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Evaluation of HPC applications’ Memory
Resource Consumption via Active Measurement

Marc Casas, Greg Bronevetsky

Abstract—
As the number of compute cores per chip continues to rise faster than the total amount of available memory, applications will become
increasingly starved for memory storage capacity and bandwidth, making the problem of performance optimization even more critical.
Also, understanding and optimizing the usage of an increasing number of hierarchical memory levels and complex cache management
policies is becoming a very hard task. We propose a methodology for measuring and modeling the performance of hierarchical
memories in terms of the application’s utilization of the key memory resources: capacity of a given memory level and bandwidth
between two levels. This is done by actively interfering with the application’s use of these resources. The application’s sensitivity to
reduced resource availability is measured by observing the effect of interference on application performance. The resulting
resource-oriented model of performance both greatly simplifies application performance analysis and makes it possible to predict an
application’s performance when running with various resource constraints. This is useful to predict performance for future
memory-constrained architectures. This paper applies the proposed methodology to 6 important and well known High Performance
Computing (HPC) codes to show the strength and the potential of analysis based on resource-oriented measurements.

Index Terms—Multi-core architectures, Memory Hierarchy, Performance Analysis.

F

1 INTRODUCTION

Modern computing systems achieve high performance by,
among other things, the efficient usage to the memory hier-
archy, which combines small amounts of expensive and fast
memories with larger, cheaper and slower components. This
hierarchical design provides a good balance between cost,
performance and storage capacity. The main drawback that
hierarchical designs have is their programmability, as it is
very difficult to tune real codes to fully exploit the potential
that hierarchical memories have. Significant research has
been devoted to develop cache-friendly algorithms [13], [8]
and performance analysis tools to understand applications’
memory usage [30], [24], [18]. However, the goal of easy-to-
use memory optimization techniques is still far from reach.

Modern architectural designs provide increasing im-
provements in computation capability while maintaining a
constant power dissipation density by increasing the num-
ber of cores on each chip. Since the power and cost efficiency
of memory designs are not improving at the same rate, the
amount of memory per compute core is dropping [20]. This
is especially true for High Performance Computing (HPC)
systems, where hard limits on power costs will mean that
next-generation Exascale systems may provide one or two
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orders of magnitude less memory capacity and bandwidth
per core than today’s systems [20]. These limitations will
force application designers to fundamentally rethink how
their algorithms utilize the memory system and will make
effective memory optimization methodologies critical for
maintaining application performance on future systems.

Ensuring that applications optimally use the memory
hierarchy or restructuring algorithms to leverage hierarchies
that are deeper (more levels) and thinner (fewer resources
per core) requires a detailed analysis of how an application
uses memory. Although there exists a wide range of tools to
help with this task, they have key limitations. Simulation-
based tools such as cachegrind [25] and gem5 [2] can
analyze the application’s behavior in great detail and can
predict the performance of any collection of applications
running on any hardware configuration. However, such
tools run hundreds or thousands times slower than native
execution and cannot simulate the commercial architectures
on which almost all applications run because simulator
developers have no access to their proprietary details. These
limitations have motivated work on tools based on moni-
toring hardware performance counters. These tools report
metrics such cache miss rates or instructions per cycle for
various code regions [30], conduct complex analyses of such
counter data [18], [3], [4] or connect them to other aspects
of the application, such as data structures [24]. Although
these tools are efficient and precisely capture the state of
the hardware and how it is utilized by the application,
this information is not actionable in most cases. First, the
metrics reported by these tools are so low-level that they can
only be interpreted by the most hardware-savvy developers.
Further, this information is not useful for predicting how
the application may behave in alternate scenarios, such as
if its available resources are reduced by the execution of
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other software or because the application runs on a new
platform. The limitations of today’s techniques motivate the
need for a new approach that combines the predictive capa-
bility of simulation-based tools with the high performance
of counter-based methods for real commercial proprietary
hardware.

