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Abstract

This article describes a procedure for the calculation of the intermodulation behavior of the TM01 0 mode in high

temperature superconducting (HTS) disk resonators from a description of the local HTS nonlinearities. Successful

cross-checks are performed by comparing the theoretical results with experimental measurements and simulations based

on the multiport harmonic balance algorithm for a specific model of HTS nonlinearity. The application of this pro-

cedure to the determination of nonlinear material parameters from disk resonator measurements is illustrated and

compared to theoretical predictions.
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1. Introduction

High temperature superconducting (HTS) de-
vices are promising candidates for use in tele-
communications because they provide filters with
much better performance than conventional filters
of comparable size. These filters consist of many
resonators, and therefore each resonator element
must, in general, support large current densities.
Since HTS materials are inherently nonlinear, large
current densities can provoke degradation in the
filter performance either by intermodulation or re-
duction of the quality factor of the resonators [1].

Much effort has been dedicated to the study of
nonlinearities in HTS materials [1], and the results

have varied considerably. To date, there exists no
consensus as to the origin of the nonlinearities,
even as to whether they are caused by intrinsic or
extrinsic properties.

A promising method for studying nonlinearities
in HTS materials is with the use of disk resonators.
Disk resonators are large so that the effects of
material homogeneity are less pronounced, and in
addition the TM0m 0 modes have no currents par-
allel to the sample edges and thereby avoid edge
effects.

2. Fields and currents for disk geometry

The structures to be considered here are
HTS disk resonators consisting of two circular
thin films on opposite sides of a dielectric substrate
of thickness h, and the smaller of the two films (or
both) has radius rd. We define standard cylindrical
coordinates where the z-axis passes through the
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two films, perpendicular to their surfaces. For the
purposes of this article, we will deal only with the
TM01 0 mode for which the azimuthal magnetic
field is

Hhðt; qÞ ¼ HðtÞ J1ðkqÞ
J0ðkrdÞ

� �
; ð1Þ

where HðtÞ is the time-dependent field strength,Jn

is the Bessel function of order n, and k is the wave
number determined by the condition that Hhðt; q ¼
rdÞ ¼ 0, i.e. krd ¼ 3:8317.

We will assume that the disk is driven with ex-
ternal fields at frequencies x1 and x2, both of
which are very near the resonant frequency. The
azimuthal magnetic field is then given by Eq. (1)
with

HðtÞ ¼ H1 cosðx1t þ /1Þ þ H2 cosðx2t þ /2Þ; ð2Þ

where /1 and /2 are arbitrary phases.
In a manner similar to that in [2], we will define

a surface impedance,

Zðx0; JÞ ¼ Zðx0; 0Þ þ DZðx0; JÞ; ð3Þ

where DZðx0; JÞ ¼ DRðx0; JÞ � ix0DLðx0; JÞ is
the change in surface impedance induced by finite
current at a given frequency, while DRðx0; JÞ and
DLðx0; JÞ are the separate changes in surface re-
sistance and inductance, respectively.

The magnetic field at the principal frequencies,
given by Eq. (2), will produce a radial surface
current, J. Associated with this current will be a
radial electric field inside the superconductor, E,
which we will assume can be separated into linear
and nonlinear parts as E ¼ EL þ ENL. In general,
the electric field in the superconductor can be ex-
pressed as a series expansion in powers of J and its
time derivatives. As outlined in [3], we will assume
that the nonlinear part can be adequately described
by simple resistive and reactive terms in the form

ENL ¼ aNLðJÞJ þ o

ot
bNLðJÞJ½ �: ð4Þ

From Eq. (4) it is evident that aNLðJÞ represents
the resistive response and bNLðJÞ the reactive re-
sponse.

