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Abstract Suppose that Yt follows a simple AR(1) model, that is, it can be expressed
as Yt = αYt−1 + Wt , where Wt is a white noise with mean equal to μ and variance
σ 2. There are many examples in practice where these assumptions hold very well.
Consider Xt = eYt . We shall show that the autocorrelation function of Xt characterizes
the distribution of Wt .
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1 Introduction

In this paper, we shall consider a general AR(1) time series defined by the classical
stochastic difference equation

Yt = α · Yt−1 + Wt , (1)
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satisfying the condition of stationarity | α |< 1, where Wt is the innovation or white
noise process, a sequence of iid random variables with mean μ and variance σ 2.

Many authors have studied autoregressive models with non-Gaussian innovations.
Several works mainly deal with finding the distribution of the innovations for speci-
fied marginals. In Gaver and Lewis (1980), the authors consider the cases where the
marginal distribution of Yt is exponential or gamma. They also show that positive
marginals do not allow α < 0 in (1), so that the condition of stationarity is restricted
to 0 < α < 1. A good review of autoregressive models with non-Gaussian innova-
tions can be found in Sim (1994), where a model-building methodology is considered
focused on parameter estimation and forecasting by means of several models with
different marginal distributions for Yt , such as exponential, logistic, hyperbolic secant
and others. The case where the marginal is inverse Gaussian distributed is studied
in Abraham and Balakrishna (1999). Another kind of non-Gaussian autoregressive
processes different from (1) was introduced in Jayakumar et al. (1995), and some
extensions can be found in Kuttykrishnan and Jayakumar (2008). A non-linear AR(1)
model with approximate beta marginal is considered in Popović et al. (2013).

In Granger and Newbold (1976), the authors construct non-Gaussian series by
taking an instantaneous transformation T (Zt ) of a Gaussian ARMA process Zt . They
study in detail the transformation T (x) = ex , because a huge range of time series of
econometric indicators are analysed in logarithmic form, although inference on the
original series is the main matter. The study of time series of positive terms of the form
Xt = eYt , where Yt is a general AR(1) with non-Gaussian innovations, has been hardly
considered in the literature, with the exception of McKenzie (1982). In this paper, the
case with a Gamma marginal for Xt is studied in detail, proving the surprising result
that the Gamma distribution is the only one for which the correlation structures of Xt

and Yt are both the same. From then to the present, as far as we know, there are no new
results of characterization of the distribution of the innovations of an AR(1) model
using the correlation structure of the exponentiated series Xt .

In Sect. 2 we shall study the autocorrelation function (ACF) of the exponentiated
series Xt , which is calculated for some selected marginals. In Sect. 3 we shall show
that the ACF of Xt , ρXt (k), under mild conditions, characterizes the distribution of
the innovations Wt of Yt in (1).

2 The autocorrelation function of the exponentiated AR(1) process

Consider the general AR(1) Yt model in (1) and its exponentiated time series Xt = eYt .
Assume that the autocorrelations of Xt exist. McKenzie (1982) pointed out a simple
way to calculate the ACF of Xt in terms of the marginal distribution of Xt , indicated
by the random variable X . He established the following lemma:

Lemma 1 (McKenzie 1982) The autocorrelation function of the exponentiated time
series Xt has the expression

ρXt (k) =
E[X ]

(
E[Xα

k+1] − E[Xα
k ]E[X ]

)

E[Xαk ]V ar [X ] . (2)
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The following lemma establishes an important relation with the marginal distribution
of Yt (indicated by the random variable Y ):

Lemma 2 The autocorrelation function of Xt can be written as

ρXt (k) = ψY (1)ψY (α
k + 1)− ψY (1)2ψY (α

k)

ψY (αk)(ψY (2)− ψY (1)2)
, (3)

where ψY (z) is the moment generating function of Y .

Proof Expression (3) is a direct consequence of (2) and the fact thatψY (z) = E[ezY ] =
E

[
ez log(X)

] = E[X z].
Note that, given the marginal distribution of Yt , Lemma 2 provides a simple way to
calculate the ACF of the exponentiated series.
The relation between the distribution of Y and the distribution of the innovations Wt

in (1) can be established by means of their characteristic functions. The characteristic
function φYt (z) of the distribution of Yt is

φYt (z) = E[eziYt ] = E

[
ezi(αYt−1+Wt )

]
= φYt−1(αz)φWt (z).