This paper presents a new performance analysis tech-
nique that addresses this need by capturing the application’s
effective use of the storage capacity of different levels of the
memory hierarchy as well as the bandwidth between adja-
cent levels. Our approach models various memory compo-
nents as resources and measures how much of each resource
the application uses from the application’s own perspective. To
the application a given amount of a resource is “used”
if not having this amount will degrade the application’s
performance. This is in contrast to the hardware-centric
perspective that considers “use” as any hardware action that
utilizes the resource, even if it has no effect on performance.
For instance, while from the hardware perspective cache
storage capacity is “used” when live data is stored in it,
to the application it is “used” only if the data is part of
the application’s active working set. This paper specifically
focuses on measuring storage capacity in caches that are
shared by multiple cores and the bandwidth between them
and higher levels of the memory hierarchy. In addition to
measuring use, we also quantify the application’s sensitivity
to being provided less of the resource than it needs to run
without suffering performance degradations. This predicts
how well the application would run in scenarios where less
of the resource is provided, such as the memory hierarchy
of a future system (e.g. a node of an Exascale system).

We measure the application’s use of memory resources
via the proactive methodology illustrated in Figure 1. While
the application runs, it uses a given fraction of each resource
at a given level of a memory hierarchy (denoted “level X
cache”). If this level X cache is shared among multiple cores
it is possible to measure this use by running on another core
an interference thread that utilizes a known amount of cache
capacity or bandwidth, where the use of a separate core
limits the thread’s effects to just the chosen resource. The
algorithm increases the amount of resource used until the
main application’s performance is observed to degrade. The
difference between the total amount of the resource and the
amount used by the interference thread at that point is the
amount actively used by the application. If the application’s
performance is not sensitive to the interference then it either
primarily uses a higher level of the memory hierarchy (little
use of level X) or doesn’t fit in level X and is thus not
sensitive to reductions in its capabilities. The two cases can
be differentiated by observing the application’s miss rates
for level X cache.

Overall, this paper’s contributions are:

• A methodology to actively measure the application’s
resource use in terms of the effect of availability of
this resource on its performance [5], [6].

• A novel interference-based mechanism to simulate
a reduction in available memory storage and band-
width on a given real hardware architecture.

• A validation technique for quantifying the real effects
of our interference mechanisms on the application
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Fig. 1. The application’s resource use is measured by interfering with
increasing fractions of the resource until this affects application perfor-
mance

and bounding the effects of a given source on inter-
ference on unrelated resources.

• A method to predict how the application’s perfor-
mance will degrade on alternative, less capable mem-
ory hierarchies.

Section 2 presents our interference measurement
methodology. This approach is validated in Section 3 using
microbenchmarks with well-characterized memory behav-
ior. Section 4 describes in detail the HPC workloads used
in this paper. Section 5 shows how our techniques can be
applied to HPC applications to measure their cache storage
and bandwidth requirements. Section 6 provides three ex-
amples of non-trivial insights that are provided by active
measurement techniques.

2 MEASUREMENT METHODOLOGY

Each level of the memory hierarchy provides two resources:
storage capacity and communication bandwidth to the
(larger and slower) level below it. Our Active Measure-
ment methodology measures the application’s use of these
resources by comparing its performance when running on
a given memory system to its performance when less of
a given memory system resource is available due to the
execution of a special interference thread. Specifically, the
techniques presented in this paper focus on portions of the
memory hierarchy that are shared among multiple cores.
This restriction enables more precise measurements by mak-
ing it easier to isolate the effects of the interference thread
to analyze just the specific resource it is designed to target
because the interference threads run on different cores that
share the resource. This section details the design of these
threads and Section 3 experimentally validates that each
thread is effective at using up the resource that it targets
and uses few other resources.

Our experiments focus on the following architecture: 2-
socket nodes with 8-core Intel Xeon E5-2670 processors. The
L1 and L2 caches are private to each core, while the L3 cache
is shared among all the cores on a socket. The L3 on the Intel
Xeon E5-2670 is 20MB in size and this architecture is thus
denoted Xeon20MB (details in Table 1).

