
PARSAR: Parallelisation of a Chirp Scaling
Algorithm SAR Processor*

Antonio Martinez, Francisco Fraile

Remote Sensing Dep., INDRA Espacio
C/Mar Egeo s]n. 28850-S.Femando de Henares, SPAIN

e-mail: amar @ mdr.indra-espacio.es

Jordi Mallorqui, Leonardo Nogueira, Jordi Gabald~i, Antoni Broquetas,
Antonio Gonzalez (#)

Signal Theory & Communications Dep., U.Politecnica Catalunya
(#) Computer Architecture Dep., U.Politecnica Catalunya

C/Sor Eulalia de Anzizu s/n, Ed. D-3. 08071-Barcelona, SPAIN

Abstract. A parallel SAR processor is presented in this paper. The target
configuration is a cluster of UNIX workstations, available in most user
sites. This fact allows to obtain an increased computing performance
without the need of dedicated hardware investment.

1 Introduction

Synthetic Aperture Radar, SAR, is a remote sensing instrument capable of obtaining high
resolution images of the Earth surface [1]. The goal of SAR processing is to transform
the SAR raw data, or SAR signal, into an image. The generation of SAR images
involves both a great amount of data and a complex focusing algorithm. These reasons
make attractive the application of HPCN technology.

The objective of PARSAR project is the porting of a sequential SAR Processor to
a parallel architecture. The target configuration is a cluster of UNIX workstations,
allowing to exploit the benefits of parallelisation without the need of hardware
investment. This paper describes the parallelisation strategy of the processor, based on
a multi-block approach using PVM as interface among processes. Some preliminary
performance results are presented, along with the currently on-going activities.

2 Description of Data and Algorithm

The SAR data used in the project correspond to the standard full frame scene (100 x 100
km 2) of the ERS satellite [2]. The raw data is a matrix of 26800 lines each one
consisting of 5616 samples or pixels. The pixels are complex numbers, coded in 1 + 1
bytes; the size of the raw data file is about 300 MB. The calculations are done in
floating point, resulting in a processing matrix of 1.2 GB. The output SAR image has
25000 lines each one consisting in 4912 samples. The pixels are complex and coded in
2 + 2 bytes, resulting in about 500 MB.

* This work has been supported by the EU, PCI-II ESPRIT project 21037

1347

The data volumes involved in SAR processing are high. This fact along with the
increased use of SAR data and the advent of applications requiring near real time
response (ie. oil pollution monitoring), make attractive the application of HPCN
technology. An EUROPORT project is involved in SAR processing; its objective is the
porting of a library of functions for the analysis, not the generation, of SAR images.

The focusing of SAR raw data is essentially a 2-D correlation of the input signal with
the SAR Impulse Response Function [3]. Classical methods of SAR processing
implement the signal compression in the frequency domain. The SAR processor used in
the project is called Chirp Scaling Algorithm, CSA [4]. The CSA involves only FFT and
multiplications. The structure of the CSA is relatively simple, consisting on a sequence
of 1-D FFT and matrix element by element products.

3 Design of the Parallelisation

The parallelisation strategy that has been implemented is called Multi-Block Approach,
MBA. It consists on dividing the input data into independent processing blocks; each
block is fully processed in one host, resulting in a small piece of the final image. MBA
can be seen as a coarse grained parallelisation strategy. PVM, Parallel Virtual Machine,
is used to control the whole process.

The main advantage of MBA is the full independence of the different tasks split
among the available hosts. Another interesting point of MBA is the minimization of both
the number of I/O operations and the amount of data to be transferred across the cluster.

The implementation of the MBA parallelisation is relatively easy. Each host in the
cluster has a CSA processor, very similar to the sequential one. So, improvements in the
sequential code are readily portable to the parallel software. On the other hand, the
drawback of MBA is the correlation efficiency, that strongly depends on the size of the
processing data blocks and hence, on the available RAM in each host.

The flow char of the parallel SAR processor is shown in figure 1. There is a main
process in charge of launching different tasks in the computers of the network and
managing the execution of them. There are three types of tasks or slaves processes:
- cutter. This task is responsible of reading the raw data file and generating the different
data blocks that will be sent to the nodes.
- child. This is a simplified version of the CSA processor, that reads a data block and
produces a small piece of the final image (imagette).
- builder. The builder reads the different pieces of the image and assembles the final
SAR image file.

Both the raw data blocks and the imagettes generated by the processors are stored
in temporary files. The use of temporary files can be seen as a drawback; however, tests
conducted without temporary files showed the importance of disk access conflicts when
different child processes read from and write to the same large files. Furthermore, disk
operations by the child processes are by direct access implying high inefficiency.

