 3UA6 A Fyn kinase SH3 domain 1.22 799 3.45e-6 -7.45 298.0 8 ITC 7

3A4S A:D EI 1A3S A
SUMO-conjugating en-
zyme UBC9

3A4R A
NFATC2-interacting pro-
tein SLD2 ubiquitin-like
domain

0.72 1116 2.81e-6 -7.57 298.0 7.5 ITC 8

3F1P A:B OX 1P97 A(9)
HIF2 alpha C-terminal
PAS domain

1X0O A(5)
ARNT C-terminal PAS do-
main

2.52 1919 1.4e-6 -7.85 293.0 7.5 ITC 9

4M76 A:B OR 1C3D A C3D 1M1U A
Integrin alpha-M CD11B
A-domain

0.43 1046 4.5e-7 -8.66 298.0 7.5 ITC 10

3LVK AC:B E 3LVM AB Cysteine desulfurase IscS 1DCJ A(12) Sulfurtransferase tusA 0.81 1609 3.04e-7 -8.89 298.0 7.4 SPR 11

3L89 ABC:M OR 3L88 ABC Ad21 fiber knob 1CKL A
CD46 SCR1 and SCR2 do-
mains

2.51 2167 2.84e-7 -8.93 298.0 7.4 SPR 12

4IZ7 A:B EI 1ERK A Non-phosphorylated ERK 2LS7 A(1)
PEA-15 Death Effector
Domain

1.56 1202 1.33e-7 -9.44 300.0 7.5 SA 13

3K75 D:B ER 1BPB A DNA polymerase beta 3K77 A
Reduced XRCC1, N-
terminal domain

0.64 1195 1.1e-7 -9.49 7.5 SA 14

3PC8 A:C ER 3PC6 A
DNA repair protein
XRCC1

3PC7 A
DNA ligase III-alpha
BRCT domain

0.5 1240 1.02e-7 -9.54 7.5 SPR 15

3BIW A:E OX 3BIX A Neuroligin-1 2R1D A Neuroligin-1-beta 0.39 1191 9.7e-8 -9.41 293.0 7.2 ITC 16
3SZK DE:F OX 3ODQ AB MetHaemoglobin 2H3K A ISDH-N1 2.1 1263 9.01e-8 -9.45 293.0 7.5 ITC 17
3AAA AB:C OX 3AA7 AB Actin capping protein 1MYO A(30) Myotrophin 1.78 1686 2.1e-8 -10.30 293.0 7 SPR 18
3RVW CD:A A 3RVT CD 4C1 Fab 3F5V A DER P 1 allergen 0.5 1383 1.9e-8 -10.53 298.0 7.5 ITC 19

3BX7 A:C OX 3BX8 A Lipocalin 2 3OSK A
CTLA-4 extracellular do-
main

1.63 2349 9e-9 -10.98 298.0 7.4 SPR 20

3MXW LH:A A 3MXV LH
Anti-Shh 5E1 chimera Fab
fragment

3M1N A
Sonic Hedgehog N-
terminal domain

0.48 1696 7e-9 -11.31 303.0 7.2 ITC 21

4GXU MN:ABEFCD A 4GXV HL 1F1 antibody 1RUZ HIJKLM 1918 H1 Hemagglutinin 0.78 1830 6.2e-9 -11.20 BLI 22

4G6J HL:A A 4G5Z HL
Canakinumab antibody
fragment

4I1B A Interleukin-1 beta 0.61 1893 4.1e-9 -11.44 298.0 7.4 TP 23

3V6Z AB:F A 3V6F AB Fab E6 3KXS F
Capsid protein assembly
domain

1.83 1922 3.3e-9 -11.57 7.4 SPR 24

3S9D B:A OR 1N6U A(15) IFNAR2 1ITF A(9) IFNa2 1.69 1841 3e-9 -11.63 7.5 SA 25
3EOA LH:I A 3EO9 LH Efalizumab Fab fragment 3F74 A Integrin alpha-L I domain 0.39 1272 2.2e-9 -11.81 298.0 7.4 SPR 26
2GAF D:A ER 3OWG A Poly(A) polymerase VP55 1VPT A Vaccinia protein VP39 0.69 3368 1.2e-9 -12.17 7 SPR 27