In order to proceed, one must choose a partic-
ular current dependence of the nonlinear electric
field in Eq. (4). A simple, yet illustrative example is

to begin with current dependencies as suggested in
[2,4], where the nonlinear coefficients in Eq. (4)
vary as the magnitude of the surface current den-
sity,

amodNL ðJÞ � DRmjJ j ð5aÞ
and

bmodNL ðJÞ � DLmjJ j; ð5bÞ
where DRm and DLm are constants reflecting the
current-induced changes in surface resistance and
inductance, respectively. Now, we substitute Eqs.
(5a) and (5b) into Eq. (4) for the nonlinear electric
field and then substitute for J using Eq. (1) (since
the surface current density is proportional to the
magnetic field, J ¼ n̂n
H) to find

Emod
NL ðt; qÞ ¼ DRmH jH j

�
þ DLm

oðH jH jÞ
ot

�


 J1ðkqÞ
J0ðkrdÞ

� �2
; ð6Þ

whereH is given by Eq. (2). Ideally, one would like
to analytically calculate the terms in Eq. (6) in
order to separate the various frequency compo-
nents. However, because of the nonanalytic nature
of the modulo, in general this cannot be done
in closed-form. Nevertheless, one can numerically
generate a time series of the terms in Eq. (6) for
various values of the frequencies, amplitudes, and
phases. One can then perform a discrete Fourier
transform to the frequency domain and pick out
the desired frequency components. We have car-
ried out this procedure for various values of the
parameters, and found that the nonlinear electric
field can be expressed in terms of a function of the
input tones H1 and H2, denoted by � ðH1;H2;xÞ, as

Emod
NL ðx; qÞ ¼ ðDRm � ixDLmÞ

J1ðkqÞ
J0ðkrdÞ

� �2

 � ðH1;H2;xÞ: ð7Þ

As a concrete example of interest, for inter-
modulation products at frequency x12 � 2x1 � x2,
when the two fundamentals are identical in mag-
nitude, the function is given by � ðH1;H2;x12Þ ¼
0:2882H 2

1 , so that from Eq. (7), the nonlinear
electric field in the superconductor at frequency
x12 is given by
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Emod
NL ðx12; qÞ ¼ 0:2882ðDRm � ix12DLmÞ


 J1ðkqÞ
J0ðkrdÞ

� �2
H 2
1 : ð8Þ

Eq. (8) determines the intermodulation generated
in terms of the fundamental signals. However, one
would like to relate the intermodulation signals
to measurable quantities. To do so, we follow a
procedure similar to that in [5], but taking into
account the current dependence given by Eqs. (5a)
and (5b), resulting in a magnetic field at frequency
x12 of

Hmod
12 ¼ 0:7029H 2

1 ðDRm � ix12DLmÞ


 QL

x12l0h
J1ðkqÞ
J0ðkrdÞ

� �
: ð9Þ

Eq. (9) is one of the central results of this article.
Note that, according to this equation, both DRm

and DLm affect the amplitude of the intermod-
ulation signals. If intermodulation power mea-
surements are made, the effect of DRm, DLm is
indistinguishable and gives identical results when-
ever DRm ¼ xDLm.

We can corroborate Eq. (9) by comparing to the
simulations described in [3]. These simulations
discretize the disk and treat it as a radial trans-
mission line, solving the resultant set of equations
in an iterative manner using the multiport har-
monic balance (MHB) algorithm. The simulations
also incorporated the disk parameters from mea-
surements carried out in [6] of QL ¼ 4:01
 103,
x0 ¼ 2p 
 1:987 GHz, h ¼ 5:0
 10�4 m, and rd ¼
1:875
 10�2 m. The simulations reproduce the
quadratic dependence on input signal amplitude
given by Eq. (9) (and as measured [6]). In addition,
with the values

DRm ¼ 1:526
 10�9 XmA�1;

DLm ¼ 0; or equivalently ð10aÞ

DRm ¼ 0; DLm ¼ 1:223
 10�19 HmA�1; ð10bÞ
(since the magnitude of Hmod

12 depends only on
jDRm � ix12DLmj), the simulations gave a ratio
of maximum field amplitudes of ðHmod

12 Þmax=
ðH 2

1 Þmax ¼ 3:796
 10�7 mA�1. By maximum field
amplitudes we refer to the maximum as a function

of q as determined by the Bessel function in Eq.
(9), i.e. ½J1ðkqÞ=J0ðkrdÞ�max ¼ 1:4447. Substitu-
tion of these values into Eq. (9) verifies that the
calculation agrees with the simulation to within
<1%.

