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Abstract  
 
Development of mutations in HIV-1 PR hinders the activity of antiretroviral drugs, forcing 
changes in drug prescription. Most resistance assessments used to date rely on expert-based 
rules on predefined sets of stereotypical mutations; such information-driven approach 
cannot capture new polymorphisms nor be applied for new drugs. Computational modeling 
could provide a more general assessment of drug resistance, and could be made available to 
clinicians through the Internet. We have created a protocol involving sequence comparison 
and all-atom protein-ligand induced fit simulations to predict resistance at the molecular 
level. We first compared our predictions with experimentally determined IC50 of darunavir, 
amprenavir, ritonavir and indinavir from reference PR mutants displaying different 
resistance levels. We then performed analyses on a large set of variants harboring more 
than 10 mutations. Finally, several sequences from real patients were analyzed for 
amprenavir and darunavir. Our computational approach detected all genotype changes 
triggering high-level resistance, even those involving a large number of mutations. 
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INTRODUCTION 

 
Antiretroviral therapy (ART) is one of the most effective interventions in medicine and, in 
particular, in HIV treatment. In ideal conditions of treatment, ART transforms a deadly 
disease into a chronic pathology, allowing patients to achieve life expectancy1 and quality 
similar to that of non-HIV-infected individuals.2, 3 Such efficacy, however, can be offset by 
HIV’s ability to develop mutations conferring antiretroviral resistance in the presence of 
drug selective pressure4-7 and by patient-to-patient transmission of resistant viruses. In 
resource-limited settings, where the HIV/AIDS toll is higher, ART is often provided 
without virological monitoring,8, 9 which is being associated with an alarming increase in 
drug resistance.10-12 
 
Antiretroviral drug resistance testing is key for clinical management13 and epidemiologic 
surveillance,1, 10-12, 14 but it is not trivial to assess. To this aim, we find multiple predictions 
techniques using molecular modeling15, 16 and bioinformatics tools.17-21 These, however, 
often fail when addressing real patients sequences containing a large number of mutations 
and/or new ones. Thus, caregivers often rely on expert-based rules to interpret predefined 
sets of stereotypical mutations. Such procedure assigns susceptibility scores to different 
drugs for each mutation encountered after sequencing, from a previously defined list; 
individual mutation scores are then added into a global score for each drug and combination 
of drugs. Such scores are usually translated into a susceptible-intermediate-resistant (SIR) 
interpretation. Interpretation rules based on a predefined list of mutations rely on previous 
knowledge and are limited in the mutation scope, so they cannot take into account the effect 
of non-predefined polymorphisms, mutational interactions, or mutation effects on different 
genetic backgrounds in the virus. Moreover, interpretation rules may initially provide 
limited resistance assessment to new molecules inhibiting the same target/s until new 
knowledge is generated.  
 
In an attempt to build a universal computational tool for resistance prediction that would 
not rely on prior knowledge on drug resistance, we have developed an automatic protocol 
combining sequence alignment with protein-ligand induced fit sampling techniques. In this 
first proof-of-concept study we focused on the HIV-1 PR, but the process could be later 
extended to other enzymes, HIV-1 subtypes or viruses.  
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HIV-1 protease (PR) is a 22 kDa dimeric aspartic protease that contributes to the 
maturation progress of the virus, cleaving the polyprotein precursor into functional viral 
proteins. Being one of the main targets in the treatment against HIV, the development of 
nine FDA-approved protease inhibitors, along with numerous crystal structures were 
established in the last two decades.22, 23 The active form of HIV-1 protease is a homodimer, 
with ~99 residues per chain. The catalytic residues Asp25 and Asp125 lie at the bottom of 
the binding cavity shielded by a pair of flaps (residues 44-55 and 144-155).24 Main features 
common to all inhibitors are the existence of a hydroxyl group in contact with Asp25/125 
residues, and a water molecule that mediates contact between a conserved carbonyl of the 
inhibitors and the protease amide groups of Ile50/Ile150 located in the flaps (Figure 1). 
Several resistant mutations have been described along the whole protease chain. Many 
mutations might occur simultaneously within a single variant highlighting the importance 
of complex cooperative effects. Typically these changes confer resistance not only by direct 
contact with the inhibitor, but also by subtle changes in the structure/dynamics incidentally 
affecting the active site. In addition to reducing or blocking drug inhibition, these mutations 
may also affect viral fitness by affecting the normal function and lead to the emergence of 
addition compensatory mutations that restore viral fitness.4, 25-28 
 

 
Figure 1. The HIV-1 protease dimer. Cartoon diagram of NL4-3 protease sequence 
showing monomers in blue and red. Residues Asp25, Asp125 and APV are shown as sticks 
colored by atom type. A relevant water molecule is displayed as ball and stick.  
 