4FQI HL:ABEFCD A 4FQH HL CR9114 Fab 2FK0 ABCDEF
H5N1 influenza virus
hemagglutinin

1.08 1459 9e-10 -12.55 303.0 7.4 BLI 28

2VXT HL:I A 2VXU HL
Murine reference antibody
125-2H Fab

1J0S A(6) Interleukin-18 1.33 2163 5.33e-10 -12.65 SPR 29

4G6M HL:A A 4G6K HL
Gevokizumab antibody
fragment

4I1B A Interleukin-1 beta 0.49 1673 2.9e-10 -13.01 298.0 7.4 TP 23

2W9E HL:A A 2W9D HL ICSM 18 Fab fragment 1QM1 A Prion protein fragment 1.13 1677 1.3e-10 -13.49 9.6 ELISA 30
3L5W LH:I A 3L7E LH C836 Fab 1IK0 A(11) Interleukin-13 0.48 1138 5.4e-11 -14.01 298.0 7.4 SPR 31
4DN4 LH:M A 4DN3 LH CNTO888 Fab 1DOL A MCP-1 0.81 1317 3.8e-11 -14.22 298.0 7.1 SPR 32
1JTD B:A EI 3QI0 A BLIP-II 1BTL A TEM-1 beta-lactamase 0.44 2180 2.72e-11 -14.41 298.0 7 SA 33
3G6D LH:A A 3G6A LH CNTO607 Fab 1IK0 A(10) Interleukin-13 1.86 1793 1.84e-11 -14.65 298.0 7.3 SPR 34

Supporting Table 1: New interactions in version 2 of the structural affinity benchmark. Notes: (a) PDB entry with the chain codes noted AB:C to represent a complex where
chains A and B make up component 1, chain C, component 2. Some of the unbound components have NMR structures; the number in parentheses refers to a model in the NMR
ensemble. The processed coordinate files may be downloaded from http://zlab.umassmed.edu/benchmark/ (b) Functional classes: A antigen/antibody; EI enzyme/inhibitor; ER enzyme
complex with a regulatory or accessory chain; OR receptor containing; OX miscellaneous. (c) Root-mean-square displacement of the Cα atoms of interface residues of the two partners
after the unbound and the bound interfaces have been superimposed by least-square. (d) Change in accessible surface area (ASA) between the complex and its components in bound
conformation. (e) ∆G = −RT lnK; temperatures are as reported, with ”ambient” or ”not stated” set to 298 K. Additional kinetic and thermodynamic are available online at http:

//bmm.cancerresearchuk.org/~bmmadmin/Affinity (f) Method used to determine affinity: ITC isothermal titration calorimetry; SA spectroscopic assay; SPR surface plasmon resonance;
BLI biolayer interferometry; TP thermophoresis; ELISA enzyme-linked immunosorbent assay. (g) Primary citation as listed below. Additional references and corroborating data are available
online at http://bmm.cancerresearchuk.org/~bmmadmin/Affinity
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1M27 −7.45 799 −9.27 −499 −36.20 2.72 −21.15 −9.56 −8.72 −11.29 −10.84 −10.56 −8.61 −8.01 −6.25 −7.75 −7.65 6.30 −8.23 −138.84 −82.13 644.2 6.61
3PC8 −9.54 1240 −14.67 −770 −28.96 6.09 −60.48 −3.87 −6.28 −9.05 −15.47 −20.36 −9.62 −8.82 −9.33 −7.91 −8.92 5.55 −9.46 −215.42 −103.27 1108.4 10.39
3BIW −9.41 1191 −9.66 −681 −18.71 0.66 −18.34 −0.13 −3.14 −3.21 −7.69 −12.41 −7.87 −7.83 −6.42 −10.72 −8.21 7.25 −9.69 −120.07 −69.44 516.8 10.37
3F1P −7.85 1919 −18.28 −1521 −44.79 14.04 −50.20 −2.11 −4.61 −9.28 −18.02 −29.53 −8.87 −10.64 −14.22 −17.52 −12.82 8.93 −10.89 −233.74 −87.55 1299.3 9.57
3A4S −7.57 1116 −11.30 −643 −37.00 2.85 −29.43 −10.00 −11.97 −9.54 −14.03 −11.81 −10.28 −7.99 −6.82 −6.08 −7.79 5.58 −8.03 −177.25 −109.72 902.0 9.46
2X9A −7.31 1571 −17.03 −945 −21.02 1.64 −82.03 −10.36 −18.63 −16.73 −27.46 −22.05 −11.31 −12.30 −11.89 −14.39 −12.47 7.24 −10.15 −222.07 −116.17 1302.4 9.06
3L89 −8.93 2167 −13.68 −1446 −21.95 8.68 −45.87 −3.72 −6.21 −10.31 −19.61 −27.60 −9.57 −9.93 −8.90 −10.35 −9.69 10.19 −12.05 −218.08 −127.60 1238.1 10.51
4HX3 −7.41 2086 −16.70 −1372 −29.60 4.68 −41.56 −7.70 −3.84 −7.07 −18.38 −23.96 −8.61 −10.73 −13.63 −10.35 −10.83 10.03 −12.80 −221.45 −118.88 1235.4 12.65
3H2V −6.31 1263 −9.53 −712 −13.64 −0.29 2.30 −1.86 −3.44 −6.85 −9.37 −13.35 −8.58 −8.22 −8.89 −7.75 −8.36 5.99 −7.45 −114.67 −58.88 672.5 9.81
3AAA −10.30 1686 −13.84 −1123 −43.31 0.45 −60.77 −6.54 −7.19 −15.89 −20.28 −19.73 −11.36 −11.28 −10.45 −8.67 −10.44 7.01 −9.90 −244.97 −131.67 1257.6 8.68
4IZ7 −9.44 1202 −10.75 −717 −26.59 5.03 −37.98 −7.02 −5.37 −10.06 −13.26 −19.02 −8.74 −8.82 −9.29 −9.36 −9.05 6.76 −9.98 −160.50 −81.94 881.3 6.84
3SZK −9.45 1263 −11.16 −1128 −19.30 1.27 −7.58 −12.35 −13.07 −9.10 −15.60 −16.95 −9.16 −9.36 −11.27 −11.47 −10.31 6.34 −9.53 −135.20 −69.74 704.4 7.07
1JTD −14.41 2180 −19.50 −1910 −48.40 12.04 −53.71 −8.29 −17.27 −19.10 −29.19 −29.32 −13.64 −12.42 −12.65 −11.34 −12.51 8.88 −13.51 −234.03 −99.64 1729.0 14.05
3S9D −11.63 1841 −15.52 −1082 −32.77 10.16 −56.36 −11.61 −14.45 −10.30 −16.87 −25.54 −11.23 −10.68 −12.58 −11.34 −11.46 8.14 −11.41 −186.75 −92.79 1262.9 9.27
2GAF −12.17 3368 −19.44 −1949 −41.41 7.73 −48.72 −13.37 −18.50 −16.22 −36.96 −39.10 −9.00 −12.29 −11.42 −8.67 −10.34 11.58 −10.01 −292.91 −150.15 1622.1 18.09
3K75 −9.49 1195 −12.43 −1011 −36.98 2.73 −51.09 −3.08 −10.34 −5.05 −12.58 −18.86 −9.77 −8.73 −11.27 −7.75 −9.38 6.10 −10.46 −142.06 −69.75 817.7 9.94
