
Master’s degree in Automatic
Control and Robotics

ON-LINE HUMAN ACTIVITY
RECOGNITION BY MONITORING THE
INTERACTION WITH THE OBJECTS

IN A KNOWN ENVIRONMENT

Author: Enrique Javier Ajenjo Escolano
Director: Joan Aranda Lopez

Escola Tècnica Superior d´Enginyeria Industrial
de Barcelona

Dec. 2015

2

Acknowledgements

First of all, I would like to express my gratitude to my supervisor Joan Aranda Lopez. I would also
like to appreciate the efforts of the other team members. Thanks to Manuel Vinagre for sharing his
past experiences and knowledges with me. Thanks to both of them, the project is a reality.

Second, I would like to express my gratitude to all my family. Thanks to their unconditional
support, I could finish this master program. Thanks to all their efforts, I have become the person I am
today. I would also like to express my gratitude to my partner, who stood there and helped me during
all this time.

And I finally want to thank the UPC and the Research GRINS group because working in this
enriching environment has allowed me to grow as a professional.

3

Acknowledgements

4

Resume

Until now, the robots environment was characterized for being parametrized. This means, that all tasks
must be defined and the robot only needs to repeat the programed action continually. Furthermore, the
robot and the user don’t share the same workspace. But now, new environments have appeared, bringing
a new robotic paradigm where the robots and the users share the same workspace in semistructured
environments. The tasks in this new paradigm have a plasticity, where they evolve depending on the
user. It is therefore important that the system evolves at the same time than the user.

In this project, a solution of an activity recognition system to be used in a robotic assistance on
domestic environments is presented. This system works in real-time to monitor the user’s activities
at the same moment that the action is occurring, computing an early prediction and offering to the
system future information about the possible necessities of the user’s to finalize the activity that the
system predicted.

The solution proposed in this project must solve the following sub-objectives:

1. Object Segmentation: The system separates the objects from the scene. We used one model
of scene to compare the differences between the model and the actual frame.

2. Object Recognition: The system recognizes what objects are involved in the action. To
capture the characteristic points of the objects, we first use the SURF Key-Point of the objects
and, then, we convert this information in the Bag of Features representation. In the second step
of the process, we use a Support Vector Machine (SVM) to build the classifier structure.

3. Object Tracking: The system obtains the dynamic information of the objects in the scene.
The system uses a CamShift algorithm to monitor the state of the objects.

4. Activity Recognition: The system identifies the action that the user is doing taking the
previous information into account.

Other important issues we need to take into account in the development of this project are:

• Scalability: The system needs to be able to grow so that it can consider more cases. The
installation of new hardware or the use of new algorithms are two examples of this.

• Working in Real Time: The system needs to predict the actions at the same time than they
are happening.

• Consideration of Different Type of Objects: In domestic scenarios, different types of
objects with different characteristics need to be considered. For example, labeled objects, smooth
surfaces with a dominant color and textured objects.

• The Use of Standard Robot Operation System: We use the Indigo ROS version to develop
this project and share the intermediate information of the project so that other projects can use
it.

The results obtained applying all the process is an accuracy detection of the activity only using the
static information. The dynamic information we used to increase the detection of the more complex

5

Resume

activities or more complex situations, and the actual version of the project grows in complexity with
respect to the previous project but it needs to grow more to take the results of this project into account
to increase the trustworthiness of the project.

6

Contents

Resume . 5

1 Introduction 13

1.1 Objective of this project . 13

1.2 Available Scenario . 14

1.3 Software . 16

1.3.1 ROS . 16

1.3.2 OpenCV . 17

1.4 Hardware Configuration . 17

1.5 Initial Design Considerations . 18

2 Object Segmentation 19

2.1 Introduction . 19

2.2 Background Subtraction . 19

2.2.1 Simple Image Difference . 19

2.2.2 Mixture of Gaussian Method . 20

2.2.3 Simple Frame Subtraction . 21

2.2.4 Image Differences Evaluation Using Percentages: 22

2.2.5 Image Divisor Relation: . 23

2.3 Proposal . 24

2.3.1 Acquisition of the Raw Image . 25

2.3.2 Adapting the Pixel Representation . 26

2.3.3 Comparative Process . 26

2.3.4 Study of all Mask Regions . 27

2.4 Example Output . 28

3 Object Recognition 29

3.1 Methods to Extract Features . 29

3.1.1 Color Histograms . 29

3.1.2 Scale-Invariant Feature Transform (SIFT) . 30

3.1.3 Speeded-Up Robust Features (SURF) . 31

3.1.4 KAZE Features . 32

3.1.5 Acelerate KAZE Features . 33

3.2 Final Features Proposal . 35

3.2.1 Color Histogram Descriptor . 35

3.2.2 SIFT Descriptor . 35

3.2.3 SURF Descriptor . 36

3.2.4 AKAZE Descriptor . 36

3.3 Association of Features Method: . 36

3.3.1 Implementation of Bag of Features Using a Bag of Key-Points 36

3.4 Categorization Methods . 37

3.4.1 Categorization by Näıve Bayes . 37

7

CONTENTS CONTENTS

3.4.2 Categorization by Support Vector Machine . 38

3.5 Object Tracker . 40

3.6 Proposal . 42

3.6.1 Reading the ROS Topics: . 43

3.6.2 Creating the Image Database: . 43

3.6.3 Computing the Descriptors of the Image Database 44

3.6.4 Working Mode: . 45

3.6.5 Object Tracker . 45

3.6.6 Object Publisher List . 45

3.7 Example Output . 46

4 Activity Recognition 47

4.1 State of the Art . 47

4.2 Proposal . 49

4.2.1 Reading the ROS Topics . 50

4.2.2 Selector Menu . 50

4.2.3 Load Initial Data from Files . 51

4.2.4 Activity Detection Mode . 52

4.2.5 Activity Publisher . 54

4.2.6 Activity Ros Topic . 56

4.3 Example Output . 57

5 Results 59

5.1 Experimental Setup . 60

5.2 Results of the Object Recognition . 61

5.3 Results of the Activity Recognition . 62

6 Conclusions 65

6.1 Achieved Improvements . 65

6.2 Results Evaluation . 66

6.2.1 Results of the Object Segmentation . 66

6.2.2 Results of the Object Classifier . 66

6.2.3 Results of the Object Tracker . 67

6.2.4 Results of the Activity Classifier . 67

7 Future Works 69

7.1 Object Segmentation . 69

7.2 Object Recognition . 69

7.3 Object Tracker . 70

7.4 Activity Recognition . 70

7.5 Discussion . 70

8 Scheduling and Economical Analysis 71

A Schedule of the Project 73

B General Diagram 77

C Code Section 81

C.1 Object Segmentation Codes . 81

C.1.1 Mixture of Gaussian Object . 81

C.1.2 Image Callback . 81

C.1.3 Infrared Callback . 81

8

CONTENTS CONTENTS

C.1.4 Comparative Process . 82
C.1.5 Study of Regions . 82

C.2 Object Recognition Codes . 83
C.2.1 Color Histogram Code . 83
C.2.2 SIFT Code . 83
C.2.3 SURF Codes . 84
C.2.4 AKAZE Code . 84
C.2.5 Selector Menu . 84
C.2.6 Add Object to Database . 85
C.2.7 Compute the Descriptors of the Image Database Code 85
C.2.8 Working Mode Code . 86
C.2.9 Object Tracker Code . 86

C.3 Activity Recognition Codes . 88
C.3.1 Object Callback Code . 88
C.3.2 Mode Selector Menu . 88

D Object Element Database 91

E Economical Analysis 95

9

CONTENTS CONTENTS

10

List of Figures

1.1 InHands Robotic Kitchen Scene . 14
1.2 General Initial Design . 18

2.1 Output Simple Frame Subtraction . 22
2.2 Output of I. Diff. Evaluation Using Percentages . 23
2.3 Image Divisor Relation . 24
2.4 Diagram of the Object Segmentation . 25
2.5 Adaptation of the ”Image Divisor Resistor” formula 27
2.6 Output Image Segmentation Example . 28
2.7 Mask Example . 28

3.1 Products without the layer can remain a trademark using the color 30
3.2 Example of output using SURF algorithm . 32
3.3 Process of Bag of Features . 37
3.4 Ouput of CamShift algorithm . 41
3.5 Diagram of the Object Recognition . 42
3.6 Output Ros Topic Recognition Example . 46

4.1 Diagram of the Act. Recognition . 49
4.2 Output Ros Topic Activity Recognition Example . 57

5.1 G. Diagram of the Act. Recognition . 59
5.2 Static Object Detection Scores . 62
5.3 Dynamic Object Detection Scores . 63
5.4 Experiment to detect the activity in bad conditions . 64
5.5 Total Object Detection Scores . 64

8.1 Classical Product Life Cycle . 72

A.1 Project Planning Schedule . 75

B.1 General Diagram of the Act. Recognition Project . 79

D.1 Object Data Base . 93

11

LIST OF FIGURES LIST OF FIGURES

12

Chapter 1

Introduction

Nowadays, nobody doubts that the use of robotic systems in the industry is a great advantage for the
companies. The companies increase their productivity making it possible to expand their business
to unimagined limits. With this new paradigm and the constant evolution of the technology and
the creation of new communication channels, the companies can increase their market. In most of
these cases the robots were built to substitute repetitive human tasks. For this reason, usually the
construction of the robots uses anthropomorphic structures.

What will be the evolution of these systems? The evolution of this type of robots goes to increasing
their specifications to make it possible to produce faster, with more quality to satisfy a global market
at the minimum time as possible.

Now, one new horizon begins to develop in the robotics. Many research groups are working to
create new applications for this robotic systems to use them in assist people in different daily situations.
Examples of these situations can be the following ones:

• Robotics in the rehabilitation therapy.

• Mobility solutions for seniors.

• Incorporation of the robots for the assistance of handicapped or senior people.

What is the main difficulty of using the robotics in this new environment? Basically, the difficulty
resides in programing a big number of cases that the system needs to take into account. The main
characteristic about the industrial environment is that all the activities in the process are very
structured and the users don’t share the same workspace at the same time, in contrast to the assistance
environment, in which the workspace isn’t structured, it is continually changing and the most important
issue is that the robot and the user need to share the same workspace. Therefore it is important to
ensure the security of the users.

The group of ”Intelligent Robotics and Systems” (GRINS) is one of these groups that try to use
this new robotic environment to increase the quality of the life of the final users that need to supply
physical disabilities or that are in process of rehabilitation after one intervention. The project we
present was developed in this group, making it possible to lean on their experiences in this scientific
field and to try to implement improvements using previous informations about the topic of this project.

In the following points, we will explain all about this environment, the previous works that exist in
the group and the main objectives we will accomplish with this project.

1.1 Objective of this project

The main objective of the project is to create a new layer in the robot ROS that allows to predict
the activity that the user is doing during the execution. To do this prediction, the system has to
accomplish the following sub-objectives:

13

1.2. AVAILABLE SCENARIO CHAPTER 1. INTRODUCTION

1. Object Recognition and Learning:

• Object Segmentation: We need to be able to capture the images using different number
or types of cameras.

• Recognition of Segmented Objects: The system needs to classify the objects we
segmented to know the different objects in the scene by extracting the main object features
that each one has.

• Create an Object Database: It is important to add an object database to the system.
It makes it easy to manage the information and the possibility to add objects in an efficient
way.

• Two Different Working Modes: If we need to make an object learning process, we need
to measure if the number of samples of the objects is enough to assure good detections
for the system. So, to add a new object in the scene, we need first to execute the object
recognition in a supervised learning mode and, then, when we finish to add the new object
at the scene, we work in the normal mode.

2. Activity Recognition and Learning:

• Model of Activity: We need to parametrize the main features of the activity to use it
like a model.

• Create an Activity Database: The system must store the model of the activity to use
the previous executions in the following predictions.

• Early Recognition Activity: The system must predict the activity that the user is doing
during the execution.

1.2 Available Scenario

The activity recognition layer was implemented in the project InHands . This project tries to adapt
the use of a robotic kitchen environment to help the final users with handicaps to do the different tasks
in a known domestic scenario, in this case in the kitchen, increasing the quality of their life. We can
see the actual Inhans scene in the figure 1.1.

Figure 1.1: InHands Robotic Kitchen Scene

14

https://inhandsproject.wordpress.com/

CHAPTER 1. INTRODUCTION 1.2. AVAILABLE SCENARIO

The InHands environment consists in different specific modules responsible for one specific task.
So, all the modules in this environment need to work together to accomplish the assigned task that the
robot needs to do. It is important to facilitate the incremental development to make the integration of
the different projects to grow the main system in an efficient way possible.

One year ago, the project suffered big hardware and software changes that also produced big
changes in the robot environment. For this reason, one of the first activities we needed to do was the
actualization of the environment. The most important changes were the following ones:

• Static Scene: Actualize the kitchen scenario to add new improvements: mobile shelves, projec-
tion surface area.

• Robot Hardware Maintenance: Do the main robot maintenance task, change the worn parts
of the robot, change the connectors, grease the axis, etc..

• End Effector: Change the old End Effector to new Robotiq 3-Finger Gripper. Install the device,
integrated in ROS environment and test the good behavior.

• Robot-Human Interaction Device: Install and integrate the Leap Motion device in the main
system of the robot.

• Actualize ROS Version: Change the version of ROS system, from ROS Hydro to ROS Indigo
and test that all the packages work correctly.

• Actualize the Virtual Robotic Scene: Add the main changes implemented in the improve-
ment. Add the new end effector and the new static scene to the robot model.

• Adapt the Working Space: Adapt the environment to make it possible to work in a distributed
configuration where all the clients in the same network can subscribe at all the topics that the
robot environment publishes and work with them.

During my internship period, I participated in these main tasks with the Inhands team to develop
the previous improvements. All these changes produced in the system the improvement of the quality
of the system. When I finished my Internship period, the InHands Robot was prepared to work in the
standard environment, making it possible to work together with other commercial robots. So, in this
moment, we could develop new robotic layers to make it possible to add new characteristics to the
system.

The hardware situation after this improvements were applied is the following one:

• Robot Arm: The scene has a 3 axis arm. This robots was developed by the group.

• Robotiq 3-Finger Gripper: This hand is connected to the robot arm. The main characteristics
of the robotiq hand are the following ones:

– Gripper opening: 0 to 155 mm.

– Gripper weight: 2.3 Kg.

– Grip force (fingertip grip): 15 to 60 N

– Closing speed: 22 to 110 mm/s

– Finger position repeatability: 0.05 mm

– Electrical specifications: 24V , 1.5A, 4.1W

– Communication protocol options: EtherNet/IP, TCP/IP, DeviceNet, CANopen, Ether-
CAT, Modbus RTU

– Programmable gripping parameters: Position, speed and force control of each finger

15

http://robotiq.com/

1.3. SOFTWARE CHAPTER 1. INTRODUCTION

– Feedback: Grip detection, motor encoder position and motor current.

• Kinect Cameras: The system has 2 kinect v2 installed. The main specifications of the cameras
are the following ones:

– Color stream: 1920 x 1080

– Depth stream: 512 x 424

– Depth range: 0.4m → 4.5m

– Infrared stream: 512 x 424

– USB: 3.0v

• Server Pc:

– OS: Linux Ubuntu 14.04 LST.

– Processor: 2 x Intel Core Xeon(R) CPU X5670D @2.9GHz

– RAM: 32 Gb 1333

– Hard Drive: Solid State Drive 250 Gb

– Graphic card: Thesla C2050.

• Client Pc:

– OS: Linux Ubuntu 14.04 LST.

– Processor: Intel Core i7 CPU 860 @2.80GHz

– RAM: 8 Gb 1333

– Hard Drive: Solid State Drive 250 Gb

– Graphic card: Nvidia Quadro FX 580/PCIe/SSE2

• Main Static Scene: The static scene consists in a big work table and 2 big shelves to try to
reproduce the normal kitchen work space.

1.3 Software

The software used in the implementation of the project was conditioned by the previous projects
implemented before this one. Taking the existent main structure into account, we decided to make this
project using C++.

1.3.1 ROS

The Robot Operating System (ROS) is a flexible framework to write robot software. It is a collection
of tools, libraries and conventions that aims to simplify the task of creating complex and robust robot
behavior across a wide variety of robotic platforms.

ROS is a large project with many ancestors and contributors. The need for an open-ended
collaboration framework was felt by many people in the robotic research community, and many projects
have been created towards this goal.

The ROS ecosystem now consists of tens of thousands of users worldwide, working in domains
ranging from tabletop hobby projects to large industrial automation systems.

The version we used to implement this project is the ROS Indigo.

16

https://dev.windows.com/en-us/kinect
http://www.ros.org/

CHAPTER 1. INTRODUCTION 1.4. HARDWARE CONFIGURATION

1.3.2 OpenCV

(OpenCV) (Open Source Computer Vision) is a library of programming functions mainly aimed to real-
time computer vision. It is released under a BSD license. It is free for academic and commercial uses.
It has C++, C, Python and Java interfaces and supports Windows, Linux, Mac OS, iOS and Android.
OpenCV was designed for computational efficiency and with a strong focus on real-time applications.
Written in optimized C/C++, the library can take advantage of multi-core processing. Enabled with
OpenCL, it can take advantage of the hardware acceleration of the underlying heterogeneous compute
platform. OpenCV has more than 47 thousand people of user community. The version we used to
implement the project is OpenCv 2.4.9.

1.4 Hardware Configuration

Using all the possibilities that the ROS framework offers, we can build in an easy way a distributed
system where all the information we create in the different layers of the project can be shared with
all the devices in the same network. For example, in our case, the activity recognition process we
implemented in one of the pc clients.

The server is the main device of the robot environment. In the device runs the core of the Ros
Environment. That means that it controls the publications and subscribers of all topics in the system.
But it is not only the center of the Ros environment, it also means that the main hardware devices
that conform the system are also connected in the server. In the following list, we can see the main
devices that the system has:

• Kinect Cameras: The server gives us the image of the different cameras in ROS image Topic
Cameras.

• Robot Connection: The robot is connected to the server using a CANbus protocol.

• End Effector Connection: The gripper is connected to the server using Ethernet protocol.

• Leap Motion Device: To make the user interaction with the robot possible using the motion
of the hands. This system allows to monitor the position of both hands.

The actual situation of the main robot system is represented in the following scheme:

Kinect
Camera 1

Kinect
Camera 2

Server

Trajectory
Control

Arm
Control

E.Effector
Control

Leap
Motion Int.

Ros
Core

Robot Environment

ROS Indigo Layer

Gigabyte Eth. Network

Client 1:
Activity

Recognition

Client 2:
———————

Client N:
———————

17

http://www.opencv.org/

1.5. INITIAL DESIGN CONSIDERATIONS CHAPTER 1. INTRODUCTION

1.5 Initial Design Considerations

To do the initial study of the design we needed to implement, we needed to take the previous projects
of the same topic into account to value the main results that they obtained and to evaluate the main
problems they had.

If we consider the previous projects, we conclude that most of them have the same main big blocks,
because they resolve the activity classification using the same inputs. This main inputs are the following
ones:

1. Object Segmentation: First we need to separate the objects from the background scene.

2. Object Classification: Then, computing the main features of this region, the following part is
the recognition of the object using previous information.

3. Object Tracker: In some projects, the system adds an object tracker to monitor the main
states of the objects.

4. Skeleton Tracker: In other specific solutions, the project uses the information of the pose of
the user to use it like an activity descriptor.

5. Activity Recognition: Using the previous information, the system makes an activity classifi-
cation and offers one estimation of the user’s activity.

In the InHands group a similar project was implemented previously. It had some of these modules
explained. The implementation of this project was developed using Python integrating the following
steps:

1. Object Segmentation: The system only monitored a little object area where the object was
stored.

2. Object Classification: To classify the objects, this project used color features of the objects.

3. Activity Recognition: Using the objects that the system detected and the detection of the
variabilities of the store area, it made an user’s activity classification and brought an estimated
value of the activity to the final user.