2.1 Memory Bandwidth Interference
The pseudo-code of the bandwidth interference thread,
denoted BWThr is shown in Figure 2. This code attempts
to transfer as much data as possible between one memory
hierarchy level and the next by issuing a large number of
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Cache Capacity Line Size Associativity

Private
L1 I 32KB 64 bytes 8-way
L1 D 32KB 64 bytes 8-way

L2 256KB 64 bytes 8-way
Shared L3 20MB 64 bytes 20-way

TABLE 1
8-core Intel Xeon E5-2670 memory hierarchy

long long i n t∗ buf 0 =
malloc ( s i ze of ( long long i n t )∗ bufSize ) ;

. . .
long long i n t∗ buf numBufs =

malloc ( s i ze of ( long long i n t )∗ bufSize ) ;

for ( i n t i =0 ; 1 ; i ++) {
buf 0 [ i d e n t i t y ( largePrime∗ i )%bufSize ]++ ;
. . .
buf numBufs [ i d e n t i t y ( largePrime∗ i )%bufSize ]++ ;

}

Fig. 2. Pseudo-code of the bandwidth interference thread BWThr

memory accesses that will miss in the first level. We induce
frequent cache misses by allocating a buffer and iterating it
with a stride that is coprime with the buffer size. The use
of a large number keeps the number of iterations between
adjacent accesses to the same location large, the constant
stride makes it possible for the hardware prefetcher to help
use up more bandwidth and the coprimality of the buffer
size and the stride ensures that there are no aliasing effects,
that is, enforces that the interference thread’s working set
size is actually the whole memory buffer. Further, to en-
sure that the compiler cannot perform any optimizations
based on the simple access pattern, the computation of the
strided index largePrime*i is wrapped inside a call to
an identity function that is located in a different file and
thus not available at compile time. One side-effect of this is
that the compiler can no longer transform the loop to issue
the maximum number of simultaneous memory accesses
that the underlying hardware can support. We overcome
this problem by simultaneously performing this procedure
for many buffers at the same time (our experiments use 44,
which we discovered to be sufficient), maximizing the con-
current memory traffic. Other approaches based on threads
that make extensive use of the memory system have been
used to study memory bandwidth and latency of IBM
systems [26].

2.2 Cache Storage Interference
Figure 3 shows the pseudo-code of the storage interference
thread, denoted CSThr. It allocates a buffer of a given size
and then randomly touches elements in this buffer. If the
buffer fits inside the high-level private caches of CSThr’s
processor this iteration has little effect on the cache shared
by it and the application. This is because once the data is
fetched into this cache during the initial iterations of the
inner loop, there will be no additional cache misses. How-
ever, once the array grows larger than the private caches, the
random order of the memory accesses ensures that many

i n t∗ buf = malloc ( s i ze of ( i n t )∗ bufSize ) ;
while ( 1 ) buf [ random position ]++;

Fig. 3. Pseudo-code of the storage interference thread CSThr

of the buffer accesses will miss in the private cache and
will always hit in the lower-level shared cache. A random
memory access pattern ensures a more intense perturbation
than linear access patterns because the probability of con-
secutively accessing two addresses of the same cache line is
very low, meaning that almost every access misses in the L1
and L2 and hits in the L3. Further, the use of random access
ensures that the hardware pre-fetcher will not recognize the
access pattern and thus will not fetch in additional addresses
outside the target buffer. Because CSThr spends all of its
time passing over the buffer, the application threads have
little chance to use the cache space assigned to the buffer
before CSThr accesses this line again and pulls this resource
away from the application. The design of CSThr ensures
that it predictably utilizes a fixed fraction of the target
shared cache and prevents the application from making any
productive use of it.

3 VALIDATION

In this section we evaluate the amount of storage and band-
width resources the interference threads utilize and validate
our results. We also demonstrate that each interference
thread only utilizes its target resource, meaning that they
affect application behavior orthogonally.