3R9A −7.44 1926 −15.28 −959 −17.93 −2.26 −30.09 2.71 1.23 −8.52 −24.01 −25.80 −7.54 −10.59 −7.36 −10.22 −8.92 7.47 −9.05 −180.61 −105.48 1007.7 9.59
3LVK −8.89 1609 −11.46 −902 −43.02 11.12 −43.88 −4.24 −5.90 −13.58 −25.16 −17.49 −9.85 −9.23 −10.09 −7.75 −9.23 6.25 −7.27 −235.72 −122.70 1524.6 11.10
3BX7 −10.98 2349 −21.48 −1627 −44.46 10.31 −75.21 −7.48 −10.34 −7.30 −19.53 −37.80 −10.80 −11.75 −12.00 −14.39 −12.24 9.57 −11.00 −268.18 −129.98 1697.1 11.20
3DAW −6.41 2323 −19.23 −1519 −28.45 9.75 −107.16−9.62 −11.75 −16.94 −25.66 −33.67 −10.66 −12.17 −12.60 −10.42 −11.46 8.47 −11.28 −319.66 −161.42 1650.0 11.15
4M76 −8.66 1046 −9.68 −499 −8.15 0.39 −10.81 −4.46 −7.06 −6.59 −14.49 −8.76 −7.93 −7.18 −5.88 −6.08 −6.77 5.18 −7.31 −94.73 −44.33 577.8 9.76
3G6D −14.65 1793 −16.16 −1238 −57.10 15.33 −61.34 −8.25 −12.70 −16.31 −19.21 −25.67 −12.58 −12.60 −12.90 −16.35 −13.61 9.14 −11.30 −278.12 −141.04 1423.9 9.09
3L5W −14.01 1138 −11.06 −895 −31.50 4.88 −48.21 −12.59 −14.66 −14.92 −17.09 −18.31 −10.50 −10.15 −9.53 −13.83 −11.00 7.87 −9.67 −174.44 −78.23 1098.7 10.03
3V6Z −11.57 1922 −15.10 −1746 −43.74 16.11 −62.69 −4.34 −10.90 −13.36 −19.06 −29.90 −13.08 −12.28 −10.79 −14.39 −12.63 9.61 −14.09 −223.07 −111.87 1344.4 9.58
4G6J −11.44 1893 −16.10 −1463 −27.70 2.01 −60.16 −13.75 −15.62 −19.27 −26.18 −23.01 −11.21 −10.90 −13.65 −8.67 −11.11 9.18 −12.03 −215.20 −104.43 1282.9 12.66
4G6M −13.01 1673 −14.66 −1488 −18.48 1.07 −45.44 −12.94 −10.05 −22.64 −22.54 −21.79 −9.71 −10.78 −13.89 −12.39 −11.69 8.78 −12.98 −232.79 −117.86 1249.9 12.05
2VXT −12.65 2163 −21.28 −1457 −46.26 4.89 −76.01 −19.35 −20.28 −25.99 −35.82 −31.97 −13.03 −12.44 −11.99 −12.59 −12.51 9.30 −12.55 −318.30 −160.11 1687.4 11.31
3EOA −11.81 1272 −12.46 −892 −33.64 5.73 −43.08 −6.65 −8.06 −9.68 −13.72 −17.16 −10.31 −9.57 −9.54 −9.36 −9.69 7.36 −9.66 −167.36 −82.97 1148.2 10.68
3HI6 −7.27 1871 −16.41 −1391 −51.66 8.12 −51.64 −3.84 −9.37 −11.10 −22.10 −26.79 −13.50 −10.39 −9.57 −10.35 −10.95 9.15 −11.88 −235.06 −113.86 1455.8 9.38
3RVW −10.53 1383 −13.96 −1174 −29.63 7.10 −9.45 −6.13 −7.48 −7.18 −8.46 −18.17 −8.68 −9.94 −13.56 −9.36 −10.39 9.05 −10.61 −169.67 −74.46 1233.7 10.93
2W9E −13.49 1677 −16.05 −1471 −37.82 5.58 −35.00 −5.81 −9.27 −9.17 −14.17 −18.96 −10.54 −10.90 −15.97 −12.39 −12.45 9.38 −10.82 −234.13 −98.88 1353.8 10.30
3MXW −11.31 1696 −18.63 −1405 −44.13 5.25 −68.89 −11.60 −10.56 −20.70 −15.80 −20.11 −11.06 −11.22 −12.15 −13.83 −12.06 8.79 −10.17 −300.39 −150.62 1503.3 12.15
4DN4 −14.22 1317 −13.77 −779 −23.25 8.64 −74.64 −11.24 −15.81 −15.04 −24.80 −20.32 −11.03 −11.01 −10.02 −13.83 −11.47 7.57 −10.96 −235.64 −112.60 1236.6 9.99
4FQI −12.55 1459 −13.65 −1220 −46.91 8.34 −63.13 −8.36 −11.33 −11.22 −23.76 −22.07 −12.64 −11.43 −12.32 −7.88 −11.07 7.78 −11.25 −201.69 −93.54 1405.9 9.66
4GXU −11.20 1830 −11.56 −1089 −5.61 −2.46 −6.52 −6.36 −9.91 −5.61 −20.73 −21.64 −8.88 −10.18 −8.83 −10.22 −9.53 9.00 −7.83 −105.82 −48.78 798.7 12.02