Considering the previous information and evaluating the available inputs, we build the first general
blocks diagram of our proposal. In a resumed way, our initial proposal has the following main blocks:

Camera 1

Camera n

Object Seg.
Object
Class

Activity
Class

Output
Activity

Object
Data Base

Activity
Data Base

Object
Tracker Input

Ouput

Figure 1.2: General Initial Design

Another important issue to consider is the segmentation of the project to make the execution of
the code in different clients of the system possible, allowing the system to use the distributed ROS
structure to balance the computational load of the system.

18

Chapter 2

Object Segmentation

2.1 Introduction

In this chapter, we will introduce the first process needed to build a main activities recognition system,
using only the objects used in the scene to make a prediction of the activities that the user is performing.

In this project, we try to use all the objects that take part in the action to make a prediction of the
activity that the user is doing at the moment. The main objectives are to estimate the future actions
in a robotic environment and to try to increase the human & robot user interactions perception.

If our system uses the objects to estimate the activities, it is logical to think that the first big
objective of this project is to try to build an object segmentation system to catch all the objects in the
environment. For this reason, the main objective of this part of the project is to build a robust system
that will be able to catch all the objects in the scene reducing as much as possible the time that the
system needs to spend and package all this information for following processes which can use it in an
efficient way.

Now, we start by making an introduction of all the techniques to separate the background and to
obtain only the objects in the scene using the methods that OpenCV has. Then, we will make a little
evaluation of each technique and which are the advantages and problems to use them. And, finally, we
will comment our proposal.

2.2 Background Subtraction

2.2.1 Simple Image Difference

The difference of image is a good method when using fix cameras observing the scene without changing
illumination conditions. In this situation, the background remains unchanged and we can observe all
the objects moving around the scene previously known, the background model. In order to extract the
objects, we only need to compare the background model with the current frame to detect the changes
and, finally, we discrete the results applying a threshold and creating a mask of all the objects in the
scene.[1]

For our application, the cameras are fixed on the main structure of the robot and the main objects
in the scene (table, shelves, sink) remain in a fixed position, but in our scene there are important
changes of illumination for different reasons (the position of the sun, the weather, when the user
enters in the scene, etc...). Taking this into account, we tested this method and the results were not
acceptable. The movements of the camera when the robot was working produced errors in the output
mask, detecting parts of the background and labeling them like objects. Another problem we detected
using this method was the variability of the pixel intensity when the conditions changed. This effect
forces the system to actualize the background model to adapt the results. The big advantage of using
this method is the velocity of computation, but the bad results forced to discard the first method and
to find another one more robust.

19

http://opencv.org/

2.2. BACKGROUND SUBTRACTION CHAPTER 2. OBJECT SEGMENTATION

Trying to improve the first results, we added more complexity adding a dynamic model of the
background. In this case, the system computes the variability of each pixel observing the scene in a
period of time. Observing the scene in a period of time involves the necessity to store and compute
a big number of frames that the system needs to manage. This method can produce problems if we
increase the comparison time, needing to use a big quantity of system memory. To solve this problem,
we used the ”moving average”, computing the average value of a temporal signal taking the latest
value received into account following this formula:

µt = (1− α)µt−1 + αpt (2.1)

2.2.2 Mixture of Gaussian Method

The Mixture of Gaussians (MOG) is similar to the previous method explained, increasing the complexity
by adding new characteristics to obtain more stable results:

• MOG maintains more than one model per pixel. If a background pixel fluctuates between two
values, it can be stored. The algorithm computes two median average values to use in the decision.
One new pixel value will be declared as foreground only when the value of this pixel is different
from the two model values.

• It doesn’t only take the average values into account. The variance of the values is also important.
This parameter follows the following relation:

σ2t = (1− α)σ2t−1 + α(pt − αt)2 (2.2)

• MOG Algorithm computes the probability of the pixel to pertain in the background or the
foreground by using a Gaussian model to estimate it and express the results with a probability.
Using this parameter, it determines an appropriate threshold.

• Taking the Gaussian model into account, the system changes the pixel belonging into object or
background depending on the current values.

In the appendix C.1.1 we explain how we implemented it in OpenCV using C++.
The results we obtained by integrating this method in the main code of the project are better in

comparison with the previous performing. Now, by using this algorithm, we can compute the changing
information of the frame in a temporal changing model. We have the possibility to change the learning
period value as we need. Adapting the value, we manage the time in which an invariant pixel changes
from foreground to background.

Once integrated, we tried to evaluate the results by changing the main parameters of the system.
But the results weren’t right for our application. All static objects were detected on the first moment,
but they then disappeared in a few seconds (depending on the learning period value we established).
We didn’t like that the static object disappeared to facilitate the following parts of the project, but it is
a good method to determine what pixels are moving in the scene, reducing the problem and decreasing
the computational time.

We can see a few techniques integrated in OpenCV to separate the background of the scene. In
order to increase the best results in our system, we decided to implement another method, trying to
capture the objects in the scene. This new method we tried to create penalizes the pixel difference
from the actual frame with the model. This penalty value increases or decreases depending on the
difference. For example, if we have two pixel values in which the difference goes to 0, the penalty value
goes also to 0. In the other case, when there is a big difference between both pixel values, the penalty
value increases, facilitating the segmentation task.

In our project, we pretend to offer a real time object segmentation, but only of the objects which
remain stable, because it has more benefits to implement it:

20

CHAPTER 2. OBJECT SEGMENTATION 2.2. BACKGROUND SUBTRACTION

1. It is easier to build a system which separates the objects from the background of the scene.

2. When the raw image belongs to a static object, the quality descriptor increases. The main
characteristics of the object remain without blurring.

3. If we only consider the static pixels, we can eliminate the user’s perturbation produced when it
is inside the scene.

4. Reducing the pixel information has an important impact in the total computational cost. We
can increase the velocity and our system can go faster.

5. The object segmentation part needs to allow to use one or more cameras to make the process in
an efficient way.

Observing all the results we obtained, the changing illumination conditions are a big problem we
need to try to solve, because it produces important interferences in the building mask process. So we
need to change the pixel representation to reduce the dependency of the pixel value with the intensity
that the sensor can capture.

Situations in which those effects appear:

• Depending on the hour of the day, the influence illumination changes and produces errors in the
detection.

• When the user is inside the scene, it produces a big perturbation in the color pixel values.

• The external conditions modify de pixel value. One example is the weather condition.

We need to find a good relationship of all these problems to make the comparison of both images
easier. In the following points, we will present the different relations we studied to solve the problem.

2.2.3 Simple Frame Subtraction

The first technique we used to represent the variability of the frames is the subtraction operator. This
method is explained in point 2.2.1.

Iout
Iin

= abs(Iframe − Ibackground) (2.3)

Now, to assure more stable results, we change the pixel representation of the image to minimize the
changing effects. This new pixel representation consists on weighting all channels which the total energy
that the sensor can detect. Once the pixel representation was made, we apply the module difference of
two images. In figure 2.1 we can see how this relationship works for three values of background image
going through all possible values of the frame values.

The main advantages that we observe using this method are the following ones:

• It is easy to compute and implement. It doesn’t need to spend a lot of time to compute.

• This method has a simple lineal output. This output can facilitate the next steps of the process.

• When the output tends to zero, it means that both pixels are equal.

• It facilitates the creation of the mask process only by applying a threshold.

• A system with a variable threshold taking the number of pixels where differences into account
can be built.

• Changing the value of the threshold, the semblance of the actual frame with the image control
can be configured.

21

2.2. BACKGROUND SUBTRACTION CHAPTER 2. OBJECT SEGMENTATION

Figure 2.1: Output Simple Frame Subtraction

However, when we tried to implement it, the results were not so good as expected. Using the linear
relationship, the system had problems to find the best threshold level because, when the threshold
level is high, the system can’t detect important information about the objects when these parts are
similar in the background. On the other case, when the threshold is low, in the output mask appear
background parts that difficult the proper use.

2.2.4 Image Differences Evaluation Using Percentages:

In this case, we try to change the main relationship used in the comparison image process. Here we try
to express and quantify the difference using percentages. To do this, we only need to divide the Imgfr
with the Imgbkg 2.4. Here, meantime the Energy Image Representation commented previously because
of the stable results we obtained.

Iout
Iin

=
Iframe

Ibackground
(2.4)

In the figure 2.2 we can see different outputs changing the same parameters with the previous
expression. Implementing this expression, we can see the following characteristics:

• The output is more enclosed than in the first case. It facilitates the next steps of the algorithm.

• The output keeps being linear. So it probably doesn’t reduce one of the main problems that
appeared in the previous case.

• The output is not adapted to the same image range, complicating the pixel representation
adaptation. To adapt it, we need to apply a scale factor to situate it. Another important issue is
the pivoting point situated in value ”1”. So, finding this scale factor takes on more important to
can use it.

• The slope changing depends on the condition. It is not so good if we need to propose a general
relationship.

Taking all these considerations into account, we decided to discard this relationship because trying to
solve the problems generates more problems to the system. We need to find one expression that resolves
the main problems seen in the other cases and that can separate the objects from the background in
the easiest way.

22

CHAPTER 2. OBJECT SEGMENTATION 2.2. BACKGROUND SUBTRACTION

Figure 2.2: Output of I. Diff. Evaluation Using Percentages

2.2.5 Image Divisor Relation:

Taking the results obtained in the two previous cases into account, we tried another expression to
find the best relationship to do the comparison of both images, minimizing the problems as much as
possible and also facilitating the next steps of the system.

This new expression has to be able to:

• Separate the object from the background previously known.

• The results need to be stable despite of the existence of perturbations: Illumination changes,
users inside the scene, shadows of the objects, etc..

• The behavior doesn’t have to be linear. In this new expression, the output will depend on how
similar both images are.

• The output of the process must be a binary image to create the mask to being used in the
segmentation part.

• The system must work in real-time

To accomplish all this point, we need to find one expression to facilitate the main characteristics
explained before and, also, another important issue we need to accomplish is that this expression must
be easy to compute to make it possible that the system works in real-time. We decided to use other
knowledge areas with the inspiration to find the solution to our problems. In our case, we tried to
adapt the electronic circuit formulation to find the best expression to solve it. We decided to use the
easiest formula in electronic, the ”resistor devided” 2.5. The transfer function depends on two resistor
values to modify the output voltage depending on the relation of both resistors.

When both values (Z2 and Z1) are equal or more or less similar, the output of the function is just
situated in the half of the values of Z1 and Z2. When this relation doesn’t appear, the output changes
to values under or upper to 0.5, depending on what value changes.

Vout
Vin

=
Z2

Z2 + Z1
(2.5)

The ”resistor divided” expression has one advantage, the results are not lineal, depending on the
value of both parameters. That means that the range of the output changes when more different the

23

2.3. PROPOSAL CHAPTER 2. OBJECT SEGMENTATION

two resistors are. For little changes between resistors, the output remains with the same value. In the
other case, when there are important changes, the output changes faster.

Now, adapting this previous considerations to our necessities using the intensity of the energies of
the images, the initial formula used for the comparison was the formula 2.6. We expected the same
behavior with the original one:

Iout
Iin

=
Iframe

Iframe + Ibackground
(2.6)

Doing the same study than in the other relationships, we can see the results in the figure 2.3. If we
see the output, we can see good things that resolve the main problems we had and other problems that
appear when try to implement the solution:

• This expression can be used for the comparison process.

• This easy equation produces enclosed values between 0 to 1. The range of value is just the range
on the image representation values. Just in the middle of this range, we find the equilibrium
point, the point were both pixels are the same.

• The output is not linear. This relationship increases the penalization when the pixel in both
images are more different.

• Unification of different slope independent of the values of both images.

Figure 2.3: Image Divisor Relation

Once this equation is implemented, we can see that the good results increase in comparison with
other alternatives. We can see that if the pixel values are situated in the central part of range, the
behavior is so good. But the problems appear outside this range. For example, in abrupt changes
when the energy of the region of the image decreases, or to use it in detection of dark objects.

2.3 Proposal

Once evaluated all the results of the different methods to separate the objects from the background,
now we can introduce our implementation proposal. To do this explanation, we can see first the
figure 2.4, where the main blocks implemented are explained. Then, in the following points, we will
explain in detail the different blocks of this diagram. And, finally, we will observe one example of the
segmentation output.

24

CHAPTER 2. OBJECT SEGMENTATION 2.3. PROPOSAL

Adapt
Pixel Data

Camera
Frame

Comp.
Process

Model
Scene

Mask
Channel g

Mask
Channel b

Mask
Channel r

Mask Total
Energy

Pool
General
Mask

Temporal
Regions
Study

Publish
Object
Image

Publish
Object

Info

Input

Output

Figure 2.4: Diagram of the Object Segmentation

2.3.1 Acquisition of the Raw Image

The first of these steps is to capture the raw image to use in the system. Remember that one of the
specifications of the project must be built in ROS framework to facilitate the process of adapting this
layer in the core system of the Capdi Robot. To capture the images, we had at our disposal 2 kinnect
cameras v.2 to monitor the scene. This hardware allows to capture images in different spectrum and
qualities of this image:

• Color Spectrum: BGR images in 3 different resolutions (high, medium, low), 8 bits codification.

• Infrared Spectrum: The camera has only one channel representation using 16 bits. The
resolution of this camera was 640x480

• Depth Spectrum: The camera has the same specification that the infrared spectrum.

In the two pieces of codes in appendix C.1.2, we can see the callback function associated to BGR
and infrared spectrum respectively. The callback functions in ROS work like interruption, they only
enter in the callback function when there is a new frame of the video. The main function of these
functions was only to actualize the variables, convert the representation and store in the memory the
visual information in the variables of the code.

In the case of infrared and depth channels, the information was represented in 16 bits codification.
So, if we would like to see these channels like a normal image, we would need to apply the scale factor

25

2.3. PROPOSAL CHAPTER 2. OBJECT SEGMENTATION

in 8 bits representation. This consideration increases the possibilities of using it taking other channels
of the camera into account, for example, the Color Channel C.1.3.

2.3.2 Adapting the Pixel Representation

One of the big problems we tried to solve is the necessity of reducing the perturbation dependency
to increase the good results. To increase the efficiency of the process, the first step we did was to
apply one Gaussian filter in the raw image to reduce the edges of the image. Testing all the methods
explained in the previous points, we saw that when the comparison process is done, just in the edges
of the objects and scene appeared differences between both images. Blurring the image, this bad
effects are reduced making the system more efficient and the results are more stable reducing the
quantification noise error of the sensor. Then, we can change the pixel representation values weighted
2.8 the value using the total energy 2.7 that the sensor can detect.

IEnergy = chb + chg + chr (2.7)

IEnergych =
Imagech
IEnergy

(2.8)

2.3.3 Comparative Process

When the adaptation of the pixel representation is finished, the next step of the progress is to define
the relationship to make the comparison process. Observing the results that we obtained, we can see
that using the ”Image Divisor Resistor” we obtained the best result of the other process tested. But
this method had an important limitation, explained before. To reinforce the result, we used a ”simple
frame subtraction” to solve this limitation. Both methods complemented the information, one for the
middle of the ranges and the other used in extreme situations.

In the implementation of this part of the code, a few changes were added in the original formula
to facilitate the implementation process. We centered the output variation around zero and, then,
computed the module. To finalize the process, we added a fixed gain to expand the results in all the
possible range of the image representation zero to one. In the figure 2.5, we can see how the output of
the pixel comparator process changes using the variation mentioned before. In the appendix C.1.4 we
can see how it was implemented.

The system needs to repeat the process for each channel used in the process. In our case, we only
used the color BGR channel. Using this implementation, will allows in future versions to add new
channels to increase the efficiency of the system. For example, we can easily add the infrared and
depth channels to use all the possibilities that the hardware allows. For example, if we talk about the
depth channel, we see that it has a nice advantage of using it, because it can know the distance of the
objects represented like a normal image, so we can add another channel of the BGR image (BGR-D)
and make the same process, and the same with the infrared channel (BGR-D-I).

Using the depth channel has advantages because we can know important differences between the
model background and the actual situation, but it is not perfect. We can detect two important problems
of using this channel. First, in detecting little object like tools (spoon, knife) or other accessories
(heat protected) that its measures are near to fix objects (table, shelf, etc). The resolution and the
quantification error produce problems to detect these objects. The second problem has to do with
an important hardware limitation. The kinnect camera version 2 uses the time of light technology to
measure the distance of the objects. In definitive, the system uses the reflexion of the light in the body
of the object and measures the waste time. If we try to know the distance of one dark object, the
quantity of this light returned to sensor decreases. In extreme situations when the object is black, the
light can’t return to the object because the body of the object absorbs all the light, producing a false
distance detection.

26

CHAPTER 2. OBJECT SEGMENTATION 2.3. PROPOSAL

Using the infrared channel, the quality of the detections can also increase, but we don’t study the
effects and possible disadvantages of using it.

Taking the benefits and the disadvantages of using different channels into account, we can build a
mathematical expression to involve all the channels in the same equation to increase the results of the
system.

Figure 2.5: Adaptation of the ”Image Divisor Resistor” formula

To finish the comparative process, we only need to apply a threshold level to create the partial
mask. We have one partial mask for each channel we use to detect the differences. To compute the
main mask, the system only needs to add all the contribution of the partial mask to build it 2.9.

MaskMain = Maskchb +Maskchg +Maskchr (2.9)

2.3.4 Study of all Mask Regions

Before starting to describe the process of computing the final region when the objects are situated in
the scene, it is a good moment to remember one of the main objectives of this process. This main
objective is that the system only computes the characteristics of the static objects, discarding all the
objects moving in the scene. Fixing this objective, we can increment the quality of the key points of
the object and the efficiency of the system.

Later, we need to take the apparition of bad regions that the system detects like objects but they
really aren’t into account. This situation appears for several reasons. For example, the quantification
error of the cameras, noise and perturbations. To eliminate this perturbation is not easy, but we can
reduce as much as possible the contribution of this reason by monitoring the position of all region. The
best way to monitor the contribution is by implementing a temporal evaluation storing the mask that
the system can create in a determinate period of time. The system will eliminate the areas of the image
that don’t stay stable. In the appendix C.1.5 we can see how this filtering process was implemented.

27

2.4. EXAMPLE OUTPUT CHAPTER 2. OBJECT SEGMENTATION

2.4 Example Output

In the following picture we can see an example of the output of the object segmentation process.

Figure 2.6: Output Image Segmentation Example

Figure 2.7: Mask Example

In the appendix D we can see more examples of the output of the process.

28

Chapter 3

Object Recognition

Another important block of this project is the computation of the main features that define the objects
inside the scene. In the previous points, we said that the best way to capture the object is in a static
mode because the system can find the key points of the object easily. Trying to find the best solution
of our project, we studied different solutions to find the best identification key point of the objects. In
this chapter, we will talk about the main techniques and how they work. Finally, we will also talk
about the final implementation and comment the results we obtained.

First of all, we defined 3 fundamental properties that an object recognition system must accomplish:

• Velocity: We need to compute this task in real-time, so the velocity is important.

• Precision: To make a good detection, we need to assure that the features of the object are
robust and that the key-point defines the characteristics of the object.

• Repeatability: The repeatability is an important parameter because if it doesn’t exist, we can’t
make the classification process and, then, we can’t recognize the objects.

3.1 Methods to Extract Features

3.1.1 Color Histograms

One of the most usual object descriptor we have is the use of the color information of the objects like a
descriptor, using the histogram values of the 3 image channels. We can use this information like a
descriptor to use it in recognition and classification objects inside the scene. One of the interesting
things about this method is that the system can preserve the raw information of the objects. [3]

Using the color information to try to identify objects will be a good strategy because the manufacture
companies use really visual product designs to differentiate their products from the competitors ones.
The companies try to make their products using a combination of colors and specific forms to define
the objects. If the marketing company makes a good job, the final user can identify the trademark
even when the label is damaged. In figure 3.1, we see one example of this affirmation: though the label
is removed, the users can recognize the object using only the colors information.