 
In this study, we used most of existing HIV-1 PR crystal structures available in the protein 
data bank and PELE (Protein Energy Landscape Exploration, a technique capable of 
reproducing complex protein-ligand induced fit29, 30), to explore the impact of mutations in 
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inhibitor binding. Our protocol was first tested by comparing calculated and experimental 
binding energies of several FDA-approved inhibitors with engineered PR variants 
containing different amino acid mutations.15, 31 Then, we used our approach to predict ab 
initio, without any informational-driven bias, the resistance profile of 44 clinical HIV-1 PR 
variants to amprenavir (APV) and darunavir (DRV). Our technique is fast and, contrary to 
previous structure-based computational methods that were limited to variants with a 
reduced number of mutations,15, 16 it can predict PI resistance to variants containing more 
than 10 mutations. 
 
 
METHODS 
 
Systems used 
References structures  
To build the homology models of the wild type NL4-3 and HXB2 reference sequences 
(which were considered as non-resistant genotypes unaltered by the selective pressure of 
any PI), we used the crystal structure of HIV-1 protease bound to BE6 inhibitor (pdb code 
1W5Y32), with only 2 and 1 mutations per chain, respectively.  
Several crystal structures with measured catalytic activities were also used to tune our 
computational protocol. For the APV ligand, the PDB entries used were: 3NU333 a WT 
reference with analogous relative affinity as NL4-3, 3S4334 a triple mutant with 15 fold 
increase in inhibition constant (Ki, involving a decrease in affinity), 3NU533 a single mutant 
with 30 increase in inhibition constant. For the DRV ligand, the PDB entries used were, 
2IEN24 a WT reference with analogous relative affinity as NL4-3, and 3EM635 a double 
mutant with 4 fold higher dissociation constant. 
 
Modeling HIV-1 protease mutants 
Due to the strong correlation between sequence similarity and structure, our strategy to 
model mutants with no solved structure was to use the closest existing crystal structure in 
terms of sequence. We found ~450 crystal structures of HIV-1 protease which can be used 
as templates for building a given clinical sequence. Thus, modeling mutants was performed 
in two steps: (1) a search for the crystal structure with the highest similarity to the mutant 
sequence using BLAST,36 and (2) building our model by replacing each mutant using the 
Maestro37 software. Mutations were introduced simultaneously in the two protease chains. 
Using this procedure several sets of mutants were built: The first set was selected from the 
work by Koh et al.,31 were three NL4-3 variants: (L10I, G48V, I54V, L90M), (L10F, V32I, 
M46I, I54M, A71V, I84V) and (L10F, D30N, K45I, A71V, T74S) were tested against four 
inhibitors DRV, APV, indinavir (IDV) and ritonavir (RTV). The second set was obtained 
from the study by Shenderovich et al.15 For this case, we selected the more difficult set of 
sequences, with more than 10 mutations (and a maximum number of 17 mutations per 
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monomer, giving a total of 15 sequences) against IDV inhibitor. The third set included 21 
and 23 PR FASTA sequences with different resistance profiles to APV and DRV, 
respectively, obtained from routine genotypic resistance testing (TRUGENE® HIV-1 
Genotyping Assay, Siemens Healthcare, Barcelona, Spain) in the HIV Unit and irsiCaixa 
AIDS Research institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain. 
This last set of studies was performed as a blind test, where the modeling team had only 
access to the sequence but not to the resistance score.   
 
Systems preparations 
All systems were prepared with Schrodinger’s Protein Wizard.37 This algorithm builds 
hydrogen-bonded clusters and performs 100000 Monte Carlo moves by reorienting 
hydroxyl and thiol groups, water molecules, amide groups of Asn and Gln, and the 
imidazole ring of His, to correct for typical crystal structure refinement errors. The 
algorithm also predicts protonation states of His, Asp, Glu, Lys and Arg. Each possibility is 
scored based on the total number of hydrogen bonds and their quality (relative to an 
idealized hydrogen bond). In this work, Asp25 was protonated in all structures, whereas 
Asp125 was considered ionized. Histidines 69 and 169 were either epsilon or double 
protonated depending on the structural environment; all other histidines kept delta 
protonation. A water molecule, generally found in all protease-inhibitor crystal structures 
was kept. The water preserved mediates a contact between the P2/P1′ carbonyl oxygen 
atoms from the inhibitors and the amide groups of Ile50/Ile50′.  
 