Supporting Table 2: Predicted affinities. See main text for descriptions of the scoring functions.
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Light Chain Light Chain Light Chain Heavy Chain Heavy Chain Heavy Chain

PDB code* L1 L2 L3 H1 H2 H3

3G6D LH
26, 27, 28, 29, 30, 31,
32, 33

45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55

88, 89, 90, 91, 92, 93,
94, 95, 96

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60

98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108,
109, 110, 111

3L5W LH
27, 28, 29, 30, 31, 32,
33, 34

46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56

89, 90, 91, 92, 93, 94,
95, 96

27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37

49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61

99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110

3V6Z BA
27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38,
39, 40

52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62

95, 96, 97, 98, 99, 100,
101, 102, 103

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60

98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108,
109, 110, 111, 112

4G6J LH
27, 28, 29, 30, 31, 32,
33, 34

46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56

89, 90, 91, 92, 93, 94,
95, 96

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60

98, 99, 100, 101, 102, 103,
104, 105, 106, 107

4G6M LH
27, 28, 29, 30, 31, 32,
33, 34

46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56

89, 90, 91, 92, 93, 94,
95, 96

27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37

49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61

99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109

2VXT LH
27, 28, 29, 30, 31, 32,
33, 34

46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56

89, 90, 91, 92, 93, 94,
95, 96

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52,
52A, 53, 54, 55, 56, 57,
58, 59

94, 95, 96, 101, 102

3EOA LH
27, 28, 29, 30, 31, 32,
33, 34

46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56

89, 90, 91, 92, 93, 94,
95, 96

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60

98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108,
109, 110

3HI6 LH
27, 28, 29, 30, 31, 32,
33, 34

46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56

89, 90, 91, 92, 93, 94,
95

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60

98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109

3RVW CD
27, 28, 29, 30, 31, 32,
33, 34

46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56

89, 90, 91, 92, 93, 94,
95

27, 28, 29, 30, 31, 32,
33, 34, 35, 36

48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60

98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108,
109, 110

2W9E LH
27, 28, 29, 30, 31, 32,
33

45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55

88, 89, 90, 91, 92, 93,
94, 95

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60

98, 99, 100, 101, 102, 103,
104, 105

3MXW LH
27, 28, 29, 30, 31, 32,
33, 34

46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56

89, 90, 91, 92, 93, 94,
95, 96

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52, 53,
54, 55, 55A, 56, 57, 58, 59

94, 95, 96, 97, 98, 99, 100,
100A, 100K, 101, 102

4DN4 LH
27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57

90, 91, 92, 93, 94, 95,
96, 97, 98

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60

98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108

3EO1 AB
27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57

90, 91, 92, 93, 94, 95,
96, 97

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60

98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109

3HMX LH
27, 28, 29, 30, 31, 32,
33, 34

46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56

89, 90, 91, 92, 93, 94,
95, 96

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60

98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108

4FQI LH
27, 27A, 27B, 28, 29,
30, 31, 32, 33, 34

46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56

89, 90, 91, 92, 93, 94,
95, 95A, 95B, 96

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52,
52A, 53, 54, 55, 56, 57,
58, 59

94, 95, 96, 97, 98, 99, 100,
100A, 100B, 100C, 100D,
101, 102

4GXU NM
27, 27A, 27B, 28, 29,
30, 31, 32, 33, 34

46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56

89, 90, 91, 92, 93, 94,
95, 95A, 95B, 95C, 96

27, 28, 29, 30, 31, 32,
33, 34, 35

47, 48, 49, 50, 51, 52,
52A, 53, 54, 55, 56, 57,
58, 59

94, 95, 96, 97, 98, 99, 100,
100A, 100B, 100C, 100D,
100E, 100F, 100G, 100H,
100I, 101, 102

* PDB code and chain identifiers are reported, in the order light/heavy chain.
Supporting Table 3: List of antibodies complementarity-determining regions (CDRs) in antibody/antigen complexes used to drive docking simulation in HADDOCK; data calculated by
PARATOME webserver. For the other type of complexes, restraints to drive the docking were derived from bioinformatics predictions by CPORT (http://haddock.chem.uu.nl/services/
CPORT/). The full list of the CPORT predicted residues is reported in the online set of HADDOCK decoys provided.
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