So, taking all these considerations into account, using a low computational level, can be a priori
a good identifier of the products. The output of the system is a global descriptor of the object,
represented only by one vector with ”X” bin for each channel of a RGB image, making the integration
in comparator structures to build the recognition machine easier.

29

3.1. METHODS TO EXTRACT FEATURES CHAPTER 3. OBJECT RECOGNITION

Figure 3.1: Products without the layer can remain a trademark using the color

3.1.2 Scale-Invariant Feature Transform (SIFT)

Another possibility to compute the main features of an object is SIFT [4] . Using this algorithm allows
to find specific local characteristics of the objects creating specific descriptors using this point. It is a
good way to find these specific points that define the object: trademark forms, abrupt changes, etc.

The main steps that define the algorithm process are the following ones:

1. Scale-space Extrema Detection: To detect the key-points in different scales, we need to
compute a Lapalcian of Gaussian with a different σ configuration. For example, if we use a low σ,
it gives high values for a small corner and, in the other case, a high σ fits well for a larger corner.
We can find the local maximum across the scale and space, which gives us a list of (x,t,σ) values
and means that there is a potential key-point at (x,y) at σ scale. Computing the LOG is a little
costly. SIFT algorithm uses different Gaussians because it is an approximation of LOG with less
computational costs. The main values that the paper [4] proposes are the following ones:

Noctaves = 4; Nscalelevels = 5; σinitial = 1.6; k =
√

2. (3.1)

2. Keypoint Localization: When potential key-point locations are found, they have to get more
accurate results. Using a Taylor series expression of scale space is a way to get a more accurate
location of extrema, and if the intensity at this extrema is less than a threshold value, it is
rejected.

3. Orientation Assignment: Now, an orientation is assigned to each keypoint to achieve invariance
to image rotation. A neigbourhood is taken around the keypoint location depending on the scale,
and the gradient magnitude and direction are calculated in that region.

An orientation histogram with 36 bins covering 360 degrees is created. It is weighted by a gradient
magnitude and gaussian-weighted circular window with σ equal to 1.5 times the scale of keypoint.
The highest peak in the histogram is taken, and any peak above 80% of it is also considered
to calculate the orientation. It creates keypoints with the same location and scale, but with
different directions. It contributes to the stability of matching.

4. Keypoint Descriptor: A keypoint descriptor is created. A 16x16 neighbourhood around the
keypoint is taken. It is devided into 16 sub-blocks of 4x4 size. For each sub-block, a 8 bin
orientation histogram is created. So, a total of 128 bin values are available. It is represented as a
vector to form a keypoint descriptor. In addition to this, several measures are taken to achieve
robustness against illumination changes and rotation.

5. Keypoint Matching: The keypoints between two images are matched by identifying their
nearest neighbours.

30

CHAPTER 3. OBJECT RECOGNITION 3.1. METHODS TO EXTRACT FEATURES

3.1.3 Speeded-Up Robust Features (SURF)

Another descriptor we studied to introduce in the project is the SURF descriptor [5]. This descriptor
is based on a SIRF algorithm, so both have similar properties.

The first step consists on fixing a reproducible orientation based on information from a circular
region around the interest point. Then, we constructed a square region aligned to the selected
orientation, and extracted the SURF descriptor from it.

Now, we will explain the main parts to compute this descriptor in a detailed way:

1. Orientation Assignment: In order to be invariant to the rotation, we need to take a repro-
ducible orientation for the key-points. So, the algorithm computes the Haar-wavelet responses
in x and y directions in a circular neighborhood with radius 6s, and s is the scale at which the
interest points were detected.

Once the wavelet responses are calculated, they are represented as vectors. The dominant
orientation is estimated by calculating the sum of all responses. The longest of such vectors lends
its orientation to the interest point.

2. Descriptor Components: To extract the descriptor, we first need to construct a square region
centered around the key-point of the object and oriented selected in the previous point. Then,
the region is split up regularly into smaller 4 x 4 square sub-regions. For each sub-region, we
need to compute a few simple features at 5 x 5 space sample points: Haar-wavelet in horizontal
direction dx, Haar-wavelet in vertical direction dy. Both parameters are weighted with a Gaussian
(σ = 3.3s) centered in the interest point. The next step is to sum the wavelet responses dx and
dy over each subregion and construct a vector with the results. We also need to extract the sum
of the absolute values of the responses to know the polarity of the intensity changes (|dx|,|dy|).

So each sub-region has a four-dimensional descriptor vector v for its underlying intensity structure:

v =
(∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|
)

(3.2)

The result of this process is a descriptor invariant to a bias in illumination (offset), invariance to
contrast (a scale factor) is achieved by turning the descriptor into a unit of 64 bins vector.

It is possible to modify the main structure of the descriptor to increase the accuracy (using SURF
with 128 bines, 5 x 5 subregion structure) or to reduce the accuracy by increasing the velocity to
compute (SURF with 36 bines, 3 x 3 subregion structure) depending on our necessities.

The main benefits of using SURF in comparative with SIRF are the following ones:

• Using a SURF algorithm increases the speed to compute the descriptor. The SURF descriptor
only needs around 354 -391 ms in comparison with the 1036 ms from SIRF.

• It increases the recognition rate. The SURF algorithm had an 85% of accuracy in comparison
with the 78 % of SIRF.

31

3.1. METHODS TO EXTRACT FEATURES CHAPTER 3. OBJECT RECOGNITION

Figure 3.2: Example of output using SURF algorithm

3.1.4 KAZE Features

Searching different ways of building a descriptor to the object, we found the KAZE algorithm [6]. In
this case, the system builds in a nonlinear scale space up to a maximum evolution time using AOS
techniques. The output of the system is similar to the techniques we saw previously.

To build the descriptor, we need to make the following steps:

1. Change the Representation Image: The image is represented in a non linear space using
the following formula:

Li+1 =

(
I − (ti+1 − ti) ∗

m∑
i=1

Al(L
i)

)−1
∗ Li (3.3)

2. Feature Detection: To detect points of interest, the algorithm computes the response of
scale-normalized determinant of the Hessian at multiple scale levels. For the multi-scale features
detection, the set of differential operators needs to be normalized in relation to the scale.

LHessian = σ2
(
LxxLyy − L2

xy

)
(3.4)

where (LxxLyy) are the second order horizontal and vertical derivates and Lxy is the second order
cross derivate.

3. Features Description:

Finding the Dominant Orientation: To obtain a rotation invariant descriptor, it is
necessary to estimate the dominant orientation in a local neighborhood centered in the key-point
location, similar to SURF [5].

Building the Descritpor: The algorithm uses the M-SURF descriptor adapted to nonlinear
scale space. For detected features at scale σi, Lx, Ly of size σi, they are computed over a 24σi x
24σi. This grid is divided into 4 x 4 subregions of size 9σi x 9σi with an overlap of 2σi. Then,
each subregion is weighted using a Gaussian (σ2 = 1.5 ∗ σi). The descriptor vector for each
subregion is the following one:

dv =
(∑

Lx,
∑

Ly,
∑
|Lx|,

∑
|Ly|

)
(3.5)

The result is a normalized vector of 64 bins for each key-point found.

32

CHAPTER 3. OBJECT RECOGNITION 3.1. METHODS TO EXTRACT FEATURES

Using this algorithm, the repeatability parameter increases. KAZE increases the score a 40% in
comparison with SIFT algorithm and a 20% in comparison with SURF. But it has a penalization in
the computational time because it spends more time to compute (KAZE needs to spend approximately
2.4 more time than SURF).

3.1.5 Acelerate KAZE Features

This algorithm is a variant of the previous one, trying to improve the results obtained by KAZE. In
this case, it uses a FED scheme (Fast Explicit Diffusion) to build a nonlinear scale space considering
the anisotropic diffusion. To improve the speed of the construction, the algorithm embedded the
FED scheme into a fine to coarse pyramidal framework to create a robust features detection and
description.[7]
The main steps to build this features are the following ones:

1. Build a Nonlinear Scale Space with Fast Explicit Diffusion:

(a) The algorithm first needs to define a set of evolution times from which we can build the
nonlinear scale space. The scale space is discretized in a series of O octaves and S sub-levels.
The octave and the sub-level indexes are mapped to their corresponding scale σ (pixel)
using the formula:

σi(o, s) = 2o+s/S , o ∈ [0...O], s ∈ [0...S − 1], i ∈ [0...M] (3.6)

where M is the total number of filtered images.

(b) Convert the set of discrete scale levels in pixel units σi using:

ti(o, s) =
1

2
∗ σ2i , i = {0...M} (3.7)

(c) The imput image can be convolved with a Gaussian of standard deviation σ0 to reduce noise
and possible artefacts.

(d) From the smoothed input image, the algorithm computes the contrast factor λ as a 70 %
percentile of the gradient histogram.

(e) Given the input image and the contrast factor, the FED scheme can work. Using M − 1
outer FED cycles and for each cycle computes the minimun number of inner steps n. For
example, in a 2D image the maximal step size that doesn’t violate stability conditions is
τmax = 0.25

(f) Once the last sublevel in each octave is reached, the algorithm downsamples the image by a

factor of 2 using the smoothing mask

(
1

4
,
1

2
,
1

4

)
and uses that downsampled image as the

starting image for the next FED cycle in the next octave.

(g) After down-sampling the image, it needs to modify the contrast parameter λ. The smoothing
mask reduces the contrast of an ideal step edge by 25% and, then, the contrast parameter
needs to be multiplied by 0.75.

33

3.1. METHODS TO EXTRACT FEATURES CHAPTER 3. OBJECT RECOGNITION

The next pseudo code explains the previous steps in a resumed way:

Algorithm 1 Pyramidal FED approach for non linear diffusion filtering

Input: Image L0,contrast parameter λ, τmax and set of evolution times ti
Output: Set of filtered images Li, i = 0..M

1: for i = 0→ (M − 1) do
2: Compute diffusivity matrix A(Li)
3: Set FED outer cycle time T = ti+1 + ti
4: Compute number of FED inner steps n
5: Compute steps sizes τj
6: Set Prior Li+1,0

7: Li+1=FEDCycle(Li+1,0, A(Li), τj)
8: if σi+1 > σi then

9: Downsample Li+1 with mask

(
1

4
,
1

2
,
1

4

)
10: λ = λ ∗ 0.75
11: end if
12: end for

Algorithm 2 FED Cycle

1: function FEDCycle(Li+1,0, A(Li), τj)
2: for j = 0→ (n− 1) do
3: Li+1,j+1 = (1 + τjA(Li))Li+1,j

4: end for
Return Li+1,n

5: end function

2. Feature Detection:

When the previous process finishes, it is the moment to detect the main features that define the
image in the new non linear space representation. To make this process, we follow these steps:

(a) Compute the determinant of the Hessian for each one of the filtered images Li in a non
linear scale space. The set of operators is normalized taking the scale into account with:

σi,norm =
σi

2oi
(3.8)

LiHessian = σ2i,norm(LixxL
i
yy − LixyLixy) (3.9)

(b) Compute the second order derivate, the algorithm uses concatenated Scharr filters with step
size σi,norm

(c) At each evolution level i, the system checks that the detector response is higher than a
pre-defined threshold and that it is a maximum in a windows of 3x3 pixels.

(d) For each of the potential maximum, it checks that the response is a maximum with respect
to other key-points form level i+1 and i-1

(e) The 2D position of the key-points is estimated with a sub-pixel accuracy by fitting a 2D
quadratic function to the determinant of the Hessian response (3x3 pixels neighborhood)
and finding its maximum.

(f) The invariance of the rotation is obtained by stimating the main orientation of the key-points
as in KAZE

34

CHAPTER 3. OBJECT RECOGNITION 3.2. FINAL FEATURES PROPOSAL

The results of using this algorithm to calculate the local features of the object are compared with
the main characteristics of KAZE, SURF and SIRF algorithms. In this case:

• The repeatability scores using A-KAZE are close to the ones obtained by KAZE (20% better
in comparison with SURF, 40% better in comparison with SIRF)

• The velocity of computing it increases in several orders. A-KAZE is faster than SIRF, KAZE
and SURF.

3.2 Final Features Proposal

Taking the results obtained in the review of different techniques to extract information that we explained
before into account, we created our implementation using the library OpenCV 2.4.9. In this version,
the first 3 algorithms (Color Histogram, SIFT and SURF) are implemented inside but the final two
(KAZE and aKAZE) aren’t. If we would like to use it, we would need to wait at the stable new version
of OpenCV 3.0 to use it in our environment. Externally of OpenCV, we can install aKAZE package
and compile it to use. But the implementation of these packages increases the implementation time,
because there are incompatibilities with different libraries of both packages. So, finally, in this version
of the project we will use the SURF algorithm to extract the features of the objects and take the
aKAZE algorithm into account to implement it in futures versions of the project.

If we remember the last part of the explanation of our code, we said that only the regions that
pass all filters are candidate to compute their main features. Now, the next step is to crop the image
to reduce the size of the frame taking the size of the detected object into account. The finality of
this process is to reduce the area as much as possible when applying the extractor features process,
reducing the computational time as much as possible. To study all the methods explained before,
we created a specific function for each one of the algorithms, facilitating the task of comparison and
commented the results we obtained by using it.

Finally, we decided to use the SURF algorithm but, to evaluate the behaviors of the different
methods we explained before, we need to implement the different methods to select the algorithm with
better results and less computational time for our application, because the velocity of the extractor
features is an important issue to make it possible that the final system works in real-time. In the
following points we can see the different information that the algorithm can extract:

3.2.1 Color Histogram Descriptor

The result of implementing a Color Histogram Descriptor is a vector with its length defined by the
”histSize” variable multiplied by the number of image channels, one for each channel of the image. In
appendix C.2.1 we can see how it is implemented.

3.2.2 SIFT Descriptor

The output of a SIFT descriptor is a vector of key-points that defines the image or, in our case, the
object. The vector is the type ”KeyPoints” and inside this type it stores the following information
about the key-point:

• Angle: Computed orientation of the keypoint.

• Class id: Object ID, that can be used to cluster keypoints by an object they belong to.

• Octave: Octave (pyramid layer), from which the keypoint has been extracted.

• Point: Coordinates of the keypoint.

• Response: The response, by which the strongest keypoints have been selected.

35

3.3. ASSOCIATION OF FEATURES METHOD: CHAPTER 3. OBJECT RECOGNITION

• Size: Diameter of the useful keypoint adjacent area.

In the appendix C.2.2 we can see the code implementation of this algorithm.

3.2.3 SURF Descriptor

In the case of SURF algorithm, we must compute the key-points of the object like SIFT, but then we
need to compute the vector of 64 explained in point 3.1.3. Additionally, we order the key-point taking
the quality of the key-points into account and we only use the best key-point detected. In the output
there is a matrix defined with n keypoints with a length of 64 bins in the rows. In the appendix C.2.3
we can observe the implementation of SURF algorithm. Taking its characteristics into account, we
decided to use it in the implementation proposal of this project.

3.2.4 AKAZE Descriptor

In the output, we have the same structure as in the SURF Algorithm. Depending on the number of
key-points found, the length of the matrix changes and the number of rows is 64 like in the SURF
algorithm. In the appendix C.2.4 we can observe the implementation of aKAZE algorithm. The use of
this algorithm remains in standby until the OpenCV v3.0 is in a stable version.

3.3 Association of Features Method:

The result of applying the previous techniques to compute the keypoints of the images is a group of
interest points that define the object (except in the first technique, because it is a general descriptor of
all the image).

The next necessary step is to group all these keypoints and create a main descriptor taking the
first keypoints computed into account. To do this, we use a Bag of Features or Bag of Words to
compute a main descriptor. The result of applying this technique is only one vector with n element
to define the object. This form increases the facility to enter this data into classifier structures to
create an automatic recognition of the objects in the system. In the following points we can explain
the Bag of Word theory and how this algorithm works. Another advantage of using the Bag of Word
representation is that it doesn’t need to store the object images because the main information we need
to use is in one vector, saving space in the memory system.

3.3.1 Implementation of Bag of Features Using a Bag of Key-Points

If we use a group of SIRF / SURF / AKAZE keypoints to create a descriptor of the object, we need
to group this information using one technique to build a unique descriptor which introduces in the
categorization structure. [9] [10]. Using the Bag of Features algorithm, we can build a system with
this objective. Now, we will explain how the Bag of Features algorithm works.

Bag of Features is one of the popular visual descriptors used for visual data classification and it is
inspired by a concept called Bag of Words, that is used in document classification. A bag of visual
words of features is a sparse vector of occurrence counts of a vocabulary of local image features.

To achieve this, it usually includes the following four steps:

1. Feature Representation: Each image is represented by several keypoints and each keypoint is
represented by numerical vectors called feature descriptors.

2. Feature Description: A good descriptor is one that has the ability to handle intensity, rotation
and scale. For example, SIFT, SURF and AKAZE algorithms define a good features descriptor
with the previous characteristics.

36

CHAPTER 3. OBJECT RECOGNITION 3.4. CATEGORIZATION METHODS

3. Codebook Generation: The last step is to convert the vector represented patches to ”code-
book”. This codebook can be considered as a representative of several similar patches. Using
this codebook, we can represent and classify different images, or, in our case, different objects in
the scene.

4. Object Representation: Each patch in an image is mapped to a certain codeword through
the clustering process and the image can be represented by the histogram of the codewords.

Figure 3.3: Process of Bag of Features

3.4 Categorization Methods

Once the image is represented in Bag of Features mode, the system needs a method to classify all images
to create the recognition part of the project. To apply this in the project, we studied 2 categorization
methods to create the main comparative structure and make the recognition of all objects present in
the scene possible.

3.4.1 Categorization by Naı̈ve Bayes

The classification using Näıve Bayes theorem is often used in text categorization. It is used for
documents categorization according by prior probabilities. The accuracy obtained using this categorizer
is typically high. To adapt this method in a visual categorization, we need to have a set of labeled
images I = {Ii} and vocabulary V = {vi} of representative keypoints. Each descriptor was extracted
from the image using our keypoints and labeled, to which it lies closest in features space.

The classifier counts the number N(t, i) of times keypoints Vi occur in the image Ii. To categorize
a new image, the system applies Bayes’s rule and takes the largest following score as the prediction:

P (Cj |Ii) α P (Cj)P (Ii|Cj) = P (Cj)

|v|∏
t=1

P (vt|Cj)N(t,i) (3.10)

Using the Bayes’s rule requires an estimation of the class-conditional probabilities of the key-points
Vt given Cj . To compute the probabilities of zero, the system uses an estimation using Laplace
smoothing:

37

3.4. CATEGORIZATION METHODS CHAPTER 3. OBJECT RECOGNITION

P (vt|Cj) =
1 +

∑
(Ii ∈ Cj)

N(t,i)

|V |+
∑|V |

s=1

∑
(Ii ∈ Cj)

N(s,i)

(3.11)

3.4.2 Categorization by Support Vector Machine

The support vector machine (SVM) is a supervised learning method that generates input-output
mapping functions from a set of labeled training data. For the classification, the kernel functions
transform the input data to a high-dimensional feature with the only objective of increasing the
separability of the samples of the row data. The model produced only depends on the training data set
used to build it.

The main objective of SVM is to find an hyperplane which separates class data with maximal
margin (the distance of the closest training point to the separating hyperplane).

Given the X observations with the corresponding Y labels, the system adopts the functionality of
this expression:

f(x) = sign(wTx+ b) (3.12)

The parameters w and b represent the main parameters of the hyperplane. In most situations, the
data set are not always linearly separable. In these cases, the SVM can use two different approaches to
solve the problem.

• Introducing an Error Weighting (C): Penalizes classifications depending on the distance
from the classification boundary.

• Changing the Dimensions of Representative Data Space Modifying the Types of
Kernels: This new data changes can be explained with the new kernels generation 3.13. Finally,
the decision function can be expressed in kernel formulation as 3.14.