From here, because Yt is stationary, we obtain, φY (z) = φY (αz)φW (z), and conse-
quently,

φW (z) = φY (z)

φY (αz)
. (4)

However, expression (4) is not always the characteristic function of a proper distri-
bution for the innovations. Random variables Y for which expression (4) is a proper
characteristic function have necessarily self-decomposable distributions (its charac-
teristic function φ(t) satisfies φ(t) = φ(αt) ·φα(t),−∞ < t < ∞, for all 0 < α < 1,
where φα is also a characteristic function) and the class of self-decomposable distri-
butions is wide. In this paper we are going to work with some of them, that are the
logarithm of well known positive random variables X , the marginal distribution of
Xt . Table 1 shows the marginals considered here, the moment generating function of
Y = log(X) and the ACF of the time series Xt , expressed as ρX (s) where s = αk ,
that is ρX (s) = ρXt (log(s)/ log(α)).

Because the innovations of the AR(1) process defined in (1) satisfy E[Wt ] = μ and
V[Wt ] = σ 2, it is immediate to see that the expectation and variance of the marginal
distribution are E[Y ] = μ/(1 − α) and V[Y ] = σ 2/(1 − α2). For simplicity, the
expressions of ρX (s) in Table 1 are those of the standardized marginals of Y , that is,
E[Y ] = 0 and V[Y ] = 1. All the marginal distributions considered in Table 1 have
two parameters. Note that the first one corresponds to the classical (Gaussian) AR(1)
model. The two first moment generating functions have been expressed in terms of
the expectation and variance. For the Gamma distribution, it can be done solving the
equations, Ψ ′(ν) = σ 2

1−α2 and Ψ (ν) − log(a) = μ
1−α , where Ψ (·) is the digamma

function and Ψ ′(·) its first derivative. For instance, for the standardized marginal
the parameters a and ν are calculated solving Ψ ′(ν) = 1 and Ψ (ν) − log(a) = 0,

123



222 D. Moriña et al.

Table 1 Marginal distributions of Xt with the moment generating function of the marginal distributions
of Yt , ψY (z) (Y = log(X)), and the ACF ρX (s) (s = αk ) of the standardized marginals

X ψY (z) ρX (s)

log-Normal e
μ

1−α z+ σ2

2(1−α2)
z2

es−1
e−1

Weibull e

z
√

6γ σ

π
√

1−α2
+ zμ

1−α
Γ

(
1 + zσ

√
6

π
√

1−α2

)
Γ (c)(Γ (c)Γ (1+sc−s)−Γ (sc−s+c))(
−Γ (−1+2 c)+(Γ (c))2

)
Γ (1+sc−s)

, c = 1 +
√

6
π

Gamma Γ (ν+z)
Γ (ν)az s

Inv. Gaussian
Kz−1/2(ab)
K−1/2(ab)

( a
b

)z c
( Ks+1/2(c)

Ks−1/2(c)
− 1

)
, c = 0.608545

obtaining ν0 = 1.4263 and a0 = 0.9658. For the inverse Gaussian distribution, to
obtain an expression in terms of μ

1−α and σ 2

1−α2 is more difficult due to the modified
Bessel function of the second kind that appears in ψY (z). However, it can be done
numerically using an appropriate software like Maple.

Most of the moment generating functions considered in Table 1 are well defined for
z ∈ (−1, 1). This is important because it allows AR(1) models (1) with α ∈ (−1, 1),
and not just with α ∈ (0, 1) since due to expression (3) the autocorrelation function
ρXt (k) is well defined for all α ∈ (−1, 1). However, for the Gamma distribution we
have ψY (z) = Γ (ν+z)

Γ (ν)az , which is well defined for z ∈ (−1, 1) only if ν > 1.
Note that the ACF of the AR(1) model in (1) is always the same independently of

the marginal distribution or the distribution of the innovations. Unlike Yt , the ACF of
Xt depends on the marginal distribution of Yt .

In the next section we shall show that the ACF of Xt characterizes the marginal
distribution of Yt and consequently, the distribution of the innovations.

3 Characterization of the distribution of the innovations

Taking logarithms in expression (3) of Lemma 2, and using some algebra we obtain

κY (s + 1)− κY (s) = log

(
ψY (2)− ψY (1)2

ψY (1)
· ρX (s)+ ψY (1)

)
, (5)

where s = αk and κY (s) = log(ψY (s)) is the cumulant generating function of Y . Note
that ψY (1) = E[X ] and ψY (2) − ψY (1)2 = V[X ]. Writing h(s) for the right-hand
side of (5), we can see that κY (s) is a solution of a first order functional equation of
the form

f (s + 1)− f (s) = h(s), (6)

with the initial condition f (0) = 0. This kind of functional equations have been
widely studied in Kuczma (1968). A slight modification of his Theorem 5.11 allows
us to state the following proposition:
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Proposition 1 (Kuczma 1968) Let a function h : I → R in (6), I = (a,∞),−∞ ≤
a < ∞ satisfy the condition

lim
s→∞ [h(s + 1)− h(s)] = 0.