Once the atom model was built, the ligand was initially docked in the active site using 
Glide.38 The top score model (XP scoring) obtained by glide was selected, followed by a 
molecular mechanics minimization using Schrodinger’s Protein Wizard and the OPLS2005 
force field to remove possible geometric clashes. In order to keep the system close to its 
initial geometry, a restrain was applied to all heavy atoms (allowing a maximum 
displacement of 0.3 Å). All ligands were quantum mechanically minimized separately in 
the gas phase using the DFT/B3LYP and 6-31G** basis set level of theory. Atomic charges 
were then derived from the electrostatic potential fitting at the same level of theory. 
Additional ligand parameters were taken from the OPLS2 force field.39 
 
Assessing the induce fit and binding energy 
To map the protein-ligand conformational space we used PELE29, which implements a 
Monte Carlo algorithm where new trial configurations are produced with sequential ligand 
(and protein) perturbation, side chain prediction and minimization steps. Ligand 
perturbation includes a ligand specific rotamer library.30 Trial configurations are then 
filtered with a Metropolis acceptance test, where the energy is described with an all-atom 
OPLS force field and a surface generalized born solvent model.40 PELE has recently shown 
to provide competitive advantages with respect to state of the art induced fit commercial 
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software and to reproduce the conformational sampling obtained in microsecond molecular 
dynamics (MD) trajectories.41, 42 
A total of 12 independent MC trajectories were produced for each inhibitor and mutant 
sequence. Trajectories were interrupted after 12h of CPU, providing approximately a total 
of 6000 Monte Carlo steps and ~2000 accepted minima. PELE’s binding energy was then 
obtained by averaging the interaction energies of all accepted minima (approximately 2000 
snapshots). The overall protocol has been added to our in-house server (pele.bsc.es) for 
public usage. 
In addition to PELE, HIV-1 resistance to APV and DRV was modeled with MD, using the 
Amber 12 software.43 For each system we performed 10 independent 10 ns runs with 
explicit waters, a 10 Å layer of pre-equilibrated water molecules in a truncated octahedral 
box, and physiological salt (NaCl) conditions. A time step of 1 fs was used throughout the 
simulations in combination with the SHAKE algorithm to constrain bond lengths involving 
hydrogen atoms.44, 45 Non-bonded interactions were explicitly evaluated for distances below 
9 Å. The particle mesh Ewald method was employed to treat long-range electrostatic 
interactions.46 Constant pressure and temperature (NPT ensemble) were maintained by 
weakly coupling the system to an external bath at 1 bar and 298 K, using the Berendsen 
barostat and thermostat.47 Finally, MMPBSA.py48 was used to extract the average binding 
energy, where we tried several time ranges: 1, 5 and 10 ns; best results were obtained using 
20 snapshots between 3 and 5 ns. 
 
 
RESULTS 
 
In the first part of the study, we validated the method by comparing in vitro IC50 results for 
specific mutations with our theoretical predictions. In the second part, attention was 
centered on predicting how mutations in HIV-1 protease taken from real patients affect 
drug resistance against APV and DRV.  
 
Validation for the set of data with known experimental binding affinity (IC50) 
 
We first calculated the interaction energies of APV, DRV, IDV and RTV for three different 
sequences (each ligand) among the set described in Koh et al.31 Besides NL4-3, for each 
drug we selected the mutation with the lowest and highest IC50 value relative to the value 
for NL4-3 (see Table 3 in Koh et al.31).  Figure 2, summarizes PELE’s relative increase in 
binding energy for each ligand and target, compared to the reference NL4-3 (the higher the 
increase in binding energy, the greater the resistance conferred by the mutation). The 
experimental relative (with respect to NL4-3) increase in IC50 is also shown with numbers 
in Figure 2. Clearly, PELE’s simulations can distinguish between the high (dark gray) and 
low (light gray) resistance mutant in each specific inhibitor. Moreover, the relative increase 
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in PELE’s binding energy correlates nicely with the experimental increase in resistance in 
this set of data. This is more clearly seen in the right panel where the natural logarithm of 
the IC50 values is used to estimate changes in binding affinities.  