K(u, v) = Φ(u)Φ(v) (3.13)

f(x) = sign(
∑
i

yiαiK(x, xi) + b) (3.14)

But both parameters (kernel and the penalty C) are dependent and need to be determined depending
on the final implementation. Finally, for our application, we need to distinguish different objects. For
this reason, we need to apply a multi-class SVM classification. To make this possible, we have two
options:

• Multi-class SVM Problem: Using a SVM structure can make multi-class classification taking
different regions in the hyperplane into account. The advantage of using this option is that using
only one SVM structure for all objects, it is easier to build the system and to add new objects to
recognize it.

• Two-class SVM Problem: In this case, only two possibilities can be recognized. We need to
build one SVM for each object we had in the data-base to distinguish each object from the rest
of the objects in the system. The main problem of this method is that in all cases we need to
compare the actual object with the rest of the objects in the system, increasing the computational
load and the recognition time that the system needs to spend. However, using this option can
increase the good results of the classifier because the samples only need to be separated in two
groups.

38

CHAPTER 3. OBJECT RECOGNITION 3.4. CATEGORIZATION METHODS

OpenCV offers different configurations depending on our necessities and the difficulty to make the
classifier obtain the results needed. We can configure all the Suport Vector Machine parameters using
CvSVMParams register.

In this register, we can configure important aspects of the behavior of the classifier in two main
parameters:

1. The type of the classifier:

• CvSVM::C SVC: Builds a (n > 2) classifier. In this mode, the system has a penalty C
taking the distance of the sample in reference to center of the class into account.

• CvSVM::NU SVC: Builds a n-class classification with possible imperfect separation.
Parameter ν{0, 1}
• CvSVM::ONE CLASS: . All the samples are from the same class. It builds a system

that can separate the class from the rest of the features space.

• CvSVM::EPS SVR: The distance between the training set and the fitting hyper-plane
must be less than p. Otherwise, the penalty multiplier C is applied.

• CvSVM::NU SVR: The same of the previous type, but using ν insted of p

2. The type of SVM kernel:

• CvSVM::LINEAR: The system applies a linear discrimination using the original feature
space. This option is the fastest one, but also the one with most problems of classification.
This option is a good decision to classify separated samples.

K(xi, xj) = xTi xj (3.15)

• CvSVM::POLY: When the difficulty of separating the samples increases and it is impossible
to separate the samples with the linear kernel, a n polynomial kernel can be used to increase
the efficiency of the classifier.

K(xi, xj) = (γxTi xj + coef0)
n, γ > 0 (3.16)

• CvSVM::RBF: In this case, the kernel adds the radial basis function to the classification
system to measure the influence of the samples taking the distance into account. The γ
defines how far the influence of a single training example reaches. Low values meaning ”far”
and high values meaning ”close”.

K(xi, xj) = e−γ||xi−xj ||
2
, γ > 0 (3.17)

• CvSVM::SIGMOID: The kernel classifier uses the following equation:

K(xi, xj) = tanh(γxTi xj + coef0) (3.18)

39

3.5. OBJECT TRACKER CHAPTER 3. OBJECT RECOGNITION

3.5 Object Tracker

If now we take the initial scheme of figure 1.2, the object tracker system was considered to increase the
quantity of the information that the system knows of the objects. Using this dynamic information, the
system can know for example:

• If the user interacts with the object or not.

• The temporal studies of the interaction of the object.

• Monitory the movements of the objects.

• The study of the objects trajectories to detect the interaction between objects.

• The detection of user’s task monitoring the movement of two objects at the same time.

• Classify the objects in different tasks to recognize more than one activity at the same time.

If the static information that the system has is completed with the dynamic information, the system
can grow in complexity and will make the detections of more complicate activities in comparison of
only using the static information possible.

Taking these advantages into account, we decided to implement an easy object tracker to evaluate
if the information could be interesting for monitoring the user’s activities.

To implement this first approximation, we used the CamShift algorithm [11] to implement this
object tracker initial solution. This algorithm is a robust method of finding local extrema in the density
distribution of a data set. The descriptor is used in its formal statistical sense. This means that it
ignores the data points that are far from peaks in the data. It does so by processing the points within
a local window of the data and then moving that window reference.

The CamShift algorithm can be summarized in the following steps:

Algorithm 3 CamShift algorithm

Input: Object Image
Output: The centroid of the object and the size of the windows.

1: Set the region of interest (ROI) of the probability distribution image to the entire image.
2: Calculate a color probability distribution of the region centered at the search window.

3: while (flag==true) do
4: Calculate a Color Probability Distribution in the region of the search window.
5: find the centroid of the probability image.
6: Center the search window at the location found in Step 4
7: Set the window size to a function of the zero moment.
8: end while

40

CHAPTER 3. OBJECT RECOGNITION 3.5. OBJECT TRACKER

In the Figure 3.4, we can see one example of the CamShift tracker output.

Figure 3.4: Ouput of CamShift algorithm

41

3.6. PROPOSAL CHAPTER 3. OBJECT RECOGNITION

3.6 Proposal

Before considering all the previous information to elaborate our proposal implementation, we begin
this point by presenting the main structure blocks we built to extract all the information about the
objects:

Image
Database

Object
Segmented

Image

Object
Segmented

Info

Initial
Config.
System

New
Topic?

Compute
SURF

Algorithm

Built BoF
Repr.

Compare
Object
DDBB

Learning
Act?

Add
Object
DDBB

Add
Object
in list

Det.
Obj?

Wait

Init
Variables

Object
Tracker

Refresh
Obj. Info

Publish
Obj data

Input

Output

yes

no
yes

no

yes

no

Figure 3.5: Diagram of the Object Recognition

In the previous section 2.3, we explained how the objects inside the scene can be detected and how
the system manages the information to consider one region detected like an object. Then, the system
publishes all the information of interest about the object using two different topics in ROS environment.
Now, the following step is to process all this row data and convert it in interesting information about
the objects. But, if we see the figure 3.5 again, we observe that the process needs to take different
working modes into account to transform the raw data in data. In the following points, we will explain
all the functionalities we implemented in the system and how it works step by step.

42

CHAPTER 3. OBJECT RECOGNITION 3.6. PROPOSAL

3.6.1 Reading the ROS Topics:

The first step we need to do is to read the ROS topics to start the process. In our case, we distinguish
two main behaviors:

• Compute the Characteristics of Static Objects: It is necessary to compute the main
features of the objects detected by the previous code. For this part of the code, we subscribe the
topics created previously:

– /objects/segmentation object: In this topic, the system shares the regions of the images
detected like objects.

– /objects/segmentation object info: In this topic, the system shares the main specifica-
tion of the region. It is an extra information about the image that we can use in following
steps. In this topic, it shares information such as: area of the region, position of the object
in a camera frame, actual time or the frame camera ID.

• Compute the Dynamic Characteristics of the Objects: In case that the objects are in
movement, we need to know the main characteristics that define the movement. This information
is important for the followings steps to recognize the main activity. To make this part, the system
needs to monitor the objects to determine if they are moving or not. We will talk about the
object tracker in followings points.

– /cam2/hd/image color: Image of the scene.

Only when the system detects that both topics are actualized, it starts to manage the information
over all blocks of the system. But first we need to do one previous step, the initial configuration of all
main parameters to allow the system the classification of the objects. To manage these different steps,
we implement in the code one menu to allow the system to change the execution depending on the
configuration. In the appendix C.2.5 we can see this menu.

3.6.2 Creating the Image Database:

An important first task is to create an initial database of all the objects we need our system to
distinguish. To make this task easy, we used the image object segmented topic we had. The main
process of this part is the following one:

1. Waiting for a New Publish of an Object Segmented: The system waits for new objects
to appear.

2. Check if the Object is Correct: You can visualize the new region of the image caught by
the system. The system asks if you would like to capture this image to add it on the database.

3. Introduce the Label Number of the Object: We need to add the label and the type of the
object image to classify the data. This information needs to be entered by the user.

4. Save Image to the Database: Taking the label of the object and the number of samples into
account, the system saves the image with a specific name.

5. Repeat all these steps until the user stops the process.

In the appendix D and C.2.6 we can see all the objects in the database and the code of this process.

43

3.6. PROPOSAL CHAPTER 3. OBJECT RECOGNITION

3.6.3 Computing the Descriptors of the Image Database

When we have an initial image database created, the next step is to compute the main features of each
image to define the characteristics of the objects. To make this, we take different solutions to know
the main characteristics of the objects into account, as explained in previous points 3.2, the different
techniques used to know the main features of the object.

In the first moment, we use 2 type of features to define the objects:

• Global Features of the Object: Using the histogram of the color, we can know the main
color of the object.

• Key-Points Features of the Object: Using SIRF, SURF or AKAZE, we can know the main
characteristics taking the form, corners and more interesting parts which define the object into
account.

Using these two types of features, we built a vector using the Histogram Color as a Global Feature
and SURF algorithm as an interest key-points feature. Using this vector, we could build a system that
considers the general parts of the objects and the main little characteristics that define the object
(form, labels, etc...).

The results we obtained with this structure were not the ones we expected. The system had a lot of
problems with the object classification when there were similar objects, though there exist differential
elements in both objects. This behavior shows that, for the system, the main color of the object is
more important in comparison with SURF key-point.

For this reason we decided to use only the SURF key-point extractor to try to define the object
because we had better results and speed of computation.

Once the SURF key-points were computed, we needed to adapt the results in Bag of Features
description form to prepare the information to introduce in the comparative structure. In the appendix
C.2.7 we can see the process to know the characteristics of the objects.

And, finally, to implement the classification structure we decided to use the Support Vector Machine.
Considering all the configuration explained in the point 3.4.2, we started to test different configurations
to find the best results of our application.

The main consideration that we had in building the classification structure was the necessity to
build a SVM to try to classify all the objects we had in the database. This consideration makes the
implementation of the SVM easy because it doesn’t need a SVM for each class and the system can grow
easily if we need to add more objects in the future. On the other hand, the existence of a multi-class
SVM structure can make the system more complex increasing the errors during the classification
process.

To evaluate the best configuration of our project, we implement different SVM configurations,
trying to see what produced less errors using less computational time. The classification time is an
important parameter to take into account, because the system must work in real-time. The results
were the following ones with the next configurations:

• Using Linear Kernel: In this case, using a linear kernel is the easiest way to implement SVM
structure, but the results we obtained were not so accurate. There were a lot of false classifications
that worked wrong in the system. We tried to increase the number of samples in the learning
process but the results didn’t improve.

• Using Polynomial Kernel: In this case, the results were better than in a previous configuration
depending on the number of degrees configured. Using little degrees, we had the same problems
as in the first case, but this bad results decreased by increasing the degrees configuration. Degrees
greater than 7th don’t get changes in the classification process.

• Using RBF Kernel: It is the most general kernel. Using this type of kernel we observe that it
produces accurate results, similar to the polynomial kernel but using less computational time to
classify.

44

CHAPTER 3. OBJECT RECOGNITION 3.6. PROPOSAL

Once all the initial results we obtained in a primitive environment were valued, we decided to
use RBF kernel because it obtained a good accuracy of detection using less computational time in
comparison with the polynomial kernel, that uses more time. In any case, this time for our application
it is not a constraint because both kernels work with enough velocity for our application. In the
following code we can see the configuration of the main parameters of the SVM we used:

1 //SVM parameters gauss ian ke rne l params
2

3 params . svm type=CvSVM: : C SVC;
4 params . k e rne l t ype=CvSVM: :RBF;
5 params .gamma=0.50625;
6 params .C=312.5;
7 params . t e rm c r i t=cvTermCriter ia (CV TERMCRIT ITER,100 , 0 . 000001) ;

Finally, using the training data, the labels of the objects and the parameter configuration, we start
to make the learning process, preparing the system to start the classification part.

1 p r i n t f (”%s \n” , ”Train ing SVM c l a s s i f i e r ”) ;
2 bool r e s=svm . t r a i n (tra in ingData , l ab e l s , cv : : Mat () , cv : : Mat () , params) ;

3.6.4 Working Mode:

When the system has all the information about the objects, the classification is trained and the other
parameters are configured, the system can start to make the recognition of the objects. The main
objective of this part of the code is to evaluate the new object samples that appear, trying to make a
prediction of the new object in the scene and to manage this information in an efficient way to prepare
it to publish. In the appendix C.2.8, we can see the code of this process.

3.6.5 Object Tracker

The object tracker was implemented using the CamShift algorithm explained in the chapter 3.5. The
system remains waiting until it statically finds an object. From this moment, the object tracker uses
the contextual information from the objects that it obtained on the previous steps. Using the centroid
and the size of object window, the object tracker starts the process, calculating the color probabilities
in the initial position, and finally, once this information has been calculated, it is stored in the object
detection vector, preparing the process to allow the tracker of the objects. The system uses the waiting
periods between ROS messages refreshments to monitor the objects using the object tracker, increasing
the efficiency of the system taking advantage of the Idle times.

In the appendix C.2.9 we can see the main code we used to implement this object tracker.

3.6.6 Object Publisher List

Finally, when the system finishes the process of detection and classifies all the objects inside the scene,
it sends the information captured using a specific ROS message to share it in the main Robot ROS
environment.

The information that the system shares is the following one:

• Header: In this part, we share a general information about the message:

- Seq: It is the number of topics that the system published in the execution.

- Time Stamp: The actual time of the system.

- Frame id: Here, the system publishes the origin of the message. In the case that there is
more than one camera, we can recognize the origin monitoring this part of the message.

• Name: We publish the name of all the objects detected in the scene. We present this information
using a vector to facilitate the representation of the objects in the followings steps.

45

3.7. EXAMPLE OUTPUT CHAPTER 3. OBJECT RECOGNITION

• Id reference: It is the identification reference of the system. This number is related to the
objects database folder.

• Type: The system recognized 3 types of objects:

”1”: Containers

”2”: Tools

”3”: Raw materials

• Validate: The algorithm adds a validation parameter to increase the quality of the detections. It
is a boolean value. When the system detects the object more than 4 times, the system defines it as
validated. Using these parameters, the false detection can be detected and discarded, increasing
the quality of the detections.

• Status object state: The system can distinguish 3 different states of the objects:

”0”: The object is waiting to be used.

”1”: The object is being used.

”2”: The object was used.

• Obj det counter: It is the number of occasions that the system recognizes each object.

• Position x and y: It is the situation of the objects in the image coordinates frame.

• Start movement time: It is the moment when the system detects that one object starts being
used.

• Total used time: It is the total of time that the system detects each object in movement.

3.7 Example Output

In the following picture we can see an example of the output of the process.

Figure 3.6: Output Ros Topic Recognition Example

46

Chapter 4

Activity Recognition

The Activities of Daily Living (ADLs) is a term used to refer to people’s daily activities such as feeding
themselves, bathing, dressing, grooming, work, leisure and homemaking. In our case, we are only
centered in the homemaking in the kitchen environment. If we can model, monitor and predict these
ADLs using different sensors installed in the environment, the robot system can use this information
to condition the behavior of the robot automatically depending on the predictions that the system has
made. In our case, we focus the attention only on the kitchen ADLs.

In the following chapter, we will introduce the implementation made to do the prediction of the
activity using the contextual information. In our case, the system used the information provided of
the objects to evaluate and predict the actual activity that the user is doing and introduce future
information of the activity that the system could consider to change its behavior in an automatic way.
Another important issue to consider is the evolution of the activities. The activities are in constant
evolution, so the system needs to take this plasticity of the activities into account to maintain the
parameters of the system always actualized.

In the following parts of this chapter, we will introduce how the ”ADLs” can be recognized and,
then, we will also explain the final implementation we made.

4.1 State of the Art

One of the methods of detecting the ADLs activities is by modeling the activity using the Activation
Spreading Network(ASN)[13]. This method was inspired in hierarchical task networks, which is a way
to represent the hierarchical relationships of a process or activity.

Using this method, the system can represent the activities distinguishing the high-level and low-level
activities. High-levels represent complex activities and low-levels represent the minimal unit interaction
that the user can make. So, the high-level activities are defined with ”n” number of low-activities
represented using a decision tree scheme. In most cases, the representation of the information used
by Hidden Markov Models (HMMs) facilitates the task of classification of activities in a vision-based
system. The nodes represent the different activities and the edges represent the relationships between
this activities. The low-activities can represent the actions in the high-activities to make it.

Another important information to detect the activity is the use of the contextual information about
the environment. The external conditions can be used as features to distinguish different activities.
One example is that there are different activities that are only done in a determinate period of the day,
or in determinate weather conditions or seasons of the year. So, the system can use this information to
discard activities if the user doesn’t usually do them in those conditions.

Another approach to find the activity of the user is by monitoring the hands of the users [14]. In
this method, the system uses two types of features:

• Global features using PCA on the gradients of 3D hands trajectories.

• Local features using Bag of Words of snippets of trajectory gradients.

47

4.1. STATE OF THE ART CHAPTER 4. ACTIVITY RECOGNITION

For the action recognition, the system uses the information of the hands trajectories, the events of
doing an action, the pre-trained action models, the objects used in the actions and the pre-trained
object models.

In another way, in [15] is explained the main activity of how the users can be monitored adding
sensors in different places of the house and how the activity can be classified using a naive Bayesian
classifier to detect the activities.

Taking the previous information into account, it is important not only to capture the objects to
make a prediction of the task that the user is doing in this moment, but there are also other important
informations that we need to know to make a good prediction. Including:

• The Objects Inside the Scene: It is important to know this information because it is a good
method to define an activity. Normally, in all the activities there is one or more than one element
that define the actual activity and we can use it to find it.

• Order of Interaction of the Objects: One activity is not only defined by the number or
types of objects. We also need to know the order in which the user uses all the objects. It is
possible that two activities have the same objects or that they are distinguished by one or two
elements. In this case, the dynamic studies of the movements/interactions of the objects is an
important feature to take into account because it is another element that defines the activity.

• Contextual Information: Another important factor to discard activities is the external
conditions in which the users do the activity. Normally, the users do different activities in
different periods of time throughout the day, or in determinate weather conditions (only when it
is raining outside , it is a sunny day) or it is probable that one activity is more probably done
depending on the season of the year. We can use all of this information about the environment
to find the activity taking also the features explained before into account.

• Wearable Sensors: Another important information that we can use to find the most probable
activity that the user is doing is the user’s information. Nowadays, the miniaturization of the
sensors allows the integration in different devices. For example: clothes, wrist band, intelligent
clocks, smart-phones and integration of the sensors inside the body of the users are examples of
these integrations that allow to monitor the most important parameters of the users. All these
possibilities create a new environment to capture the personal data to use in different applications.
This concept is known as Internet of Things ”IoT”. The user activity is conditioned by the
state and the activities of the users.

On the other hand, there are different characteristics that are accomplished to assure a good
behavior of the activity recognition system. For example, we can highlight the following characteristics:

• Database Generation: The system needs to capture the actual state of the system and it
needs to compare it with previous iterations of the same activity. To do that, we need to build a
new database to store all the information about the activities that the system can detect.

• User Learning: It is important that the system can adapt to the necessities of each final user
and change its behavior when the users also change.

• Work in Real-Time: The system needs to be able to make predictions during the time that
the user is doing the activity.

• Show the Future Information about the Activity: If the system can work in real-time, it
can show different information about the following steps of the activity detected.

• Adapting the Process to New Features: It is possible that the system needs to grow to add
new features to increase the accuracy of the detection. The system needs to add new features in
an easy way.

48

CHAPTER 4. ACTIVITY RECOGNITION 4.2. PROPOSAL

4.2 Proposal

In the following section, we will explain the final implementation we made to categorize and recognize
the activities considering the previous information in previous points. The main scheme of our proposal
are the following one:

Activities
Database

Publish
Obj data

Initial
Config.
System

New
Topic?

Actualice
Static
Vector

Compute
Static

Prob Array

Actualice
Dynamic
Vector

Compute
Dynamic

Prob Array

Compute
Total Prob

Array

Prepare
Info

Publish Activity
Recognition

Compl.
Act?