Suppose that we have a convex solution of (6), ϕ(s) defined in I , fulfilling the condition
ϕ(s0) = η0, for s0 ∈ I and η0 ∈ R. Then, ϕ(s) is the unique convex solution of the
functional equation (6), and it can be expressed as

ϕ(s) = η0 + (s − s0)h(s0)+
∞∑

n=0

(s − s0)(h(s0 + n + 1)

− h(s0 + n))− (h(s + n)− h(s0 + n)). (7)

From this proposition we can state the following theorem which characterizes the
distribution of the innovations.

Theorem 1 Suppose that the distribution of the innovations Wt in (1) is such that,

1. The marginal distribution of Yt (indicated by the random variable Y ) has a moment
generating function ψY (s) defined for s ∈ (a,∞), a < 0.

2. The distribution of X = exp(Y ) is well defined, with an ACF of the exponentiated
time series Xt = exp(Yt ) given by ρXt (s), and lims→∞ h(s + 1)− h(s) = b, 0 ≤
b < ∞, where

h(s) = log

(
ψY (2)− ψY (1)2

ψY (1)
· ρX (s)+ ψY (1)

)
.

3. The function log(ψY (s))− bs(s − 1)/2 is convex.

Then, the distribution of Wt is the unique having an ACF of the exponentiated series
equal to ρXt (s).

Proof Let κY (s) = log(ψY (s)), the cumulant generating function of Y . Taking into
account (5), it is evident that f (s) = κY (s) satisfies the functional equation (6) with
initial condition f (0) = 0. Because any cumulant function is convex, if the limit b is
equal to 0, Proposition 1 directly shows that (6) has only one solution. If the limit b
is greater than 0, we define h∗(s) = h(s)− bs and it is immediate to see that f (s) =
κY (s)−bs(s −1)/2 is a solution of the functional equation, f (s +1)− f (s) = h∗(s).
Because lims→∞ h∗(s + 1) − h∗(s) = 0 and by hypothesis κY (s) − bs(s − 1)/2 is
convex, Proposition 1 shows that this solution is unique.

The values of the limit b = lims→∞ h(s + 1) − h(s) for the examples shown in
Table 1 are 0 for the Gamma and inverse Gaussian marginals, and 1 for the log-Normal
(Gaussian innovations) and the Weibull marginals.

Remark 1 In general, the functional equation (6) has infinitely many solutions. Given
any solution f (s) and any periodic function with period 1 ϕ(s), it is readily seen that
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f (s)+ϕ(s) is also a solution of (6). To ensure the uniqueness, additional assumptions
on the solution are required, like those of Proposition 1. Therefore, the assumptions
stated in Theorem 1 are necessary in order to ensure the regularity conditions required
in Proposition 1. In our context, the solution of the functional equation (6) is a cumulant
generating function and consequently this is a convex solution. The uniqueness of this
solution is assured by Proposition 1 if the three assumptions stated in Theorem 1 are
fulfilled.

Given the function ρX (s), and the values of E[X ] and V[X ], Theorem 1 combined
with Proposition 1 not only allow to ensure the uniqueness of a solution, but also to
construct such a solution. To illustrate this point, suppose that for example ρX (s) = s,
the case covered by McKenzie (1982), and E[X ] = 1, V[X ] = 2. Then, log(ψY (s))
would be the solution ϕ(s) of the functional equation (6), with the initial condition
ϕ(0) = 0, i.e., η0 = s0 = 0, and h(s) = log(2s + 1). According to (7) the solution
has the form

ϕ(s) =
∞∑

n=0

s log

(
2 n + 3

2 n + 1

)
− log

(
2 s + 2 n + 1

2 n + 1

)
(8)

It can be numerically checked that ϕ(s) is just the logarithm of ψY (s) = Γ (ν+s)
Γ (ν)as , as

stated in Table 1, with ν = a = 0.5.
The characterization of the family of functions that are autocorrelation functions

of Xt and lead to proper distributions for the innovations of an AR(1) process, is an
open problem. Of course, some relevant examples of such autocorrelation functions
are those considered in Table 1.

4 Concluding notes

Following the ideas introduced in McKenzie (1982), we have characterized the distri-
bution of the innovations Wt of an AR(1) model according to the ACF of its exponen-
tiated series. The novelty of this result sets out new problems and lines of research.
For instance, could similar results be obtained using other transformations different
than the exponential? How could the characterization of the innovations be extended
to higher order AR models? The characterization proposed here could be used in order
to develop a goodness of fit test, maybe using the techniques shown in Anderson et
al. (2004), calculating a kind of Cramér-von Mises statistic measuring the difference
between the sample and theoretical spectral densities. It would also be interesting to
study how the techniques introduced in this work can be generalized to higher order
AR models or even ARMA models. Further research would be required to solve these
challenges.
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