3.1 Memory Bandwidth Interference
The bandwidth used by BWThr is computed based on the
number of L3 cache misses it incurs, which is obtained by
reading the hardware performance counter available in the
Xeon20MB machine. Each miss causes a full cache line to
be transferred from main memory to the L3 of its core.
Since BWThr also updates the array positions it access, its
bandwidth usage is computed as:

BW = 2 · cache line size ·#cache misses

ExecutionT ime
(1)

Our measurements indicate that using a 520KB buffer a
single BWThr utilizes 5.6GB/s per core in Xeon20MB. Since
Xeon20MB provides around 40GB/s of bandwidth between
the L3 cache and memory according to the STREAM bench-
mark [23], 8 BWThr running on 8 different cores would
consume the whole available bandwidth.

3.2 Cache Storage Interference
The CSThr utilizes cache storage by repeatedly accessing
a range of memory addresses, attempting to deny the
application their use. However, because there is a time
window between adjacent touches by CSThr of the same
cache location it is possible for the application to bring its
own data into this location and make productive use of it
before it is evicted by CSThr. As such, the total amount of
storage utilized by CSThr cannot be computed directly and
must be computed based on its effects on representative ap-
plications. As we describe in Section 3.2.3, we create several
synthetic benchmarks with different well-known memory
access patterns based on probability distributions. We then
use the knowledge of a each benchmark’s distribution to
derive the L3 cache miss rate that the benchmark would
observe when running on a fully associative cache of a given
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i n t∗ buf = malloc ( s i ze of ( i n t )∗ bufSize ) ;
for ( i n t i =0 ; i<N ACCESSES ; i ++) {

i n t value = buf [X ( ) ] ;
/ / Some c o m p u t a t i o n i n v o l v i n g v a l u e

}

Fig. 4. Probabilistic Memory Access Algorithm.X() is a random variable
that has a probability distribution function f associated.

size. Given the L3 miss rate observed when each benchmark
runs concurrently with CSThr we can then compute the
effective cache size that is available to the benchmark at
a given level of CSThr interference. Our experiments show
that in most cases CSThr has a consistent effect for all the
benchmarks and identify the narrow range of applications
and interference levels for which the effects of CSThr cannot
be accurately quantified.

3.2.1 Benchmark Design

Figure 4 shows the skeleton of the synthetic benchmarks we
use to validate CSThr. It loops over a buffer N ACCESS
times and in each iteration reads the value at a buffer index
chosen randomly from some probability distribution and
performs some number of computations on this location.
Every time that a new index is generated, an access to
the memory must be performed to get the data. In our
experiments we created several different variants of this
benchmark for a range of probability distributions and
different degrees of memory access patterns. Table 2 lists
all the distributions considered and represents both a wide
range of access patterns as well as degrees of spatial lo-
cality (depends on the standard deviation, which is varied
widely). The computation shown in the skeleton displayed
by Figure 4 involves value, which is stored in a register.
Then, the average time between two memory accesses can
be varied by setting the computation performed after each
read to be 1, 10 or 100 integer additions. By doing that, we
consider not only the memory access pattern itself, but also
several degrees of memory access frequency.

The next step in our analysis is to derive the expected
cache miss rate for each benchmark given the amount of
cache storage that is available. This is computed via the
following formula, which uses the probability that a given
randomly sampled index is in the cache to compute the
Expected Hit Rate (EHR):

EHR =
∑

i ∈ buffer

P (i is accessed) · P (i ∈ cache) (2)

P (i is accessed) is equal to the probability mass function
f(i) of the distribution because we have designed a specific
set of benchmarks with this property. The probability of i
being in the cache, if the cache capacity is smaller than
the buffer size, is equal to the probability that i has been
accessed in any of the N previous memory accesses, being
N the maximum number of memory addresses that can be
stored in the cache, that is, the total cache capacity. Thus,
P (i ∈ cache) is equal to the product f(i) · Cache capacity.