End

Input

Output

yes

yes

no

Figure 4.1: Diagram of the Act. Recognition

49

4.2. PROPOSAL CHAPTER 4. ACTIVITY RECOGNITION

One characteristic of the system is to produce the estimation of the activity. First, the system needs
to use information created in the previous steps of the process. That means that we need to assure the
coherence of the data in all the steps of the process, avoiding the wrong behaviors when the final user
changes the conditions of the system. For example, when the user adds new objects to recognize. To
adapt to this changes, the system builds new data structures in each execution taking information of
the different files created in the previous steps assuring that the information is actualized. Another
important issue is the velocity of the system to recognize the activity. Although the application doesn’t
need high recognition velocities, the system needs to assure that the prediction works in real-time,
doing more than one prediction during the execution time of the activity. The adaptation of the
changes in the execution of the activities is another important point to consider in the development of
our proposal.

Finally, the row data we used to recognize the activity was only the first two type of data. The
reason is that in this moment we didn’t have the main hardware structure to capture the information
about the contextual and user’s factors. But we prepared the system for the possibility that in the
future this type of data may be added and increased the features used by the system.

Now, in the following points, we will explain all the process of the activity recognition parts step
by step.

4.2.1 Reading the ROS Topics

First of all, the activity recognition code needs to subscribe and create topics to manage the main
information about the process.

The list of the topics we need to use is the following one:

• /objects/Object: Subscriber to the topic of the list of objects that the system created in the
part of object recognition 3.6.6.

• /Activity Detection: We created this new topic to store and publish all the information about
the final detection activity of our system, sharing the information in the ROS environment for its
use in another process.

The first task we need to do is to actualize the internal parameters where the list of the objects is
stored. To do this task, we built a callback function to actualize the internal list of the objects when
the system detects new publications of the object topics. In the appendix C.3.1 we can see the code of
this process.

4.2.2 Selector Menu

To configure the system to start the activity recognition process, we need first to build a selector menu
to change in the different steps of the process. The three processes we need to do are the following
ones:

• Load the Initial Data from Files: This part captures all the information stored in different
files to start to work.

• Add New Activity: The task of this part of the code is to actualize the activity files to add
new characteristics to our system in an easy way. This part has not yet been implemented.

• Activity Detection Mode: When the previous step has finished, the system is ready to start
to work. The function of this part of the code is the detection of the activity using the information
loaded in the previous steps.

In the appendix C.3.2 we can see the menu selector.

50

CHAPTER 4. ACTIVITY RECOGNITION 4.2. PROPOSAL

4.2.3 Load Initial Data from Files

One of the tasks we need to do to start the process of the activity recognition is to load all the
parameters that define the user’s activity in the system. In this project, we define the activity with the
following types of information.

• The objects used to do the activity

• The interaction of the objects when the user is doing the action.

In the point 4.2 we explained other types of data that we can use to define the activities: The
external factors (weather, times, etc..) and the personal user’s information, but we finally decided not
to use it. The hardware resources of the group don’t allow to integrate this type of information in the
project in an easy way because we would need to implement it. But the solution we created has the
possibility to integrate this information and to use it in the activity recognition code.

The database of the system uses two different files where all the information about the activities
that the system can recognize is stored:

• ”activity file.csv”: In this file, all the information about what objects participate in the
different activities is stored.

• ”activity file dynamic.csv”: In this file, we store how the users interact with the different
objects, and how these interactions define each activity in the system.

Another important issue we need to take into account to load the information is the necessity to
assure the structure of the data that was created in the previous codes. Probably, in the previous steps
of the project, can be produced little changes that must be taken into account to load this information
in the system. For example, we need to assure that the changes in the order of the objects or the
addition of new objects in the system will not produce errors in the execution. For this reason, we used
the information stored in the file like a guide to build the new variables to fusion all the information of
the different steps. Now we will explain the process of each file in a depth way:

1. We need to load the ”object data.yml”. This file contains the name, id number and type of all
the objects that the system can detect. This file was created during the extraction of features
objects process 3.6.3. When the system adds new objects, it saves this new information in this
file. So we always have to actualize the information of the objects that the system can detect.

2. The ”activity file.csv” file stores the activities that the system can detect and how the objects
interact in the activity.

3. All this information has to be saved in different variables in the same structure of data.

The following steps that the system needs to do is to load the parameters from the other file
”activity file dynamic.csv”. Here, the system can load the order of the previous interaction of the
objects implicated in each activity. In this file, we can find different ways to do the same activity. We
can use all these iterations of one activity to calculate the probabilities that define one activity and
now, using this information, we can build a hierarchical representation of the activity represented by
the probabilities.

The main steps we need to do in this process are the following ones:

1. Load all the iterations in the same matrix

2. Filter the information using the number id of the activity

3. Compute the probabilistic changes of the object used order.

51

4.2. PROPOSAL CHAPTER 4. ACTIVITY RECOGNITION

4. Save the information in a vector of matrix.

The information in the output is the following one:

• Vector [Matrix]: Stores the information about all the activities.

• Matrix: Stores the information about one activity.

• Columns: The position of the column represents the id objects in the system.

• Row: The row position represents the objects’ movements.

• Values: Stores the probability that one object intervenes in the activity in a determinate oder.

4.2.4 Activity Detection Mode

In this part of the code, we implemented in real-time the detection of the different activities that the
user is doing. Taking the type of data that we can use explained in the point 4.1, we can divide the
study of the detection of the activities in four big blocks:

1. Static Study of the Activity: The system does the evaluation of the objects inside the scene
and tries to identify the activity using this ”static” information.

2. Dynamic Study of the Activity: The system monitors the order in which the final user uses
the objects and tries to identify the order taking the past experiences of the execution into
account.

3. External Factors: We have not implemented it now, but we take it into account in this version
to facilitate the integration task in case it could be implemented in the future.

4. Users Factors: We have not implemented it now, but we take it into account in this version to
facilitate the integration task in case it could be implemented in the future.

The main strategy to compute the probability of activity that we applied, is to compute the
probability layer by layer. In our case, we defined two different layers to compute the probability. But
to resolve the possibility of adding more layers, we decided to compute each probability layer separately.
Using this method, we can add new layers depending on the future necessities. Then, once each
probability is calculated, we need to build an expression to relate all these independent probabilities in
the same relationship. Now, we will explain how this part of the project was implemented.

Static Study of the Activity:

To do the static activity probability, we only used the information stored in the file called ”activity
file.csv”. The steps we need to do are the following ones:

1. We need to build one vector using the size of the object database:

1 cv : : Mat a c t i v i t y d e t e c t = cv : : Mat : : z e r o s (1 , ob j e c t s db . s i z e () , CV 32F) ;

2. Now, we can put the objects that the system detected in this vector.

1 f o r (i n t i =0; i<Ob j e c t l i s t . i d r e f e r e n c e . s i z e () ; i++)
2 {
3 a c t i v i t y d e t e c t . at<f l o a t >(0 , Ob j e c t l i s t . i d r e f e r e n c e [i]−1 , 0) = 1 ;
4 }

52

CHAPTER 4. ACTIVITY RECOGNITION 4.2. PROPOSAL

3. For all the activities that the system can detect, we need to compare the actual execution with
the activity definitions in the database. We use it to do the comparison and operator and count
the number of coincident objects:

1 cv : : Mat temp ;
2 b i tw i s e and (l o ad a c t i v i t y db . va lue s . row (i) , a c t i v i t y d e t e c t , temp) ;
3 f l o a t co i n c i d enc e ob j e c t mode l=countNonZero (temp) ;

4. We need to know how many objects are implicated in each activity. So, now we find this number:

1 cnt mode l ob j e c t=countNonZero (l o ad a c t i v i t y db . va lue s . row (i)) ;

5. We also need to know how many objects the system detected in the scene and weren’t defined in
the activity database, creating a penalty value used to discard options:

1 pena l ty va lue=countNonZero (l o a d a c t i v i t y db . va lue s . row (i)−a c t i v i t y d e t e c t) ;

6. In this moment, we need to build one expression to relate all this information we have of the
activity. The penalization value was weighted to 0.5:

StatAct Prob =
CoincidenceObject Model

CntModel Object
− 0.5 ∗

(
Penalty V alue
CntModel Object

)
(4.1)

7. Finally, all the information is stored in the memory. We store the name of the activity and the
probability value in different vectors on the same structure.

1 a c t i v i t y r a t e . a c t i v i t y . push back (l o ad a c t i v i t y db . a c t i v i t y [i]) ;
2 a c t i v i t y r a t e . r a t e . push back (((c o i n c i d enc e ob j e c t mode l / cnt mode l ob j e c t) −0.5∗(

pena l ty va lue / cnt mode l ob j e c t))) ;

Dynamic Study of the Activity

In this part of the code, we implemented the determination of the probability that one activity is being
done by using the information from the file ”activity file dynamic.csv”. The steps we need to do are
the following ones:

1. First, we need to create the vector used to monitor the order of the object iterations. When one
object starts to move, the system only needs to apply one number depending on the order. In
this first version of the object status monitoring, we only take the first use of the object into
account.

1 f o r (i n t i =0; i<Ob j e c t l i s t . s t a t u s o b j e c t s t a t e . s i z e () ; i++)
2 {
3 i f ((Ob j e c t l i s t . s t a t u s o b j e c t s t a t e [i]==1)&&(dynami c a c t i v i t y de t e c t . at<f l o a t

>(0 , Ob j e c t l i s t . i d r e f e r e n c e [i]−1 , 0) == 0))
4 {
5 dynami c a c t i v i t y de t e c t . at<f l o a t >(0 , Ob j e c t l i s t . i d r e f e r e n c e [i]−1 , 0) =

working dynamic cnt ;
6 working dynamic cnt++;
7 }
8 }

2. Second, we use the probability data extracted from the information in the second file ”activity
file dynamic.csv” to compare how the actual activity seems with the database register. When
the order is correct, the system adds it in the dynamic probability value positive factor. When
the system detects that the user is doing the activity in a different order that the one stored in
the database, the system assigns another penalty value. The dynamic equation we built to relate
all this information is the following one:

53

4.2. PROPOSAL CHAPTER 4. ACTIVITY RECOGNITION

DynAct Prob =

NGoodmov∑
i=1

1

NObjMoved
− 0.25 ∗

NBadmov∑
i=1

1

NObjMoved
(4.2)

1 f o r (i n t j =0; j<a c t i v i t y p r ob mat r i x . s i z e () ; j++)
2 {
3 f l o a t dynamic prob=0;
4 f o r (i n t i =1; i<=max ; i++)
5 {
6 cv : : Mat comp= cv : : Mat : : ones (1 , ob j e c t s db . s i z e () , CV 32F) ∗ i ;
7 cv : : Mat l s e a r c h=abs (dynamic ac t i v i t y de t e c t−comp) ;
8 double m, M;
9 Point p min , p max ;

10 minMaxLoc(l s e a r ch , &m, &M, &p min , &p max) ;
11

12 i f (a c t i v i t y p r ob mat r i x [j] . at<f l o a t >(i , p min . x+1, 0) !=0)
13 {
14 dynamic prob=dynamic prob+1/max ;
15 }
16 e l s e
17 {
18 dynamic prob=dynamic prob −(0.25∗(1/max)) ;
19 }
20 movement order++;
21 }
22 a c t i v i t y v a l u e s . Dynamic rates . push back (dynamic prob) ;
23 }

Total Study of the Activity

When all the independent parameters are calculated, we can merge all the values in the same expression
to find one unique value to use in the detection of the activity.

To calculate this unique value that relates all the activity detection layers, we used two different
expressions taking into account if the activity started or not:

If the activity doesn’t start to move, the dynamic activity detection part doesn’t contribute in
knowing the activity. For this reason, we didn’t use it to calculate it:

TotalAct Prob = 1 ∗ StatAct Prob + 0 ∗DynAct Prob (4.3)

Then, when the system detects that the user is moving the objects in the scene, the dynamic
information is important to be known, because the final activity depends on the interaction that the
user makes with the objects. For this reason, we used the following expression:

TotalAct Prob = 0.65 ∗ StatAct Prob + 0.45 ∗DynAct Prob (4.4)

Using the method to calculate the main probability value allows to add new layers using different
datasets in an easy way. For example, we can add the external information about the environment or
the user information we explained in the point 4.1. Finally, we can change the expression 4.4 to take
all layers we will have into account.

4.2.5 Activity Publisher

The final part of the activity recognition is to implement the best method to manage all the information
we generated in an efficient way and publish it in the best possible way in the main system of the robot
environment. Now, we will start to explain step by step how we implemented this part of the project.

The results we obtained in the execution of the point 4.2.4 are three different vectors:

54

CHAPTER 4. ACTIVITY RECOGNITION 4.2. PROPOSAL

• Output vector of static results.

• Output vector of dynamic results.

• Output vector of total results.

To determine the most probable activity that the user is doing, the system needs to use the highest
value of the outputs vector explained before. Depending on these score values that the system finds, we
can know not only the activity that the user is doing, but we can also know and evaluate the quality of
the detections:

• V alue ≥ 0.8: We assume that the system can know the activity in execution with high guarantees
because the action than the user is doing is similar to one activity defined in the database of
activities.

• V alue ≥ 0.5: In this case, the system can recognize the activity, but it detects differences between
the actual execution and the database. The possible differences between both are because:

- There are more objects in the scene than the ones the activity needs.

- The execution process of the activity is different.

- Combination of both situations.

So, we need to detect the origin of the difference and take one decision using the information
that the system offers. The system publishes the information about the activity estimation in a
separate way to facilitate this task.

• V alue ≤ 0.2: The system offers the most probable activity that the user is doing, but the system
can’t assure if the result of activity detection is good or not.

When we arrive at this point, we don’t only know the prediction of the activity that the user is
doing, but in this moment we have stored a lot of information about the activity that we can use to
offer more interesting data at the possible subscribers of the activity detection. For example, we can
know:

• Detection Method: Our system has the possibility to use different equations to calculate the
total score of the probability depending if the activity has started or not. We explained this in
the point 4.2.4.

• Percentage Completed of the Activity: If we know the number of objects that the user
needs to do one activity and how many objects the user moves in the actual execution activity,
we can publish the completed percentage of the user’s activity.

• Activity Status: We can classify the status of the activity in three different status:

- Waiting to Start: The system detects objects in the scene but they are not moving.

- In Progress: The system detects movements of the objects. The system detects that the
activity started.

- Finished: When the percentage of completed parameter is equal to 100 %, the activity
has finished.

• Start, Finish and Total Execution Time: If we know the status of the activity, we can also
publish the time when the activity starts and finishes.

• Next Movements: If we use the database information about the activity, we can publish the
next objects movements depending on the probability matrix values explained in the point 4.2.3.

55

4.2. PROPOSAL CHAPTER 4. ACTIVITY RECOGNITION

4.2.6 Activity Ros Topic

To manage all the information we had about the activity recognition part, we built another Ros Topic
Message to put all the important information about that in this new topic. The information that the
system shares is the following one:

• Header: In this part, we share general information about the message:

- Seq: It is the number of topics that the system published in the execution.

- Time Stamp: The actual time of the system.

- Frame ID: Here, the system publishes the origin of the message.

• Static Activity: Stores the main parameters of the activity recognition using only the static
information:

- Static Activity Recognition: Name of the activity recognized.

- Static Activity Recognition ID: Identifier number of the activity recognized.

- Value Static Activity: Result of the activity recognized.

• Dynamic Activity: Stores the main parameters of the activity recognition using only the
dynamic information:

- Dynamic Activity Recognition: Name of the activity recognized.

- Dynamic Activity Recognition ID: Identifier number of the activity recognized.

- Value Dynamic Activity: Result of the activity recognized.

• Total Activity Recognition: Stores the main parameters of the activity recognition using
both methods implemented in this project:

- Total Activity Recognition: Name of the activity recognized.

- Total Activity Recognition ID: Identifier number of the activity recognized.

- Value Total Activity: Result of the activity recognized.

• Detection Method Indicator: Indicates the method that the system uses to compute the
activity probability:

- Detection Method: Name of the method: Static or Dynamic.

- Detection method ID: Identifier number of method.

• Time Information:

- Start Activity Time: Time when one activity starts.

- Final Activity Time: Time when one activity finishes.

- Total Activity Time: Time that the user needs to spend to finish the activity.

• Future Information:

- Next Movements: Stores the information about the next most probable object move-
ments.

56

CHAPTER 4. ACTIVITY RECOGNITION 4.3. EXAMPLE OUTPUT

4.3 Example Output

In the following picture we can see an example of the output of the process.

Figure 4.2: Output Ros Topic Activity Recognition Example

57

4.3. EXAMPLE OUTPUT CHAPTER 4. ACTIVITY RECOGNITION

58

Chapter 5

Results

In the figure 5.1, we observe in a resumed way, the main blocks that our system had implemented and
the flux of the information we created. In the following points, we will explain how we configured the
environment and the results we obtained in the activity recognition process.

Camera
Frame

Adapt
Pixel Data

Comp.
Process

Model
Scene

Temporal
Regions
Study

Publish
Object
Image

Publish
Object

Info

Image
Database

Key-Point
Img. Ext.

Compare
Object
DDBB

Object
Tracker

Publish
Obj data

Activities
Database

Update
Monitoring

Vectors

Compute
Prob.

Arrays

Publish
Activity
Recog.

Input

Output

Object Segmentation

Object Recognition

Activity Recognition

Figure 5.1: G. Diagram of the Act. Recognition

59

5.1. EXPERIMENTAL SETUP CHAPTER 5. RESULTS

5.1 Experimental Setup

To carry out the experiment of the behavior of our system, we created the following test environment:

• Number of Objects: 16 different objects: Cut table, colacao, glass, orange, big fork, coffee,
big spoon, sugar, juice, milk, spoon, tea, pan, dish, brush, heat shield. In the generation of the
test database, we took 3 different types of objects which we can find in the scene of this project:

– Commercial Objects: The system can obtain information using the trademarks in the
container of the objects. For example: Milk, juice, coffee, etc..

– Tools: Normally, the tools we used have only one dominant color and don’t have any
trademark to be identified. For example: Spoon, big fork, big spoon.

– Raw Materials without Layers: In this case, the objects don’t have any layer but the
system can detect the texture of the object. For example: Orange.

On the other hand, we made other different groups of all the objects in the database, depending
if we used the objects to define the activities or not.

– Objects Used in Definition of the Activities: In this case, the learning process done
is more accurate and tries to capture more object samples to assure good ratios of detection.

– Objects Used to Build the Database: These objects aren’t used to define any activity.
They have less number of samples and don’t take all the possible cases into account.

• Type of Objects: 3 different types: Containers, tools and raw materials.

• Number of Activities: 6 different activities:

– 5 Similar Activities: Drink milk, drink cacao, drink Juice, drink tea, drink Coffee.

– 1 Different Activity: Peel Orange.

The external conditions we used to implement in the experiments were the following ones:

• Status Scene: Only the static objects remain on the scene.

• Light: Uniform light distributed.