The parallel code starts by generating a set of data blocks that are assigned to the
available hosts. The parent process continuously examine the status of the hosts in the
network. When one host is free, the parent assign a new block. The priorities in the main
process are: 1. Cutter process, to ensure that there are data blocks available for the child
processes; 2. CSA processes and 3. Builder process.

1348

/

+ - +

,,,

Fig 1. Flow char of the parallel processor

With this strategy, the disk bottleneck problems are alleviated by imposing that the
different slave processes never access to the same file, and most disk operations can be
carried out by using the more efficient sequential access. The number of hosts to be used
in the "parallel machine" can be selected, as well as the tasks to be conducted by each
node.

4 Preliminary Results

The classical parameters to estimate the performance of the parallel code, speed up factor
and efficiency, are not readily portable for a heterogeneous cluster, as each node has its
own processing time. We have used an alternative definition for these parameters that
is intuitive and makes some sense for a heterogeneous set of computers:
- Efficiency: ratio of the number of standard products generated by the parallel code to
the number of products generated by the sequential code running in all the computers
of the cluster during the same time.
- Speed up: the efficiency times the number of computers in the cluster.

The results of the parallel processor running in different configurations are listed in
the next tables, along with the characteristics of the workstations in the clusters and the
processing time of the sequential processor in each workstation.

The fin'st test used a block size of 32 MB (note that 2 of the computers in the cluster
have 64 MB RAM). The main, cutter and builder processes were run in HP-720, so that
this host is fully dedicated to data handling. The remaining two computers were in
charge of SAR processing. The efficiency of the parallel code is 0.64, with a speed up
factor of 1.93.

1349

M O D E L Clock Rate R A M Proc. Time

HP-735 99 MHz 96 MB 150 min

HP-720 50 MHz 64 MB 320 min

HP-715 50 MHz 64 MB 320 min

CLUSTER 120 rain

Table 1. Processing time in UPC cluster. Processing block 32 MB

The results of the tests at INDRA are presented in table 2; now, a block size of 64
MB was used; the slowest host executed the main, cutter and builder processes There
are two test cases:
- Case 1: Only the 3 Sun computers were used. The processing time is 58 minutes,
resulting in a efficiency of 0.68, and a speed up factor of 2.03.
- Case 2: All the computers are used. The processing time is 46 minutes, resulting in a
efficiency of 0.56, and a speed up factor of 2.24.

M O D E L Clock Rate

HP C160-L 160 MHz

Sun Ultra 1 167 MHz

Sun S-20 75 MHz

Sun S-10 40 MHz

3 Sun WSs

All hosts

R A M Proe. Time

128 MB 75 min

128 MB 75 min

128 MB 135 min

128 MB 210 min

- 58 min

- 46 min

Table 2. Processing time in INDRA cluster. Processing block 64 MB.

The results of the tests show that the parallel processor works relatively well in a
cluster of three workstations. The efficiency figures obtained in the clusters at UPC and
INDRA are equivalent. However, when including an additional host to the cluster, the
efficiency decreases. This is due to the fact that the computers performing SAR
processing are faster than the cutter, so that they have to wait for data blocks to process.

Work is currently on-going to upgrade and fine tune the performance of the parallel
code. In particular, we may mention the following points:
- Optimization of the I]O operations, (cutter process). This should allow the use of more
workstations in the duster without loss of efficiency.
- Allowing the size of the processing block to be fitted for each host, so that computers
with different RAM can be simultaneously used.

1350

5 Conclusions

The fwst activities in the porting of a sequential SAR Processor to a parallel architecture
have been performed. The parallel software is flexible and portable, so that it can be
installed in most user sites. The preliminary results obtained with the parallel code are
encouraging, and show a decrease in the processing time of the parallel code with
respect to the sequential one. Good results were obtained with a cluster of three
workstations. Additional work is on-going to enhance and fine-tune the code, so that the
efficiency of the parallel code can be kept constant when adding more hosts to the
cluster.

References

1. Elachi C.: Spaceborne Radar Remote Sensing. IEEE Press, 1988.
2. ESA.:ESA ERS-1 Product Specifications. ESA SP-1149, 1992.
3. Curlander J.C. & McDonough R.N.: SAR: Systems and Signal Processing. John

Wiley & Sons, 1991.
4. Raney R.K., Runge H., Bamler R., Cumming I.G., Wong F.H.: Precision SAR

Processing Using Chirp Scaling. IEEE Trans. Geosci. Remote Sensing (1994) Vol.
32 pp. 786-799.