Figure 2. Left panel: PELE’s relative binding energies (in kcal/mol) predicted for the high 
(dark gray) and low (light gray) resistance HIV-1 PR mutants for APV, DRV, IDV and 
RTV observed by Koh et al.31 (exact sequences provided in the Methods section). 
Experimental relative (with respect to NL4-3) increase in IC50 is shown with numbers 
above each bar.  Right Panel: Correlation between theoretical and experimental relative 
binding affinity increase (with respect to NL4-3) along with their coefficient of 
determination. Values larger than (>) were used as the absolute experimental measure (if 
we neglect these three values R2 increases to 0.87) 
 
For a second test, we used a subset of sequences derived from the work of Shenderovich et 
al.15 Using known and in-house prepared mutations, these authors developed possibly the 
most comprehensive computational predictor to date. However, as noticed by the same 
authors, the quality of predictions correlates negatively with the increase of number of 
mutations. From their test set, we selected all the sequences with more than 10 mutations 
for the IDV inhibitor (a total of 15 sequences, which represent a specially difficult set for 
prediction15). Figure 3 shows the correlation between our relative interaction energy 
estimates, using again NL4-3 as the reference zero value, and the experimental relative 
binding energy. Additionally we include the estimates derived from Shenderovich et al.15, 
also referred to NL4-3. We should notice that in Shenderovich et al., all mutant models 
were derived from one crystal and that they used simpler side chain (and backbone) 
sampling algorithms. Despite the difficulty of this set of 15 compounds, the method 
outlined here shows a coefficient of determination equal to 0.75 (PELE’s p-value= 2.5e-05 
and ∆E’s p-value = 0.004), improving the previous result significantly. 
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Figure 3. Correlation between modeled changes in relative binding energies (in kcal/mol) 
obtained in Shenderovich et al.15 (∆E, square beads) and PELE (rhomboid beads) with 
changes from experimental relative binding energy.  
 
Prediction results for APV and DRV 
After testing our computational protocol with publicly available data, we proceeded to 
perform “blind predictions” of the resistance in clinical samples. Importantly, each of these 
variants, taken from HIV infected patients, contained a large number of mutations in each 
monomer (10-25) when compared to the reference NL4-3. Therefore, in some of the 
simulated systems the protease bore as many as 50 mutations, representing an incredible 
difficult test (see Figure S1 in Supporting Information (SI) for the alignment of each 
sequence to the subtypeB consensus protease sequence). The data for the clinical isolates 
was divided (and ordered) based on the resistance scores calculated from expert 
assessments in HIVdb49. Samples were categorized as sensitive (S) when HIVdb resistance 
scores were below 20, intermediate (I) resistance when scores were between 20 and 60, and 
resistant (R) when scores were 60 or higher.  
 
Figure 4 shows the results for APV where again we computed PELE’s relative binding 
energies to the reference compound NL4-3. For this compound we had initially run a 
benchmark with four variants containing known resistance-related mutations: two 
consensus reference proteins (the sequence from pdb structure 3NU3 and the reference 
sequence HXB2, which were both considered non-resistant), the single mutation I50V with 
30 fold increase in Ki (pdb id 3NU5) and the triple mutant V32I/I47V/V82I with 15 fold 
increase in Ki (pdb id 3S43). The data from this benchmark has also been included in 
Figure 4 (left-hand side). As can be seen, the two additional non-resistant reference 
sequences (the one from 3NU3 and HXB2) show equal or (slightly) better interaction 
energies to that found for NL4-3. This result shows how our computational protocol 
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predicts reference sensitive sequences other than NL4-3 as sensitive, and similarly, the two 
APV-resistant reference sequences (3S43 and 3NU5), with a 15 and 30 fold increase in Ki, 
respectively, were correctly predicted as interfering drug-binding (note that the impact of 
the mutation in predicted binding, matches the relative Ki increase found experimentally). 
 
For the sequences extracted from the patients (1-21), it can be seen that all sensitive 
sequences (green, columns 1-7) are predicted to be sensitive by our method, and all highly 
resistant sequences are predicted to be highly resistant (red, columns 14-21). Sequences 
classified as intermediate resistance (in yellow) offer a less clear differential profile, but 
there is only one pair (13/14) where PELE will have some difficulty to predict the 
resistance level produced by the mutation.  
 

 
Figure 4. PELE’s relative change in APV binding energies (kcal/mol).  Sensitive (<20), 
intermediate (20>= =<60) and resistance (>60) HIVdb values for each sequence are shown 
in green, yellow and red colors, respectively. 
 