60

CHAPTER 5. RESULTS 5.2. RESULTS OF THE OBJECT RECOGNITION

5.2 Results of the Object Recognition

To evaluate the Object Recognition process, we built the confusion matrix between the different objects
that the system can detect in the experimental setup. To build the confusion matrix, we captured 100
images of the objects in the scene and we captured the output of the object recognition system. The
results are the following ones:

Table 5.1: Object Confusion Matrix

C.Table Cacao Glass Orange B.Fork Coffee B.Spoon Sugar Juice Milk Spoon Tea Pan Dish Brush H.shield Accuracy
C.Table 98 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98,00%
Cacao 0 93 0 0 0 3 0 4 0 0 0 0 0 0 0 0 93,00%
Glass 0 0 90 0 0 0 0 0 0 8 0 2 0 0 0 0 90,00%
Orange 0 2 3 92 0 0 0 0 0 1 0 0 0 0 0 2 92,00%
B.Fork 0 0 0 0 72 0 3 0 0 0 0 0 0 0 25 0 72,00%
Coffee 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 100,00%
B.Spoon 0 0 0 0 13 0 65 0 0 0 0 0 5 0 17 0 65,00%
Sugar 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 100,00%
Juice 0 0 2 0 0 2 0 0 91 5 0 0 0 0 0 0 91,00%
Milk 0 0 6 0 0 0 0 0 0 94 0 0 0 0 0 0 94,00%
Spoon 0 0 0 0 0 0 0 2 0 0 98 0 0 0 0 0 98,00%
Tea 0 0 10 0 0 0 0 0 0 5 0 85 0 0 0 0 85,00%
Pan 0 0 0 0 0 0 0 0 0 0 0 0 68 0 32 0 68,00%
Dish 0 0 0 0 0 0 0 0 0 0 0 0 0 93 0 7 93,00%
Brush 0 0 0 0 8 0 0 0 0 0 0 0 0 0 92 0 92,00%
H.shield 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 93 93,00%

Accuracy 100,00% 95,87% 81,00% 100,00% 77,42% 95,24% 95,59% 94,34% 100,00% 83,19% 100,00% 97,70% 93,15% 93,00% 55,42% 91,18% 89,00%

Taking the object grouping explained in point 5.1 into account, we can explain the results in a
more efficient way. First of all, The results we obtained with commercial objects with trademarks have
good detection scores, in all the cases over 90%. The topology of the system allows to capture the
most interesting points of the objects inside the layers to make a good identification of the different
objects in this classification. The number of samples of the objects to obtain this score are around
to 15 samples. Only one of the objects had more problems in doing the detection. It is the tea case
that the system confuses with the glass. The possible reason of that is that the database doesn’t have
enough samples (it only has 9 samples) or that the object image doesn’t show the main characteristics
of the tea case to model the object. But in any case, it has a high recognition score with an 85% of
accuracy.

On the second place, the results we obtained with the tools that only have one dominant color are
worse than in the first group of objects. The possible reason of that is that the system can find a big
number of different key-points to define the objects. In this case, we saw different behaviors of this
type of objects:

• The c.table has a good score with a 98% of accuracy using only 4 samples to make the learning
object process and can maintain the good results when the system has a partial vision of the
object. The reason of that is that the object only has one dominant color of wood but the wood
has streaks that the system detects to model the object. And these characteristics don’t exist in
any other object.

• The tools that only have one dominant color and have less samples (around 4/5 samples) don’t
have high values, around 70% of accuracy. In the case that the object has more samples (around
12 samples) the values of accuracy increase until 90% if there are differences between objects.

And finally, the last group of objects we had in the database are the raw materials without layers.
It is possible that the system needs to detect natural objects like fruits or vegetables. In this case, the
system needs to detect the texture of the objects to make a good model of this type of objects. We
obtained scores around 92% of accuracy of detection in this objects using around 10 samples.

But, taking the other classification groups into account, we saw that the objects that had better
score results are the objects used in the definition of the activities. The reason of that is that we
used more samples and more cases to define the objects in all the possible cases and this increases the
quality of the detection object process.

61

5.3. RESULTS OF THE ACTIVITY RECOGNITION CHAPTER 5. RESULTS

If we see the total accuracy of the system, it is situated around the 89% taking the specifications of
our object database into account.

5.3 Results of the Activity Recognition

To evaluate the activity recognition process, the confusion matrix between the different activities that
the system can detect in the experimental setup was built. To do it, we repeated each activity 30 times
to compute the different probabilities of the detection.

Now, to do this study of the behavior of our system, the detection of the activities was repeated 30
times changing the situations of the objects and storing the results obtained in the detection activity
process.

As shown in the static study of the activity detection table 5.2, the system obtains very stable
results and has a good score on the activity detection. By studying the different scores we obtained
in the detections, may be seen that the system has high score values in all the cases. In the study
done, was considered the possibility there are in the environment objects that don’t participate in the
activity or that the system detects in a wrong way into account. In this cases, it can also be observed
that the quality in detections decreases, but the system detects correctly the activity that the user is
doing. In the figure 5.2 all the results we obtained in the study are shown.

Table 5.2: Static Object Confusion Matrix

Drink cacao Drink juice Drink Coffee Drink tea Drink milk Peel orange Accuracy
Drink cacao 30 0 0 0 0 0 100,00%
Drink juice 0 30 0 0 0 0 100,00%

Drink Coffee 0 0 30 0 0 0 100,00%
Drink tea 0 0 1 29 0 0 96,67%

Drink milk 0 0 0 0 30 0 100,00%
Peel orange 0 0 0 0 0 30 100,00%

Figure 5.2: Static Object Detection Scores

If we take now only the results we obtained using the dynamic information 5.3, we can see that
there are more discrepancies in the detection because there are more false detections. The general
accuracy of the system decreases to 80.1%. The reason of that is situated in the object tracker system.
We built an initial solution to track the object, and this initial solution doesn’t take the situations that

62

CHAPTER 5. RESULTS 5.3. RESULTS OF THE ACTIVITY RECOGNITION

produce errors into account, and this errors affect in the final score of the dynamic activity recognition
part. In the figure 5.3 we can see the different values of the scores we obtained. If the user is doing one
activity in which the definition is different from the rest of the activities, we can see that in most cases
it has good score detections.

Table 5.3: Dynamic Object Confusion Matrix

Drink cacao Drink juice Drink coffee Drink tea Drink milk Peel orange Accuracy
Drink cacao 23 1 3 0 3 0 76.667%
Drink juice 2 23 0 2 3 0 76.667%
Drink coffee 4 0 26 0 0 0 86.667%
Drink tea 2 0 8 20 0 0 66.667%

Drink milk 2 0 0 3 25 0 83.333%
Peel orange 3 0 0 0 0 27 90%

Figure 5.3: Dynamic Object Detection Scores

When the user is doing an activity with similar parts to other activities, the scores decrease. But
the dynamic information can help the system to detect activities in more complex situations. For
example, if in the scene there are at the same time the objects needed for two different actions, the
system can use this information to discriminate the activity that the user is really doing.

Evaluation of the dynamic information

To evaluate the behavior of the system in these conditions, another experiment was created. We
introduced the objects needed to do two activities with the same number of objects, drink milk and
drink juice, in the scene. In the picture 5.4 we can observe the static, dynamic and total values of both
activities that the system detects.

Taking only the static score of the system, we observe that both activities have the same score,
because they have the same conditions (good and wrong objects). The system publishes the information
about the most probable activity that the user is doing, but both values are the same. However, the
evaluation of the dynamic execution of the activities presents differences in both activities. For one of
them, the actual execution, perfectly follows the model of the activity,thus the score is the highest
value ”1”. And we observe in the score of the other activity, that there is one part of the execution that
follows the model and another part that doesn’t, penalizing the differences with respect of the model

63

5.3. RESULTS OF THE ACTIVITY RECOGNITION CHAPTER 5. RESULTS

in the final dynamic score. Then, in the total score, we can observe that these differences produce the
good detection of the activities.

Figure 5.4: Experiment to detect the activity in bad conditions

Finally, in the table 5.4 the final result of the activity detection process is shown. We can see that
the system remains with stable results and has good accuracy values. The figure 5.5 shows the final
results score of the detection of the activity.

Table 5.4: Total Object Confusion Matrix

Drink cacao Drink juice Drink Coffee Drink tea Drink milk Peel orange Accuracy
Drink cacao 28 0 2 0 0 0 93,33%
Drink juice 0 30 0 0 0 0 100,00%

Drink Coffee 0 0 30 0 0 0 100,00%
Drink tea 2 0 0 28 0 0 93,33%

Drink milk 0 0 0 0 30 0 100,00%
Peel orange 0 0 0 0 0 30 100,00%

Figure 5.5: Total Object Detection Scores

64

Chapter 6

Conclusions

Finally, with the implementation of this project, we had a minimal viable product ”MVP” to recognize
different activities that the user is doing. This ”MVP” can recognize the activities previously modeled
by using the recognition of the objects in the scene and the moment that the user interacts with them.

6.1 Achieved Improvements

This project started by evaluating the results of another project implemented in the past and took the
results it obtained into account in its elaboration as an evolution of the first one.

In a resumed way, the improvements we have added to the system with respect of the previous
version are the following ones:

• General Improvements:

– Adapt the activity recognition layer into the new environment.

– Project implemented using the new ROS version: Indigo version.

– Using a distributed ROS configuration.

– Segmentation of the code to allow the integration of improvements in parallel.

– Possibility to use intermediate steps information to use it in other projects in the robot
environment.

• Object Segmentation Process:

– Increase the area of the object detection.

– Remove the user when he appears in the scene, removing the unstable regions.

– The possibility of using different cameras in the environment at the same time with different
characteristics. The system only needs that the camera can publish its information in the
ROS environment.

• Object Recognition Process:

– Use more sophisticated algorithms to know the key-points of the objects.

– Integrate in SVM structure to do the classification process.

– Add the Supervised Learning Process.

– Modify the objects database, adding images using the supervised learning mode.

– Add an initial object tracker solution.

– Publish a list of objects and information about the state of these objects.

• Activity Recognition Process:

65

6.2. RESULTS EVALUATION CHAPTER 6. CONCLUSIONS

– Create a database file to allow the system to modify or add new activities.

– Add the dynamic executions of the activity.

– Add information about the next most probable movements of the user’s of the activity
recognition.

– Add information about the state of completion of the activity.

– Publish the score of the recognized activity.

6.2 Results Evaluation

6.2.1 Results of the Object Segmentation

The main objective of this part of the process explained in the chapter 2 is the extraction of the objects
that are present in the workspace of the activity to use it in next steps of the process. To do this
task, the system attacks the problem dividing it in various subproblems that the system can resolve
more effectively, taking the strength and weakness of the different methods we studied into account.
This division of the problem generates 4 independent masks using two different expressions. One of
these expressions is built using previous electronics knowledge to adapt it in the computer vision area.
Once that all independent masks are created, the system builds the general mask using this 4 partial
mask. To facilitate the process, before the comparisons process, the system applies first a Gaussian
filter to reduce the edges of the objects and, then, adapts the pixel representation pondering the values
of each channel with the total energy value that the sensor can detect. All these steps minimize the
perturbations produced by the changes of the illumination and the quantification problems of the
sensors, producing more stable results.

The results of applying this process is the accomplishment of the segmentation of the object,
cropping the raw size of the image in little parts where they appear inside the object. One of the
advantages of the system is that it doesn’t consider the shadows generated in the scene as objects
when they appear in the scene, facilitating the following process to compute the SURF key-points. In
the appendix D, we can see all the objects in the database and how the system segments the image
descanting the shadows. On the other hand, in the main mask appear unstable regions that the system
detects wrong as objects. To reduce this problem, the system applies a temporal study to discard
these unstable regions considering the information of the centroid and the area. These unstable regions
appear and disappear, changing the position and the area values all the time, so by applying this
temporal study, we discard all these regions selecting only the region of the objects.

But applying this solutions has a negative effect, the system needs to wait time to prepare all the
informations to consider in the temporal study, wasting time in the process. Now, this process is the
slowest part of all the project.

On the development process we considered not to generate an individual solution for our environment,
but we tried to find a generic solution that allowed the system to adapt itself to different environments
and to the various sensors that the system may have if the images are published in ROS.

6.2.2 Results of the Object Classifier

It is the most important and extensive part of the project because we need to develop different steps
in the classification of objects to make the process possible.

First, in chapter 3 we evaluated the use of two types of features to be used as descriptor of the
objects. On one hand, the use of global descriptor using the histogram of color and, on the other
hand, the use of local characteristics of the objects using SURF algorithm. But the result of mixing
both features produced errors in the recognition when two objects were similar. After evaluating this
behavior and finding the reason of that, we discarded it and only used the SURF algorithm to build
the descriptor of the objects.

66

CHAPTER 6. CONCLUSIONS 6.2. RESULTS EVALUATION

The results we obtained were the expected ones, the system has good accuracy in the objects that
have more unique characteristics. One of the best classification cases is the cut table, that the system
can detect using 4 samples in the database. The reason of that is the streak of the wood, because it is
an unique characteristic that defines this object. In the other case, the system has more problems to
recognize the objects that don’t have a characteristic surface and only have one dominant color.

In the classification process the system uses a Support Vector Machine due to its facility in managing
the configuration, making it possible to adapt to our necessities. If we see again the results we presented
in the table 5.1 the behavior of the classification is situated over 89 % of accuracy. Using the supervised
learning mode, the system can add new objects and more samples using the segmented object image in
a comfortable method for the users.

But, in the development process we didn’t take the possibility that two objects appeared together
into account. In this case, in the area segmented appeared both objects in the same region. When
the system tried to classify the object images, depending on the influence of both objects, the results
change. When the influence of perturbation isn’t important, the system recognizes the object, but
when there is an important perturbation, the system may recognize it in a wrong way.

6.2.3 Results of the Object Tracker

The main objective explained in chapter 3.5 of the object tracker is to find the moment when the user
interacts with the objects to develop a hierarchical descriptor of the activity. It was an initial solution
to evaluate the importance of these relationships in the detection of the activities by the system. The
object tracker was implemented using the CamShift algorithm using the object information computed
in previous steps of the process.

The results we obtained in this first solution is the possibility to detect if the objects are moving or
not. Remember that the system can detect the objects in static mode, so it is important to monitor the
objects when they don’t remain still. Now, when a new object appears in the scene, the system stores
the information, but one part of this information was actualized by the object tracker. So, the system
can follow all the objects if it remains inside the scene. Now, the main problem we had using the
object tracker is when there appear other characteristic points, for example, when one object appears
near another, the computation of the features takes both characteristics into account to follow the
objects, appearing problems because the solution doesn’t consider all the situations that can appear in
a real scenario.

The object tracker was implemented in the object recognition code because it uses an important
information produced in this part of the process to use it in the tracking task, using the dead time
that the process has, waiting the actualization of the object ros topic.

6.2.4 Results of the Activity Classifier

The objective explained in the chapter 4 is the realization of the on-line prediction of the activity in
early steps of the activity to bring this information to the main system to use it in other process.

This prediction is computed using the information of the objects inside the scene and how it is
used in the execution of the activity to build the different scores that the system has:

• Static Value: The system evaluates the objects in the scene and tries to use this information
to make the prediction of the activity. These values don’t need that the activity is in execution
and the system starts to make predictions at the same moment that the system detects the first
object in the scene.

• Dynamic Value: The system creates a hierarchical definition of the activity and uses it to
compare this relationship with the model.

• Total Value: Is the value computed using both previous scores with an expression.

67

6.2. RESULTS EVALUATION CHAPTER 6. CONCLUSIONS

The necessity of bringing to the subscriber an early prediction in on-line mode makes the system the
necessity to use all the informations that the system knows at the moment to use it in the elaboration of
the predictions. Now, to accomplish these specifications, the system starts to compute the predictions
at the same time that the first object appears in the scene. Another important issue that the system
takes into account is to detect if the activity is in execution or if the user is only preparing the objects
to do the activity. Depending on these two status, the method that the system uses to compute the
total score changes from using only the static information or also taking the dynamic score into account.
Moreover, using an internal information about the activity, the system offers other important data, for
example:

• The percentage of the execution of the activity that the system has predicted.

• The status of the activity: waiting, in execution or finished

• Time information of the execution.

• The method that the system uses to compute the total value score.

• The most probable movements that the user will do to accomplish the activity that the system
has predicted.

If now we take the results of the classifier of the activity in the point 5.3 into account, the system
has accurate results in classifying the different activities. But this accurate values are produced by the
static component. If we only consider the static values, we can observe that the system only needs
these values to classify the most probable activity that the user is doing. The dynamic information
may bring more information in determinate cases to help the static information to predict the action
correctly. For example, when inside the scene there are the objects needed to do two or more activities
at the same time. In this case, the static process produces similar scores in different activities, avoiding
a clear detection of the activity. The system publishes the value of the different scores in a separated
way: static, dynamic and total, bringing the possibility to adapt better to the necessities of the final
subscribers. They can use the different scores and decide what scores are more important in their
applications.

68

Chapter 7

Future Works

Taking the results in chapter 5 and the conclusion in chapter 6 into account and how is the behavior of
the system in the different conditions in which we tried it during all this time, the final results can be
improved increasing the quality of the different parts of the project.

The changes proposed in this chapter may facilitate the main task of evaluation of the user’s
activity, increasing the results and the stability of our system. These improvements are presented in
the four main parts in which this project is divided.

7.1 Object Segmentation

Here, in this part of the process, the improvements are focused in two main areas. First, the system can
recognize these stable different areas but, in the mask generation process, there appear other unstable
regions that the system detects as objects when they don’t exist. To improve the results we obtained,
we propose to add new layers in the process to take the depth and infrared data into account. The
system only needs to add the two processes more, to build each mask and add the results in the main
process mask. Taking this part into account, we can build one expression to relate all these layers
making possible to discard areas depending on the results of the different channel layers.

Second, another process we need to improve to increase the quality of the system is the velocity of
the publication of the objects. The actual process needs to wait a determinate time to evaluate which
regions remain stable and which don’t. We can increase the results by modifying the method we use to
manage the temporal images segmentation vector to increase the publication velocity.

7.2 Object Recognition

To improve this part of the project, we first have to substitute the objects without texture for other
textured objects to facilitate the recognition task process.

The second improvement we can propose is the integration of the new key-point extractor algorithm,
explained in the chapter 3.1.5. We need to evaluate the integration of this new key-point extractor
because this change afects in the actual version of the OpenCV. In theory, the Akaze descriptor
increases the efficiency of the system in the computation of the key-points in comparison of SURF. But
before the integration, we must evaluate if it really has advantages to use it in this project because it
implies that the OpenCV v3.0 must be installed.

If now we center our attention in the classification part, the first change we may do to improve the
system is the possibility to store the information extracted of the image database in one file. This change
makes it possible that we don’t need to store the image database and compute the main characteristics
of the objects in each execution of the code, saving this part of the process, so the time that the system
needs to use in the configuration process will be less. This change has another important advantage,
the free space that the system needs to use to store the information will be reduced, because the system
only needs to store one matrix to represent all the image database information.

69

7.3. OBJECT TRACKER CHAPTER 7. FUTURE WORKS

Another important improvement that we can do in this project is about how to manage the output
of our SVM. Now the system tries to classify any object in the most probable object cases taking the
information in the database into account, so if we put one untrained object, the system will try to
classify it too. To solve this bad behavior of the system, we would use a nested boolean SVM structure.
Using an SVM structure for each object, we can discard objects even though they appear together in
the scene.

7.3 Object Tracker

The object tracker detector is another part of the project which can improve our results. We can use it
for example to detect trajectories of the objects to detect the main area where the action is occurring
or if one object is implicated in one activity or in multiple activities recognition. We can also know the
main activities of the users, if we know that two objects are in movement together in the same area,
the most probable case is that the user is using them both to make an action, so we use it to define
actions that are in the activity detections.

If we would like to grow the detection of more complex activities, this module must grow. Now,
in the actual version of this project, the object tracker is situated in the same code than the object
recognition, but in future versions of the code, it should be situated in an independent block.

7.4 Activity Recognition

In this part of the project we can improve the results, first by adding the two different layers explained
in the point 4.2.4. When the system needs to discriminate in more activities, it is possible that we can
add new probabilistic parameters that penalize or increase the probability that one activity appears.
We can reduce the cases in which the system needs to classify, increasing the best scores of our activity
recognition system.

By adding information about fitness bands in other improvements we can implement to know the
activity that the user is doing better. But it has not only this application. If we know the fitness
activity of the user and the activity that the user is doing, we can evaluate if the activity in the kitchen
is healthy for him. We can introduce another type of project to evaluate the users healthy habit to try
to improve the quality of the user’s life.