Pattern Statistical Distribution Standard
Name Distribution Parameters Deviation

Norm 4 Normal µ=n/2 σ=n/4 n/4
Norm 6 Normal µ=n/2 σ=n/6 n/6
Norm 8 Normal µ=n/2 σ=n/8 n/8
Exp 4 Exponential λ=4/n n/4
Exp 6 Exponential λ=6/n n/6
Exp 8 Exponential λ=8/n n/8

Laplace 4 Laplace µ=n/2 σ=n/4 n/4
Laplace 6 Laplace µ=n/2 σ=n/6 n/6
Logistics 4 Logistics µ=n/2 s=n/4 n2π2/48
Logistics 6 Logistics µ=n/2 s=n/6 n2π2/108
Logistics 8 Logistics µ=n/2 s=n/8 n2π2/192

Tri 1 Triangular a=0 b=0.4n c=n n2/18
Tri 2 Triangular a=0 b=0.6n c=n n2/18
Tri 3 Triangular a=0 b=0.8n c=n n2/18
Uni Uniform a=0 b=n n2/12

TABLE 2
Memory access patterns considered. n is the size of the buffer.

Putting everything together:

EHR =
∑

i ∈ buffer

f(i) · f(i) · Cache capacity (3)

= Cache capacity ·
∑

i ∈ buffer

f(i)2

(4)

This formula makes several assumptions:

• The size of the buffer must be larger than the size of
the cache. This assumption is satisfied just by using
sufficiently large buffers.

• The formula applies to steady state execution, after
the algorithm has warmed up the cache by loading
its contents based on its probability distribution. We
satisfy this assumption by setting N ACCESS to be
much larger than the buffer sizes.

• It assumes that the cache is fully associative, which is
not true in general. As such, despite the fact that the
model is in general accurate, as it is demonstrated in
section 3.2.2, it slightly underestimates the number
of cache misses because set-associative miss ratios
are in general larger than fully-associative ones.

• No considerations are made in terms of the impact
of the cache line size or, in other words, it assumes
that each cache line size is able to store just one
element of the buffer. That is not true in case of
real hardware but this simplification does not really
impact model’s accuracy since Cache Storage >>
Cache line size.

The dependence of the cache miss rate on cache size
has been studied for generic applications in the past by
using statistical models empirically derived [15]. Our model
offers more insight, as it is not empirical, but it requires
a precise description of the application’s memory access
pattern, which is not always available.

3.2.2 Validation of the Probabilistic Model
The variety of distributions used in our synthetic bench-
marks induce a wide range of memory access patterns and
L3 cache miss rates from below 10% to above 80%. The
probability distributions with larger standard deviations
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Fig. 5. Model Evaluation. Experiments with memory accesses patterns exp4, exp6, exp8 and Uniform.

Fig. 6. Model Evaluation. Experiments with memory accesses patterns Norm4, Norm6, Norm8 and Laplace4.

Fig. 7. Model Evaluation. Experiments with memory accesses patterns Logistic4, Logistic6, Logistic8 and Laplace6.

Fig. 8. Model Evaluation.

access with a higher probability wider sets of data, which
decreases the chances of accessing two elements of the same
cache line in a short period of time. This fact induces higher
miss rates due to worse spatial memory locality. Further,
cache miss rates rise as the buffer size increases since more
memory is available for selection.

Equation 4 predicts the benchmark’s miss rate based
on its available storage capacity. We validated the equation
by running the synthetic benchmarks defined in table 2 on
Xeon20MB and comparing the predicted miss rates on the
20MB of L3 cache known to be available with the real cache
miss rates measured by hardware counters.

In Figure 5 we show results considering patterns exp4,
exp6, exp8 and Uniform considering buffer sizes from 30
up to 74 MB. The results show the impact of model’s
assumptions concerning cache associativity, as the real miss
rates are significantly underestimated when they are below
25%. As the buffer size is increased the benchmarks’ locality
is reduced and model’s assumptions have less impact. We
can also observe the impact of the statistical distributions’
standard deviations in the accuracy of the model. Those
distributions with highest deviations (exp4 and uniform) are

better predicted since their memory access patterns are less
impacted by model’s assumptions.