 
Due to the large number of mutations in each sequence, assigning individual effects is not a 
trivial task. Figure 5 compares the protein-APV interactions for sequences number 1 and 
20, with a ~12 kcal difference in relative affinity (HIVdb scores 0 and 150, respectively). 
Sequence 1 presents 6 mutations (per chain) compared to NL4-3 while sequence 20 has 16 
mutations. Clearly, sequence 20 shows a reduction in the number of interactions. Mutations 
on residues Val82 and Val84 affect the binding mode and orientation of the inhibitor. In 
particular, these mutations influence the proper interaction of APV with polar residues 
Asp25, Asp29 and Asp30, significantly decreasing the affinity of the ligand. Asp25, for 



 11 

example, plays an important role in ligand recognition by making a strong interaction with 
the hydroxyl group of almost all inhibitors.  
 

 
 
Figure 5. Protein-APV interaction diagram for sequences number 1, panel A, and 20, panel 
B. Important residues, discussed in the main text, are underlined in red circles. Partial 
sequence alignment to NL4-3 is also shown for both systems. 
 
 
Figure 6 shows the equivalent results for DRV. For this compound we also modeled three 
additional variants containing known resistance-related mutations: two consensus reference 
proteins (the one taken from pdb structure 2IEN and the reference sequence HXB2) and the 
double mutant I50L/A71V (3M60), which has 4 fold higher dissociation constant. As in the 
APV case, reference and sensitive compounds show little or no effect when compared to 
NL4-3. Again, the most remarkable result is the correlation between the predicted relative 
binding energy and the estimation of resistance, where all highly resistant variants are 
clearly identified. 
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Figure 6. PELE’s relative change in DRV binding energies (kcal/mol). ).  Sensitive (<20), 
intermediate (20>= =<60) and resistance (>60) HIVdb values for each sequence is shown 
in green, yellow and red colors, respectively . 
 
Finally, MD/MMPBSA simulations were performed for all patients’ sequences in both 
ligands. While results (Figure S2 in SI) still indicate an overall tendency between the 
sensitive, intermediate and resistance regimes, wrong predictions are clearly observed in 
both systems (more in DRV) and differences do not allow now to discriminate high 
resistance mutants.  
 
DISCUSSION 
 
The primary aim of this study was to develop an automatic computational protocol for rapid 
discrimination between resistant and sensitive HIV-1 protease variants. To this aim we 
have used PELE, an atomic-resolution sampling algorithm combining a stochastic Monte 
Carlo procedure with protein structure prediction techniques, which is specially suited for 
induced-fit docking problems.41, 42 
 
Since most of the mutant structures have not been crystallized, one of the main questions is 
how to generate an all atom model for each sequence. Since we were comparing the 
binding energies to the NL4-3 reference sequence, one simple strategy would have been to 
use its structure as a template (in Modeller,50, 51 I-TASSER,52 etc.). However, most 
sequences have up to 20 mutations (when compared to NL4-3) in each chain, which could 
introduce large errors in building the models; the large number of HIV-1 X-ray crystal 
structures enabled better strategies. An obvious one is the use of multiple templates in 
homology modeling, but our initial analysis indicated that it is better to start from a well-
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defined single template than to combine different crystal structures. Thus, we decided to 
create a subset of several crystal structures to which our sequences were compared and to 
use the crystal structure with the best sequence alignment to our target (to minimize the 
number of mutations modelled) as template. By doing so, we reduced significantly the 
number of mutations for model building (see Table S1 in SI for a list of the reference 
crystal structures).  
 
Our initial two tests compared the predicted relative binding energy with systems having 
experimental affinities. As seen in Figures 2 and 3, PELE is capable of distinguishing 
between resistant and sensitive sequences. Moreover, it shows a good correlation to 
experimental affinities even for sequences with a large number of mutations, improving 
existing theoretical prediction tools. Next, we tested our protocol in a blind test with patient 
sequences for two well-known HIV-1 inhibitors, APV and DRV. The results showed again 
noteworthy correlations between calculated changes in binding energy and the index 
obtained by HIVdb scores. In all cases we could distinguish the sequences with strong 
resistance, having predicted relative binding energies >5kcal/mol. This value is also 
consistently being observed in the initial two tests. The method showed problems to 
discriminate between mutants with moderate resistance, but this is the segment where rule-
based methods (used here as reference) are expected to show the poorest performance. 
MD/MMPBSA predictions, on the other hand, have difficulties in predicting high 
resistance mutants. This behavior, however, is expected since this method works efficiently 
when addressing small changes (involving mostly single and double mutants).16, 53 
 