7.5 Discussion

During the development of this project, we increased the knowledge of the necessities to implement
an activity recognition layer in the robotics system. Even thought the actual version of the activity
recognition layer increases the complexity of the previous project, it is still necessary to improve the
system to allow the possibility to detect more complex situations. The detection of a multi activity or
the user’s task when it detects the interaction with two objects at the same time are two examples of
these possible improvements. They can be developed if more time is invested in the accuracy of the
object tracker, improving the general behavior of the system.

Nowadays, when working with robotics in continuously changing environments, it is difficult to
take all the possible cases into account and there will be always situations that can’t be considered. Of
course, by increasing the complexity of the system, we can have better results in more different cases,
but it is important to work taking the past experiences into account to apply them in future cases to
increase the trustworthiness of the project using a standard robotic environment.

70

Chapter 8

Scheduling and Economical Analysis

In this part, we will talk about the scheduling developed and the economical part of the project. In the
appendix A we can see the Gantt diagram with the scheduling of the implementation of the project.
This project was developed during 6 months, it started in June ’15 and finished in November ’15. If
we see the diagram, the most important part of the integration was implemented in a serial method
because we needed results from the previous step to implement them in the next part of the project, so
we couldn’t reduce the implementation parallelizing task. But this development limitation increased the
test time we used to evaluate the results of the different parts of the project. So, this is an advantage
because we tested our project in different days and it allowed us to optimize the code to improve the
results.

Now we will talk about the economical analysis of the implementation. In the appendix E we can
see two tables where there are the most general the development and implementation costs of the
project detailed. To develop the project we don’t need a very specialized hardware, because we only
need one powerful computer and one kinect v2 to develop the solution. If we talk about the software
we used to build the solution, we don’t have supplement costs because all the software we used is
distributed with free license.

Talking about the objective market of this project, we observe that it is oriented to a specialized
market, because this project was implemented to work together with other robotic parts. This means
that nowadays only big companies or researcher groups have enough money to invest in this type of
robotic environment. So, the number of potential clients decreases, but, on the other hand, the client
prototype is a specialized client that can invest enough money in these robotic solutions.

Taking the client prototype into account, it is necessary to think if this type of client is good or not
for our project or if we need to orientate this project to another type of client.

If now we evaluate the integration of this project in the domestic environment, the prototype client
changes because the project is addressed to customers with a high economic level. This change affects
in the number of potential clients that are possibly interested in this system. But this change affects
directly on the main objectives of the project because we need to adapt the system to offer the final
user interesting information of the scene.

Generally, the market in the actuality is working on the integration of different sensors and actuators
in the domestic environment, so this project can offer new types of sensors that we will use to integrate
new characteristics in this intelligent domotic environments. The handicapped users, blinded people or
general users working in the assistance environment are examples of the clients that would be interested
in the integration of this project.

What is the main strategy to integrate this project in the user’s life? Nowadays, it doesn’t exist
any system integrated in the domotic environments to being used to capture the user’s activities
information and use it for a specific task. For this reason, we suppose that an effort in investment in a
good marketing study needs to be done to make it possible that the final users know our system. So,
this situation produces the necessity to catch the attention of the final users and to create in them the
necessity to obtain this new system.

71

CHAPTER 8. SCHEDULING AND ECONOMICAL ANALYSIS

If we see the picture 8.1, we can see the classical product life cycle and the different steps of the
process. So, the marketing road route needs to take this graph into account to adapt the different
strategy markets to take always advantage of the market situation.

Figure 8.1: Classical Product Life Cycle

The different marketing strategies we would apply to return the investment would be the following
ones:

1. The product enters in the market: A priori, we don’t have many competitors, but we also
don’t have a real demand. The possible clients we would be interested on are specific clients
with a high economical capacity. The final cost of our product can remain high because the type
of clients runs. In this part of the process, we don’t have a big costumer base, so we must be
interested in making this costumer base grow. The easiest way to do it is by using our clients
like a marketing stuff, offering discounts if another client buys another system. This discount
would be the 50% of the development costs.

2. The product generates expectation: In this point, our costumer base increases but the
product generates expectation. In this state point of the life cycle, it is possible that the
competitors work to develop their solutions. So we need to take a decision to become more
aggressive in the marketing campaign, because we need to decrease the cost of the product to
increase its demand. The discount we can offer would be a 25 % of the development costs for our
clients to get new clients, and a 25 % of discount for the new costumers.

3. The product is consolidated in the market: In this point we can reduce the development
costs in the price of the final user because the return of the investment is about to be produced.
If we reduce the price, more customers will be interested in the system and the benefits of our
project will increase.

4. Following steps: Using the 20 % of benefits of this project and the 50 e/Year (development tax)
for each client, we have the possibility to reinvest this money to improve the system by adding
more characteristics, increasing the quality by using the previous experience of our costumers.

72

Appendix A

Schedule of the Project

73

APPENDIX A. SCHEDULE OF THE PROJECT

74

APPENDIX A. SCHEDULE OF THE PROJECT

2
0
1
5

M
ay

J
u

n
e

J
u

ly
A

u
g
u

st
S

ep
te

m
b

er
O

ct
o
b

er
N

ov
em

b
er

D
ec

em
b

er

49
50

51
52

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

P
re

v
.

T
a
sk

s

R
ob

ot
E

n
v
.

I.
S

ol
.

S
tu

d
y

D
ef

.
P

ro
p

os
al

C
on

f.
S

y
st

em

O
.

S
e
g
.

P
ro

p
os

al

In
te

g
ra

ti
o
n

T
es

t

O
.

R
e
c
o
g
.

P
ro

p
os

al

In
te

g
ra

ti
o
n

H
ol

id
ay

s

T
es

t

A
.

R
e
c
o
g
.

P
ro

p
os

al

In
te

g
ra

ti
o
n

T
es

t

O
th

e
r

T
a
sk

s

O
p

en
C

V

In
d

ig
o

R
O

S

M
ee

ti
n

gs

D
o
cu

m
en

ta
ti

on

O
p

ti
m

iz
at

io
n

F
ig

u
re

A
.1

:
P

ro
je

ct
P

la
n

n
in

g
S

ch
ed

u
le

75

APPENDIX A. SCHEDULE OF THE PROJECT

76

Appendix B

General Diagram

77

APPENDIX B. GENERAL DIAGRAM

78

APPENDIX B. GENERAL DIAGRAM

C
a
m

er
a

F
ra

m
e

A
d

a
p

t
P

ix
el

D
a
ta

C
o
m

p
.

P
ro

ce
ss

M
o
d

el
S

ce
n

e

T
em

p
o
ra

l
R

eg
io

n
s

S
tu

d
y

P
u

b
li

sh
O

b
je

ct
Im

a
g
e

P
u

b
li

sh
O

b
je

ct
In

fo

Im
a
g
e

D
a
ta

b
a
se

K
ey

-P
o
in

t
Im

g
.

E
x
t.

C
o
m

p
a
re

O
b

je
ct

D
D

B
B

O
b

je
ct

T
ra

ck
er

P
u

b
li

sh
O

b
j

d
a
ta

A
ct

iv
it

ie
s

D
a
ta

b
a
se

U
p

d
a
te

M
o
n

it
o
ri

n
g

V
ec

to
rs

C
o
m

p
u

te
P

ro
b

.
A

rr
ay

s

P
u

b
li

sh
A

ct
iv

it
y

R
ec

o
g
.

In
p

u
t

O
u

tp
u

t

O
b

je
ct

S
eg

m
en

ta
ti

on

O
b

je
ct

R
ec

og
n

it
io

n

A
ct

iv
it

y
R

ec
og

n
it

io
n

F
ig

u
re

B
.1

:
G

en
er

a
l

D
ia

gr
a
m

o
f

th
e

A
ct

.
R

ec
og

n
it

io
n

P
ro

je
ct

79

APPENDIX B. GENERAL DIAGRAM

80

Appendix C

Code Section

C.1 Object Segmentation Codes

C.1.1 Mixture of Gaussian Object

1 // The Mixture o f Gaussian ob j e c t used with a l l d e f au l t parameters
2 cv : : BackgroundSubtractorMOG mog ;
3 // update the background and return the foreground
4 mog(frame , foreground , 0 . 0 1) ;
5 // Complement the image
6 cv : : th r e sho ld (foreground , foreground ,128 ,255 , cv : : THRESH BINARY INV) ;

OpenCV allows to configure the MOG implementation adding commands to control it. It allows to
control, for example, the number of Gaussian mixtures used by the system or if the user would like to
capture the shadows of the objects or not.

1 // c r e a t e Background Subtractor ob j e c t s
2 cv : : BackgroundSubtractorMOG2 bg ;
3 bg . nmixtures = 3 ; // s e t number o f gauss ian mixtures
4 bg . bShadowDetection = f a l s e ; // turn the shadow de t e c t i on o f f
5 bg . operator () (frame , fo r e g round) ;
6 bg . getBackgroundImage (back ground) ;

C.1.2 Image Callback

1//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−imageCallback−−
2 void imageCallback (const sensor msgs : : ImageConstPtr& msg)
3 {
4 t ry
5 {
6 frame =(cv br idge : : toCvShare (msg , ”bgr8”)−>image) ;
7 frame . convertTo (frame , CV 32F , 1 . 0 /255 . 0) ;
8 f r ame f l a g=true ;
9 }

10 catch (cv br idge : : Exception& e)
11 {
12 ROS ERROR(”Could not convert from ’%s ’ to ’BGR8 ’ . ” , msg−>encoding . c s t r ()) ;
13 }
14 }

C.1.3 Infrared Callback

1//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−I r Ca l lback−−
2 void i r image (const sensor msgs : : ImageConstPtr& msg)
3 {
4 t ry
5 {
6 i r f r ame =(cv br idge : : toCvShare (msg , ”16UC1”)−>image) ;

81

C.1. OBJECT SEGMENTATION CODES APPENDIX C. CODE SECTION

7 double min , max ;
8 minMaxIdx (i r f rame , &min , &max) ;
9 i r f r ame . convertTo (i r f r ame , CV 32F , 1 .0/max) ;

10 e qua l i z eH i s t (i r f rame , i r f r ame) ;
11 i r f r am e f l a g=true ;
12 }
13 catch (cv br idge : : Exception& e)
14 {
15 ROS ERROR(”Could not convert from ’%s ’ to ’16UC1 ’ . ” , msg−>encoding . c s t r ()) ;
16 }
17

18 }

C.1.4 Comparative Process

1 Image b=Image Energy b /(Image Energy b+background b) ;
2 Image b=(abs (Image b −0.5)) / 0 . 5 ;
3 val max=mean(Image b) [0]+0 . 0 5 ;
4 Image b=(Image b > val max) ;
5

6 Image g=Image Energy g /(Image Energy g+background g) ;
7 Image g=(abs (Image g −0.5)) / 0 . 5 ;
8 val max=mean(Image g) [0]+0 . 0 5 ;
9 Image g=(Image g > val max) ;

10

11 Image r=Image Energy r /(Image Energy r+background r) ;
12 Image r=(abs (Image r −0.5)) / 0 . 5 ;
13 val max=mean(Image r) [0]+0 . 0 5 ;
14 Image r=(Image r > val max) ;
15

16 a b s d i f f (Image Energy , background low , Image low) ;
17 th r e sho ld (Image low , Image low , 0 . 8 , 1 , 0) ;
18 Image low . convertTo (Image low ,CV 8U, 255) ;

C.1.5 Study of Regions

1 i n t comparator ;
2

3 i f (count mc prev ius < 5)
4 {
5 f o r (i n t i =0; i<contours . s i z e () ; i++)
6 {
7 i f (contourArea (contours [i]) >800)
8 {
9 mc ant . push back (mc [i]) ;

10 }
11

12 }
13 count mc prev ius++;
14 }
15 e l s e
16 {
17 f o r (i n t i =0; i<contours . s i z e () ; i++)
18 {
19 mc actual=mc [i] ;
20 comparator=c oun t i f (mc ant . begin () , mc ant . end () , comparat ion funt ion) ;
21 Mat drawing = Mat : : z e r o s (canny output . s i z e () , CV 8UC3) ;
22 i f (comparator > 9)
23 {
24 Mat img temp = Mat : : z e r o s (canny output . s i z e () , CV 8UC3) ;
25 ROS INFO(”Plot new ob j e c t d e t e c t i on ”) ;
26 drawContours (drawing , contours , i , S ca l a r (255 , 255 , 255) , 2 , 0 ,

h ie rarchy , 0 , Point ()) ;
27 cv : : f l o o d F i l l (drawing , mc actual , cv : : S ca l a r (255 . 0 , 255 .0 , 255 . 0)) ;

82

APPENDIX C. CODE SECTION C.2. OBJECT RECOGNITION CODES

28 c i r c l e (drawing , mc [i] , 4 , Sca l a r (255 , 0 , 0) ,−1 , 8 , 0) ;
29 drawing . convertTo (drawing , CV 32F , 1 .0/255) ;
30 mult ip ly (f rame w out blur , drawing , img temp) ;
31 imshow (” frame” , f rame w out b lur) ;
32

33 //Detect the keypoint o f the ob j e c t and the f e a t u r e s that s d e f i n e i t .
34 }
35

36 }
37 count mc prev ius=0;
38 comparator=0;
39 mc ant . c l e a r () ;
40 }

C.2 Object Recognition Codes

C.2.1 Color Histogram Code

1 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−c o l o r histogram des c r i p t o r−−−−−−−−−−−−−−−−−−−−−−−−−
2 void c o l o r h i s t d e s c r i p t o r (cv : : Mat img)
3 {
4 img . convertTo (img ,CV 8U, 255) ;
5

6 /// Separate the image in 3 p l a c e s (B, G and R)
7 vector<Mat> bgr p lane s ;
8 s p l i t (img , bg r p l ane s) ;
9

10 /// Es tab l i sh the number o f b ins
11 i n t h i s t S i z e = 10 ;
12

13 /// Compute the histograms :
14 c a l cH i s t (&bgr p lane s [0] , 1 , 0 , Mat () , b h i s t , 1 , &h i s t S i z e , &histRange , uniform ,

accumulate) ;
15 c a l cH i s t (&bgr p lane s [1] , 1 , 0 , Mat () , g h i s t , 1 , &h i s t S i z e , &histRange , uniform ,

accumulate) ;
16 c a l cH i s t (&bgr p lane s [2] , 1 , 0 , Mat () , r h i s t , 1 , &h i s t S i z e , &histRange , uniform ,

accumulate) ;
17

18 /// Normalize the r e s u l t to [0 , h ist Image . rows]
19 normal ize (b h i s t , b h i s t , 0 , h ist Image . rows , NORMMINMAX, −1, Mat ()) ;
20 normal ize (g h i s t , g h i s t , 0 , h i st Image . rows , NORMMINMAX, −1, Mat ()) ;
21 normal ize (r h i s t , r h i s t , 0 , h i st Image . rows , NORMMINMAX, −1, Mat ()) ;
22

23 f o r (i n t j = 0 ; j < b h i s t . rows ; j++) h i s t . push back (b h i s t . at<f l o a t >(j , 0)) ;
24 f o r (i n t j = 0 ; j < g h i s t . rows ; j++) h i s t . push back (g h i s t . at<f l o a t >(j , 0)) ;
25 f o r (i n t j = 0 ; j < r h i s t . rows ; j++) h i s t . push back (r h i s t . at<f l o a t >(j , 0)) ;
26

27 }

C.2.2 SIFT Code

1 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−s i f t d e s c r i p t o r −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 void s i f t d e s c r i p t o r (cv : : Mat img)
3 {
4 img . convertTo (img ,CV 8U, 255 . 0) ;
5 cv : : S i f tFea tu r eDet e c to r de t e c t o r ;
6 std : : vector<cv : : KeyPoint> k e y p o i n t s s i f t ;
7 de t e c t o r . de t e c t (img , k e y p o i n t s s i f t) ;
8 }

83

C.2. OBJECT RECOGNITION CODES APPENDIX C. CODE SECTION

C.2.3 SURF Codes

1 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−s u r f d e s c r i p t o r−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 void s u r f d e s c r i p t o r (cv : : Mat img)
3 {
4 img . convertTo (img ,CV 8U, 255 . 0) ;
5 //−− Step 1 : Detect the keypo ints us ing SURF Detector
6 i n t minHessian = 400 ;
7 Sur fFeatureDetector de t e c t o r (minHessian) ;
8 std : : vector<KeyPoint> keypo i n t s ob j e c t ;
9 de t e c t o r . de t e c t (img , k eypo i n t s ob j e c t) ;

10 i f (k eypo i n t s ob j e c t . s i z e () > 39)
11 {
12 RetainBestKeypoints (keypo in t s ob j e c t , 4 0) ;
13 f o r (i n t i =0; i<keypo i n t s ob j e c t . s i z e () ; i++) ROS INFO STREAM(keypo i n t s ob j e c t

[i] . s i z e) ;
14

15 // Construct ion o f the SURF de s c r i p t o r ex t r a c t o r
16 cv : : Su r fDesc r ip to rExt rac to r sur fDesc ;
17 // Extract ion o f the SURF de s c r i p t o r s
18 cv : : Mat d e s c r i p t o r s ;
19 sur fDesc . compute (img , keypo in t s ob j e c t , d e s c r i p t o r s) ;
20 }
21 }

1 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−s t r ong e s t M keypoints−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 bool compareFunction (KeyPoint p1 , KeyPoint p2) { re turn p1 . response>p2 . re sponse ;}
3 void RetainBestKeypoints (vector<KeyPoint> &kp , i n t M)
4 {
5 vector<KeyPoint> sortedkp ;
6 s o r t (kp . begin () , kp . end () , compareFunction) ;
7 i f (kp . s i z e ()>M)
8 kp . e r a s e (kp . begin ()+M, kp . end ()) ;
9 }

C.2.4 AKAZE Code

1 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−akaze de s c r i p to r−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 void aka z e d e s c r i p t o r (cv : : Mat img)
3 {
4 img . convertTo (img ,CV 8U, 255 . 0) ;
5 vector<KeyPoint> keypo int s akaze ;
6 Mat desc1 ;
7 AKAZE akaze ;
8 akaze (img , noArray () , keypo ints akaze , desc1) ;
9 }

C.2.5 Selector Menu

1//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Se l e c t op t i on−−
2 void S e l e c t op t i o n (i n t s e l o p t)
3 {
4 switch (s e l o p t)
5 {
6 case 1 : ROS INFO(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”) ;
7 ROS INFO(” | Load I n i c i a l Data from f i l e | ”) ;
8 ROS INFO(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”) ;
9 load svm params () ;

10 break ;
11

12 case 2 : ROS INFO(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−”) ;
13 ROS INFO(” | Add element to Data Base | ”) ;
14 ROS INFO(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−”) ;
15 Add element database () ;

84

APPENDIX C. CODE SECTION C.2. OBJECT RECOGNITION CODES

16 ROS INFO(”Add new element to database ? (Y/N) : ”) ;
17 g e t l i n e (cin , s t r) ;
18 i f ((s t r == ”n”) | | (s t r == ”N”)) s e l e c t o p t i o n =3;
19 break ;
20

21 case 3 : ROS INFO(”−−”) ;
22 ROS INFO(” | Compute the Features o f a l l Database | ”) ;
23 ROS INFO(”−−”) ;
24 compute data base () ;
25 break ;
26

27 case 4 : ROS INFO(”−−−−−−−−−−−−−−−−−−−−−−”) ;
28 ROS INFO(” | Working scene mode | ”) ;
29 ROS INFO(”−−−−−−−−−−−−−−−−−−−−−−”) ;
30 working mode () ;
31 break ;
32 }
33

34 //Reset the main f l a g s
35 f r ame f l a g=f a l s e ;
36 i n f o f l a g=f a l s e ;
37 }

C.2.6 Add Object to Database

1//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Add element database−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 void Add element database ()
3 {
4 ROS INFO(”This r eg i on be longs to the ob j e c t to be introduced in to the Data Base? y/n