Another case of interest is that for which the
amplitudes of the two fundamental tones are un-
equal. In this case, no closed-form expression can
be given for the function � ðH1;H2;xÞ, and it must
be calculated for various values of the input
parameters. As an example, we have calculated
� ðH1;H2;xÞ for 0:036H1 6 30, H2 ¼ 1, and ðx2 �
x1Þ=x0 � 1 (it depends only on the relative fre-
quency difference and is independent of phase if
the relative frequency difference is small). The re-
sults are shown in Fig. 1, in which it can be seen
that the intermodulation products have an unusual
power dependence. When H1 � H2, the intermod-
ulation product at x12 varies as H 2

1 and crosses
over to an H1 dependence for H1 � H2. The in-
termodulation product at x21 � 2x2 � x1 varies as
H1 for H1 � H2 and is independent of H1 for H1 �
H2 [7].

We emphasize that the method outlined above
can be used to calculate the response of the reso-
nator for other models for the current dependence
of the surface impedance. For example, assuming
a quadratic dependence of the form

aquadNL ðJÞ ¼ DRqJ 2 ð11aÞ

Fig. 1. F � 20 log½� ðH1;H2;xÞ=H 2
2 � at frequencies of x12 (- - -)

and x21 (
 
 
) as a function of H1ðx1Þ, with fixed H2ðx2Þ.
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and

bquadNL ðJÞ ¼ DLqJ 2: ð11bÞ
The entire process used for the modulo current

dependence above can be carried out analytically,
since the Fourier transform leading to the equiv-
alent of Eq. (7) is straightforward. This results in
an intermodulation product at frequency x12 of

Hquad
12 ¼ 2:325H 3

1 ðDRq � ixDLqÞ
QL

x12l0h
J1ðkqÞ
J0ðkrdÞ

� �
;

ð12Þ

which agrees with the results published in [3].

3. Connection with microscopic parameters and

measurements

Now that we have made a connection between
the intermodulation products and experimentally
measurable parameters, it would also be useful to
make a connection with microscopic parameters of
the HTS material. Theories invoking intrinsic ex-
planations for nonlinearities in HTS materials
usually involve current-induced changes in the
penetration depth, k [9]. The current-dependent
penetration depth can be expressed as

kðjÞ ¼ kð0Þ½1þ 0:5f ðjÞ�; ð13Þ

where j � J=k is the current density and f ðjÞ
contains the current dependence which is related
to the current dependent superfluid density by
nsðjÞ ¼ nsð0Þ½1� f ðjÞ�. As demonstrated in [8], the
parameter bNLðJÞ defined in Eq. (4) can be ex-
pressed in terms of f ðjÞ, for the modulo current
dependence of Eq. (5b), as

bNLðJÞ ¼ l0kð0Þf ðjÞ=2 ¼ l0jJ j=2jIMD; ð14Þ

where jIMD is a characteristic current density. Re-
lating Eq. (14) to the definition in Eq. (5b) gives

jIMD ¼ l0

2DLm
¼ 5:2
 108 A=cm2; ð15Þ

where we have used Eq. (10b) for DLm and DRm.
We note that in the theory of [4], jIMD ¼ jc, the
pair-breaking critical current, and that the result
of Eq. (15) is of the same order of magnitude as the
estimated value for YBCO [10].

The resisitve nonlinear term aNL can be related
to the nonlinear surface impedance and to the
function f ðjÞ that sets the nonlinearity in the
HTS material [8]:

aNL ¼ DRðx0; JÞ

� Re Zðx0; 0Þ½ � 3

2

"
þ 1

kð0Þ=kð0ÞjT¼0
� �2 � 1

#


 J
kð0ÞjIMD

: ð16Þ

The effect of aNL on the intermodulation products
is usually much smaller than that of bNL and, thus
Eq. (14) should be used instead of Eq. (16) to ex-
tract the value of jIMD.

4. Conclusions

Microwave disk resonators are a useful tool for
the study of nonlinearities in HTS materials be-
cause the TM0m 0 modes have no current parallel
to the film edges. Understanding these nonlinear-
ities is important for the design and use of micro-
wave filters because of the large current densities
required.

We have analyzed the nonlinear behavior of
microwave disk resonators and calculated the
intermodulation products produced by introduc-
ing two fundamental tones near the resonant fre-
quency of the TM01 0 mode. The method used
is applicable to arbitrary nonlinearities caused by
a current-dependent surface impedance. For the
particular case of modulo current dependence, the
calculations reproduce the results of experimental
data and also have been verified with simulations
using the MHB algorithm. Lastly, the character-
istic current, jIMD, extracted from the measure-
ments is comparable to the intrinsic pair-breaking
critical current, jc.
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