The majority of resistance-related mutations are conservative substitutions in positions 
Leu10, Val32, Ile54, Val82, Ile84 and Leu90. Our simulations indicated that these 
mutations do not introduce large changes in the structure of the complex, but modify subtle 
van der Waals and hydrogen bond interactions between the ligand and active site amino 
acids (see Figure 5). Such resistance mechanisms are observed for other systems, 54, 55 and 
agree with the fact that none of these mutations significantly disrupts enzyme activity. 
However, even small, the subtle conformational changes induced by mutations are 
important in defining accurate binding, making it necessary the use of specific homology 
models and  induce fit relaxation. The later point is clearly shown by the fact that PELE’s 
scores after homology modeling (or after only a short exploration of sampling) did not 
correlate with susceptibility data (Table 1). The quality (and necessity) of the induced fit 
conformational sampling is also evident when predicting the interaction with a general 
scoring function. For this, we used Glide XP from Schrodinger.38 Figure 7 shows relative 
Glide scores before and after the induced fit for the 21 clinical sequences in APV (plus 
NL4-3 and HXB2). Each score is the average of 50 structures obtained after clustering 
PELE’s trajectories. Clearly the correlation with HIVdb scores significantly improves after 
conformational sampling with PELE. While the final Glide scores still have low 
correlation, 0.33, they can identify most of the high resistance sequences. Remarkably, the 
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correlation increases to 0.80 when using PELE’s all-atom binding energy (as score), 
revealing the importance of an explicit treatment of all-atom interactions.30 Notice also that 
the clustering procedure only reduces the overall PELE’s correlation from 0.82 to 0.80.  
 
 
Table 1. Evolution of the coefficient of determination between PELE’s interaction energies 
and HIVdb values along the conformational sampling for the 21 APV patient sequences. 

  First-score Step-50 Step-100 Step-200 Step-300 Total 
 R2 0.43 0.64 0.72 0.75 0.81 0.82 

 
 
 

 
Figure 7. Comparison between PELE and Glide (initial and final) correlation scores, 
against HIVdb values, for the 21 APV patient sequences (using 50 representative structures 
after clustering).  
 
 
Conclusions 
Overall, this study shows how computational techniques are capable of quantitatively 
discriminating resistance variants of HIV-1 protease. Our protocol, combining sequence 
alignment to current pdb structures and state of the art protein-ligand induced fit sampling 
algorithms, shows great promise as an automatic tool for a quick prediction. The entire 
protocol can be run in less than 24 hours on a small commodity workstation, and is based 
on biophysical first principles. Moreover, it is capable to trace the effect of novel mutations 
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and the binding of new drugs. In summary, modeling drug-target interactions holds the 
potential to provide less biased and more accurate assessments of antiretroviral drug 
resistance, which could improve clinical management of HIV-infected subjects. 
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Figure S1. Sequence alignment with the HIV-1 subtypeB consensus protease sequence. 
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Amprenavir	
   Darunavir	
  
patient crystal identity (%) patient crystal identity(%) 

1 1W5Y 93 1 4NJS 92 
2 1W5Y 93 2 1W5Y 93 
3 1W5Y 94 3 1W5Y 93 
4 1W5Y 92 4 1W5Y 94 
5 1W5Y 94 5 1W5Y 89 
6 1W5Y 97 6 1W5Y 93 
7 1W5Y 96 7 1W5Y 95 
8 4NJS 92 8 1W5Y 94 
9 1W5Y 97 9 1SGU 89 

10 2WL0 91 10 1RPI 90 
11 1W5Y 93 11 1W5Y 95 
12 1YTG 94 12 1IZI 89 
13 1IZI 86 13 2FDD 76 
14 3D3T 87 14 1SGU 87 
15 1SGU 89 15 1SGU 84 
16 1SGU 86 16 2FDD 82 
17 1SGU 87 17 3TTP 88 
18 2FDD 86 18 1SGU 83 
19 1W5Y 91 19 1SGU 84 
20 1W5Y 95 20 2B60 80 
21 2WL0 88 21 2FDD 85 

  
  22 3U7S 85 

  
  23 2FDD 90 

      
Table S1. Reference crystal structure used for each patients’ sequence together with its per 
chain identity percentage. Structures deposited after 2014 were not considered at the time 
(beginning) of the study. 
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Figure S2. MD/MMPBSA relative change in APV (top panel) and DRV (bottom panel) 
binding energies (kcal/mol).  Sensitive (<20), intermediate (20>= =<60) and resistance 
(>60) HIVdb values for each sequence are shown in green, yellow and red colors, 
respectively. 
 
 