Figures 6 and 7 show similar conclusions. Predictions
improve as the buffer sizes increase as model’s assumptions
become less critical. Also, the model provides the most
accurate predictions for those patterns defined by distribu-
tions with the largest deviations. The behavior of the three
triangular distributions defined in Table 2 is very close to
the one shown by the uniform distribution. The graphs
concerning the three triangular distribution patterns have
been omitted as they show the same trend as the uniform
distribution pattern.

Figure 8 shows the absolute differences between these
two numbers, averaged over all the distributions in Table 2.
The average absolute distance between the measured cache
miss rates and the predicted ones is always less than 10%
and the average plus one standard deviation is 15% or less.
Error is higher for small buffer sizes because the model as-
sumes that caches are fully associative. This under-predicts
the real cache miss rate when the cache is not heavily used
and there are few cache misses. However, as the cache be-
comes fully utilized by larger buffer sizes and most memory
accesses become misses (above 50% miss rate), the details
of cache associativity become unimportant and the model’s
error drops to under 5%. In summary, the data shows that
the simple analytic model of the behavior of the synthetic
benchmarks is accurate in general, especially for large buffer
sizes. Exhaustive studies on the relationship between cache
associativity and miss rate have been done [16] and are
consistent with the accuracy of our analytical model.
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10 int operations between 2 memory accesses

100 int operations between 2 memory accesses

Fig. 9. Evaluation of the cache capacity interference. In the top, the benchmarks
compute 1 integer sum between two consecutive memory accesses. In the middle,
they perform 10 integer sums and at the bottom 100 integer sums are computed
between memory accesses.

Fig. 10. Bandwidth from main memory to L3, L3 cache
miss rate and time to do 107 iterations over its main loop
of the BWThr when running concurrently with between 0
and 5 CSThrs.

Fig. 11. Bandwidth from main memory to L3, L3 cache
miss rate and time to perform a read, an arithmetic addi-
tion and a write of the CSThrs when running concurrently
with between 0 and 5 BWThr.

3.2.3 Measuring Cache Storage Use
Having shown that Equation 4 accurately predicts the L3
miss rate of the synthetic benchmarks based on the available
cache storage capacity we can now use it to predict the
effective storage available to these benchmarks when CSThr
interferes with a portion of it. This is done by running
experiments where CSThr interferes with a given synthetic
benchmark’s use of cache storage, and measuring the result-
ing L3 miss rate. We then invert the formula in Equation 4
and given the observed miss rate compute the effective
amount of available cache storage.

We conducted this evaluation on the Xeon20MB archi-
tecture, with 0 to 5 CSThrs, each using 4MB buffers. The
synthetic benchmarks were parameterized with 10 different
probability distributions (Table 2), 3 different degrees of
memory access frequency (1, 10 and 100 integer additions
per load) and 22 different buffer sizes from 30MB to 74MB
for a total of 660 different configurations. The L3 cache miss
rates of these variants range from less than 10% to more than
80%, with a similar variation on L3 cache memory access
frequencies. This breadth of coverage makes our validation
representative of a wide range of real applications, as it
is pointed out in [31], where it is shown that L3 miss
rates in SPEC 2006 applications range from 20% to 100%
in commodity hardware, which is equivalent to the range
covered by our 660 benchmark configurations.

The goal of this experiment is to determine whether
the effects of different numbers of CSThrs are consistent
across this wide range of memory access patterns. Figure 9
shows the results of our experiment. The charts from top
to bottom show results with different degrees of memory
access frequency, least frequency on top and most on the
bottom. The charts from left to right show results with
different numbers of CSThrs, with no interference on the
left and then 1 through 5 CSThrs on the right.

Each chart shows on the y axis the amount of cache
storage that is available to the benchmarks, as computed

by our formula and the x-axis shows the size of the buffer
used by the benchmark (concrete buffer sizes omitted to
improve readability and are the same as in Figure 8). In
addition to the average predicted storage (across all the 10
probability distributions), denoted by the thick horizontal
line, the charts show the region that includes the average
plus and minus the standard deviation. The length of these
intervals represents the dispersion of the measurements
across all the distributions and is smaller for more consistent
predictions of cache storage capacity. As such, the lower
the length is, the more consistent is the estimation of the
equivalent cache capacity.