: ”) ;
5 imshow (”output” , frame) ;
6 g e t l i n e (cin , s t r) ;
7

8 i f ((s t r == ”y”) | | (s t r == ”Y”))
9 {

10 ROS INFO(”Save new image in data Base to use i t in the t r a i n i n g datase t : ”) ;
11 frame . convertTo (frame ,CV 8U, 255 ,0) ;
12 ROS INFO(” int roduce the l a b e l o f the ob j e c t (1 , 2 , 3 , . . .) : ”) ;
13 g e t l i n e (cin , s t r) ;
14 cnt samples=a t o i (s t r . c s t r ()) ;
15 ROS INFO(” I s a new ob j e c t ?”) ;
16 g e t l i n e (cin , s t r) ;
17 i f ((s t r == ”y”) | | (s t r == ”Y”)) cnt image=0;
18

19 s p r i n t f (ch , ”%s%s%d%s%d%s” , ”/home/ ea j en j o /PFM ws/ ob j e c t s da t a ba s e /” , ”Object ” ,
cnt samples , ” (” , cnt image , ”) . jpg ”) ;

20 imwrite (ch , frame , compress ion params) ; // wr i t e the image to f i l e
21 cnt image++;
22 }
23 e l s e ROS INFO(”Descart image to add at Data Base”) ;
24

25 }

C.2.7 Compute the Descriptors of the Image Database Code

1//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−compute data base ();−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2void compute data base ()
3{
4 f o r (i n t j =1; j<=cnt samples ; j++)
5 f o r (i n t i =1; i<=cnt image ; i++)
6 {
7 s p r i n t f (ch , ”%s%d%s%d%s” , ”/home/ ea j en j o /PFM ws/ ob j e c t s da t a ba s e /Object ” , j , ” (” , i , ”

) . jpg ”) ;
8 const char ∗ imageName = ch ;

85

C.2. OBJECT RECOGNITION CODES APPENDIX C. CODE SECTION

9 Mat img = cvLoadImage (imageName) ;
10 vector<KeyPoint> keypoint ;
11 de t e c t o r . de t e c t (img , keypoint) ;
12 Mat f e a t u r e s ;
13 ext rac to r−>compute (img , keypoint , f e a t u r e s) ;
14 bowTrainer . add (f e a t u r e s) ;
15 }
16 vector<Mat> d e s c r i p t o r s = bowTrainer . g e tDe s c r i p t o r s () ;
17 Mat d i c t i ona ry=bowTrainer . c l u s t e r () ;
18 bowDE. setVocabulary (d i c t i ona ry) ;
19

20 // Extract ing histograms in the form o f BOW fo r each image
21

22 Mat l a b e l s (0 , 1 , CV 32FC1) ;
23 Mat tra in ingData (0 , d i c t i ona ryS i z e , CV 32FC1) ;
24 i n t k=0;
25 vector<KeyPoint> keypoint1 ;
26 Mat bowDescriptor1 ;
27

28 f o r (i n t j =1; j<=cnt samples ; j++)
29 f o r (i n t i =1; i<=cnt image ; i++)
30 {
31 s p r i n t f (ch , ”%s%d%s%d%s” , ”/home/ ea j en j o /PFM ws/ ob j e c t s da t a ba s e /Object ” , j , ” (” , i , ”

) . jpg ”) ;
32 Mat img2 = cvLoadImage (ch) ;
33 de t e c t o r . de t e c t (img2 , keypoint1) ;
34 bowDE. compute (img2 , keypoint1 , bowDescriptor1) ;
35 t ra in ingData . push back (bowDescriptor1) ;
36 l a b e l s . push back ((f l o a t) j) ;
37 }
38

39}

C.2.8 Working Mode Code

1 void working mode ()
2 {
3 cout<<” Proce s s ing eva lua t i on data . . . ”<<endl ;
4 vector<KeyPoint> keypoint2 ;
5 Mat bowDescriptor2 ;
6 frame . convertTo (frame ,CV 8U, 255) ;
7 imshow (” frame” , frame) ;
8 de t e c t o r . de t e c t (frame , keypoint2) ;
9 RetainBestKeypoints (keypoint2 , 3 0) ;

10 bowDE. compute (frame , keypoint2 , bowDescriptor2) ;
11 f l o a t re sponse = svm . p r ed i c t (bowDescriptor2) ;
12 }

C.2.9 Object Tracker Code

1 f o r (i n t i =0; i<o b j e c t s d e t e c t e d l i s t . s i z e () ; i++)
2 {
3 i f (o b j e c t s d e t e c t e d l i s t [i] . s t a t u s o b j e c t s t a t e !=2)
4 {
5 i f (o b j e c t s d e t e c t e d l i s t [i] . h istogram . empty ())
6 {
7 s e l e c t i o n . x =o b j e c t s d e t e c t e d l i s t [i] . x−(o b j e c t s d e t e c t e d l i s t [i] .

image s i z e . y/2) ;
8 s e l e c t i o n . y =o b j e c t s d e t e c t e d l i s t [i] . y − (o b j e c t s d e t e c t e d l i s t [i] .

image s i z e . x/2) ;
9 s e l e c t i o n . width = o b j e c t s d e t e c t e d l i s t [i] . image s i z e . y ;

10 s e l e c t i o n . he ight = o b j e c t s d e t e c t e d l i s t [i] . image s i z e . x ;
11

12

86

APPENDIX C. CODE SECTION C.2. OBJECT RECOGNITION CODES

13 i f ((0 <= s e l e c t i o n . x && 0 <= s e l e c t i o n . width && s e l e c t i o n . x + s e l e c t i o n .
width <= hue . c o l s && 0 <= s e l e c t i o n . y && 0 <= s e l e c t i o n . he ight && s e l e c t i o n . y +
s e l e c t i o n . he ight <= hue . rows)==1)

14 {
15 Mat r o i (hue , s e l e c t i o n) , maskroi (mask , s e l e c t i o n) ;
16 c a l cH i s t (&ro i , 1 , 0 , maskroi , o b j e c t s d e t e c t e d l i s t [i] . histogram , 1 , &

hs i ze , &phranges) ;
17 normal ize (o b j e c t s d e t e c t e d l i s t [i] . histogram , o b j e c t s d e t e c t e d l i s t [i] .

histogram , 0 , 255 , NORMMINMAX) ;
18

19 Mat backproj ;
20 ca l cBackPro jec t (&hue , 1 , 0 , o b j e c t s d e t e c t e d l i s t [i] . histogram , backproj ,

&phranges) ;
21 backproj &= mask ;
22 o b j e c t s d e t e c t e d l i s t [i] . i n i t t r a ckBox = CamShift (backproj , s e l e c t i o n ,
23 TermCriter ia (TermCriter ia : : EPS | TermCriter ia : :COUNT, 10 , 1)) ;
24 o b j e c t s d e t e c t e d l i s t [i] . trackBox=o b j e c t s d e t e c t e d l i s t [i] . i n i t t r a ckBox ;
25 o b j e c t s d e t e c t e d l i s t [i] . i n i t h i s t o g r am=ob j e c t s d e t e c t e d l i s t [i] .

h istogram ;
26

27 e l l i p s e (scene , o b j e c t s d e t e c t e d l i s t [i] . trackBox , o b j e c t s d e t e c t e d l i s t [i
] . co lo r , 0 . 1 , CV AA) ;

28 cv : : imshow (”output” , scene) ;
29 }
30 }
31 e l s e
32 {
33 s e l e c t i o n . x = o b j e c t s d e t e c t e d l i s t [i] . trackBox . c en t e r . x − (

o b j e c t s d e t e c t e d l i s t [i] . trackBox . s i z e . width /2) ;
34 s e l e c t i o n . y = o b j e c t s d e t e c t e d l i s t [i] . trackBox . c en t e r . y − (

o b j e c t s d e t e c t e d l i s t [i] . trackBox . s i z e . he ight /2) ;
35 s e l e c t i o n . width = o b j e c t s d e t e c t e d l i s t [i] . trackBox . s i z e . width ;
36 s e l e c t i o n . he ight = o b j e c t s d e t e c t e d l i s t [i] . trackBox . s i z e . he ight ;
37

38 i f ((0 <= s e l e c t i o n . x && 0 <= s e l e c t i o n . width && s e l e c t i o n . x + s e l e c t i o n .
width <= hue . c o l s && 0 <= s e l e c t i o n . y && 0 <= s e l e c t i o n . he ight && s e l e c t i o n . y +
s e l e c t i o n . he ight <= hue . rows)==1)

39 {
40 Mat backproj ;
41 ca l cBackPro jec t (&hue , 1 , 0 , o b j e c t s d e t e c t e d l i s t [i] . i n i t h i s t og ram ,

backproj , &phranges) ;
42 backproj &= mask ;
43 RotatedRect trackBox= CamShift (backproj , s e l e c t i o n , TermCriter ia (

TermCriter ia : : EPS | TermCriter ia : :COUNT, 10 , 1)) ;
44

45

46

47 i f (trackBox . c en t e r !=Point2 f (0 , 0))
48 {
49 o b j e c t s d e t e c t e d l i s t [i] . trackBox=trackBox ;
50 o b j e c t s d e t e c t e d l i s t [i] . trackBox . s i z e=o b j e c t s d e t e c t e d l i s t [i] .

i n i t t r a ckBox . s i z e ;
51 e l l i p s e (scene , o b j e c t s d e t e c t e d l i s t [i] . trackBox , o b j e c t s d e t e c t e d l i s t [

i] . co lo r , 0 . 1 , CV AA) ;
52 cv : : imshow (”output” , scene) ;
53

54 o b j e c t s d e t e c t e d l i s t [i] . d i s t anc e=o b j e c t s d e t e c t e d l i s t [i] . trackBox .
c en te r − o b j e c t s d e t e c t e d l i s t [i] . i n i t t r a ckBox . c en te r ;

55 o b j e c t s d e t e c t e d l i s t [i] . d i s t anc e . x=abs (o b j e c t s d e t e c t e d l i s t [i] .
d i s t ance . x) ;

56 o b j e c t s d e t e c t e d l i s t [i] . d i s t anc e . y=abs (o b j e c t s d e t e c t e d l i s t [i] .
d i s t ance . y) ;

57 o b j e c t s d e t e c t e d l i s t [i] . x=s e l e c t i o n . x ;

87

C.3. ACTIVITY RECOGNITION CODES APPENDIX C. CODE SECTION

58 o b j e c t s d e t e c t e d l i s t [i] . y=s e l e c t i o n . y ;
59 }
60

61 i f ((o b j e c t s d e t e c t e d l i s t [i] . d i s t anc e . x >50 | | o b j e c t s d e t e c t e d l i s t [i] .
d i s t ance . y >50) && o b j e c t s d e t e c t e d l i s t [i] . s t a t u s o b j e c t s t a t e <2)

62 {
63 o b j e c t s d e t e c t e d l i s t [i] . s t a t u s o b j e c t s t a t e=1 ;
64 i f (o b j e c t s d e t e c t e d l i s t [i] . Start movement Time == 0) time(&

o b j e c t s d e t e c t e d l i s t [i] . Start movement Time) ;
65 e l s e
66 {
67 time(& o b j e c t s d e t e c t e d l i s t [i] . currentTime) ;
68 o b j e c t s d e t e c t e d l i s t [i] . Tota l used t ime=o b j e c t s d e t e c t e d l i s t [i] .

currentTime − o b j e c t s d e t e c t e d l i s t [i] . Start movement Time ;
69 }
70 }
71 i f (o b j e c t s d e t e c t e d l i s t [i] . s t a t u s o b j e c t s t a t e==1 && trackBox . c ent e r==

Point2 f (0 , 0))
72 {
73 o b j e c t s d e t e c t e d l i s t [i] . s t a t u s o b j e c t s t a t e =2;
74 }
75

76

77

78 }
79

80 }
81 }
82 }
83 }

C.3 Activity Recognition Codes

C.3.1 Object Callback Code

1//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Object Cal lback−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2void Object Cal lback (const p ro j e c t package : : Object& msg)
3{
4 t ry
5 {
6 Ob j e c t l i s t=msg ;
7 Act iv i ty msg . header=Ob j e c t l i s t . header ;
8 f l a g O b j e c t l i s t=true ;
9 }

10 catch (cv br idge : : Exception& e)
11 {
12 ROS ERROR(”Can ’ t obta in the top i c message”) ;
13 }
14}

C.3.2 Mode Selector Menu

1

2//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Mode se lector−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3void mode se l e c to r (i n t s e l o p t)
4{
5 switch (s e l o p t)
6 {
7 case 1 : ROS INFO(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”) ;
8 ROS INFO(” | Load I n i c i a l Data from f i l e s | ”) ;
9 ROS INFO(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”) ;

10 l o ad in i t pa rams () ;
11 break ;

88

APPENDIX C. CODE SECTION C.3. ACTIVITY RECOGNITION CODES

12

13 case 2 : ROS INFO(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−”) ;
14 ROS INFO(” | Add new Act iv i ty | ”) ;
15 ROS INFO(”−−−−−−−−−−−−−−−−−−−−−−−−−−−−”) ;
16 Add act iv i ty database () ;
17 break ;
18

19 case 3 : ROS INFO(”−−−−−−−−−−−−−−−−−−−−−−−−−−−”) ;
20 ROS INFO(” | Act iv i ty de t e c t i on mode | ”) ;
21 ROS INFO(”−−−−−−−−−−−−−−−−−−−−−−−−−−−”) ;
22 a c t i v i t y v a l u e s . Dynamic rates . r e l e a s e () ;
23 a c t i v i t y v a l u e s . S t a t i c r a t e s . r e l e a s e () ;
24 working mode () ;
25 working dynamic mode () ;
26 pub l i sh in fo mode () ;
27 break ;
28 }
29}

89

C.3. ACTIVITY RECOGNITION CODES APPENDIX C. CODE SECTION

90

Appendix D

Object Element Database

91

APPENDIX D. OBJECT ELEMENT DATABASE

92

APPENDIX D. OBJECT ELEMENT DATABASE

(a) Cut Table (b) Colacao (c) Glass (d) Orange

(e) Big Fork (f) Coffee (g) Big Spoon (h) Sugar

(i) Juice (j) Milk (k) Spoon (l) Tea case

(m) Pan (n) Dish (o) Brush (p) Heat Shield

Figure D.1: Object Data Base

93

APPENDIX D. OBJECT ELEMENT DATABASE

94

Appendix E

Economical Analysis

95

APPENDIX E. ECONOMICAL ANALYSIS

96

APPENDIX E. ECONOMICAL ANALYSIS

Table E.1: Economical Development Costs

Product Quatity Price Repayment Month Dev. Cost

Developer PC Dev 1 1200 24 6 300

Kinect Camera 1 200 12 6 100

ROS 1 0 0 6 0

OpenCV 1 0 0 6 0

Developer 1 35000 12 8 23333

Dev. Costs 23733 e

20% Benefit 4747 e

Total 28480 e

Table E.2: Market Value

Product Quatity Unitary Price Price 100u Price 1000u

NVIDIA Jetson TK1 1 204 18360 173400

IP Camera wireless 1 69,83 6284,7 59355,5

ROS 1 0 0 0

OpenCV 1 0 0 0

HDD storage Dev 1 40 3600 34000

Dev. Annual Tax 1 50 50 50

Product Cost 363,83 e 282 e 266 e

Dev. Cost 23733 e 237 e 24 e
Dev. Cost +20% 28480 e 284,8 e 28,48 e

Total price + dev. 24097 e 520 e 291 e
Total price + dev. +20% 28843 e 567 e 295 e

97

APPENDIX E. ECONOMICAL ANALYSIS

98

Bibliography

[1] Robert Laganière, OpenCV 2 Computer Vision Application Programming Cookbook

[2] Release 2.4.9.0, The OpenCV Reference Manual

[3] Marcin Blachnik,Jorma Laaksonen, Image Classification by Histogram Features Created with
Learning Vector Quantization

[4] D.Lowe, Distinctive Image Features from Scale-Invariant Keypoints

[5] Herbert Bay,Tinne Tuytelaars,Luc Van Gool, SURF: Speeded Up Robust Features

[6] Pablo F. Alcantarilla, Adrien Bartoli, and Andrew J. Davison, KAZE Features

[7] Pablo F. Alcantarilla,Jesus Nuevo,Adrien Bartoli, Fast Explicit Diffusion for Accelerated
Features in Nonlinear Scale Spaces

[8] Kristen Grauman,Bastian Leibe, Visual Object Recognition

[9] Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cédric
Bray, Visual Categorization with Bags of Keypoints

[10] Stephen O’hara, Bruce A. Draper, Introduction to the bag of features paradigm for image
classification and retrieval

[11] Gary Bradski, Adrian Kaehler, Learning OpenCV Computer Vision with the OpenCV
Library

[12] Wikipedia, Activities of Daily Living

[13] Mohammad Taghi Saffar *, Mircea Nicolescu, Monica Nicolescu and Banafsheh
Rekabdar, Intent Understanding Using an Activation Spreading Architecture

[14] Jinna Lei,Xiaofeng Ren,Dieter Fox, Fine-Grained Kitchen Activity Recognition using RGB-D

[15] Emmanuel Munguia Tapia, Stephen S. Intille, Kent Larson, Activity Recognition in the
Home Using Simple and Ubiquitous Sensors

[16] Gita Sukthankar, Christopher Geib, Hung Bui, David Pynadath and Robert P.
Goldman, Plan, Activity, and Intent Recognition

99

https://en.wikipedia.org
https://en.wikipedia.org/wiki/Activities_of_daily_living

	Resume
	Introduction
	Objective of this project
	Available Scenario
	Software
	ROS
	OpenCV

	Hardware Configuration
	Initial Design Considerations

	Object Segmentation
	Introduction
	Background Subtraction
	Simple Image Difference
	Mixture of Gaussian Method
	Simple Frame Subtraction
	Image Differences Evaluation Using Percentages:
	Image Divisor Relation:

	Proposal
	Acquisition of the Raw Image
	Adapting the Pixel Representation
	Comparative Process
	Study of all Mask Regions

	Example Output

	Object Recognition
	Methods to Extract Features
	Color Histograms
	Scale-Invariant Feature Transform (SIFT)
	Speeded-Up Robust Features (SURF)
	KAZE Features
	Acelerate KAZE Features

	Final Features Proposal
	Color Histogram Descriptor
	SIFT Descriptor
	SURF Descriptor
	AKAZE Descriptor

	Association of Features Method:
	Implementation of Bag of Features Using a Bag of Key-Points

	Categorization Methods
	Categorization by Naïve Bayes
	Categorization by Support Vector Machine

	Object Tracker
	Proposal
	Reading the ROS Topics:
	Creating the Image Database:
	Computing the Descriptors of the Image Database
	Working Mode:
	Object Tracker
	Object Publisher List

	Example Output

	Activity Recognition
	State of the Art
	Proposal
	Reading the ROS Topics
	Selector Menu
	Load Initial Data from Files
	Activity Detection Mode
	Activity Publisher
	Activity Ros Topic

	Example Output

	Results
	Experimental Setup
	Results of the Object Recognition
	Results of the Activity Recognition

	Conclusions
	Achieved Improvements
	Results Evaluation
	Results of the Object Segmentation
	Results of the Object Classifier
	Results of the Object Tracker
	Results of the Activity Classifier

	Future Works
	Object Segmentation
	Object Recognition
	Object Tracker
	Activity Recognition
	Discussion

	Scheduling and Economical Analysis
	Schedule of the Project
	General Diagram
	Code Section
	Object Segmentation Codes
	Mixture of Gaussian Object
	Image Callback
	Infrared Callback
	Comparative Process
	Study of Regions

	Object Recognition Codes
	Color Histogram Code
	SIFT Code
	SURF Codes
	AKAZE Code
	Selector Menu
	Add Object to Database
	Compute the Descriptors of the Image Database Code
	Working Mode Code
	Object Tracker Code

	Activity Recognition Codes
	Object Callback Code
	Mode Selector Menu

	Object Element Database
	Economical Analysis