The data displayed in the column tagged as ”No Inter-
ference” shows results computed without any CSThr. As
such, the predicted cache capacity should match the real
cache capacity of the machine, which happens more clearly
when buffer sizes close to 74MB are used. The buffer sizes
close to 30MB show lower values because, as explained
in Section 3.2.1, the model under-estimates the cache miss
rates due to its assumption of fully associative caches. Thus,
given the higher miss rates measured in real experiments,
the inverse of Equation 4 under-estimates the available
amount of cache storage. The error of the predictions drops
as the buffer size is increased, as seen in Figure 8, until the
predictions reach the correct capacity of 20MB.

The outcome of the experiments with no interference is
the same for all degrees of memory access frequency (1, 10
or 100 operations between loads) since in these experiments
the benchmarks do not compete for the cache. When 1
CSThr is used, the model predicts an effective cache capacity
of approximately 15MB for all degrees of memory access
frequency and 12MB with 2 CSThrs. When we use 3, 4, or
5 CSThrs the effective cache capacity is approximately 7, 5,
and 2.5MB respectively.

One interesting phenomenon is that as the frequency
of memory accesses decreases, the standard deviation of
the predictions raises. Although this effect is weak for 1
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CSThr, it becomes stronger as more CSThrs are added.
Our experiments show that for low access frequencies the
effects of CSThrs are erratic to a point where with 5 CSThrs
interfere with either as much as the entire cache or as little
as just half of it.

Overall, this validation quantifies the accuracy of the
validation methodology and identifies the properties of
applications for which it has high error: high degrees of
interference and memory access frequency. Fortunately 100
arithmetic operations per load represent a very low memory
access frequency. In particular, in scientific applications,
which are typically more regular than most other applica-
tion domains, 1-10 operations per load is considered the
most common range. Our experiments thus show that our
validation methodology is accurate for most real-world
workloads.

3.3 Orthogonality of Cache Storage and Bandwidth In-
terference

Sections 3.1 and 3.2 have demonstrated that BWThr and
CSThrs consistently utilize a given amount of cache band-
width and storage, respectively. However, since both tech-
niques use the memory hierarchy there is a risk that they
utilize additional resources besides the ones they target. If
so, they would interfere with the application in multiple
ways, making each measurement reflect the use of a com-
plex combination of system resources that has little intuitive
meaning to the application developer. It is thus necessary
to establish under which circumstances these threads have
orthogonal effects: that each thread type almost exclusively
affects the resource it targets and no other. By running the
interference threads on separate cores we have ensured that
no resources private to the application’s cores are used. In
this section we quantify the degree to which BWThr utilize
cache storage and CSThrs utilize cache bandwidth.

To measure this we executed the BWThr (520KB buffers)
and CSThrs (4MB buffers) simultaneously on different cores
of the same Xeon20MB socket to measure each others’
resource use. Figure 10 shows the effect on the execution
of a single BWThr of concurrently running between 0 and 5
CSThrs, measured in terms of (i) the amount of bandwidth
from the main memory to the L3 cache effectively used
by the BWThr, (ii) the measured L3 cache miss rate of
the BWThr, and (iii) the total time required to iterate 107

times over the BWThr’s main loop, shown in Figure 2. The
data shows that the BWThr behaves the same regardless of
the number of CSThrs that are running concurrently with
it. That implies that we can run up to 5 CSThrs without
significantly impacting the memory bandwidth.

Figure 11 shows the opposite experiment: 1 CSThr
running concurrently with between 0 and 5 BWThr. The
bandwidth plot shows the bandwidth from main memory
to L3 consumed by the CSThr and the execution time plot
shows the average time the CSThr takes to perform a read,
an arithmetic addition and a write operation. The data
shows that a single BWThr has no impact on the CSThr’s
performance and 2 BWThr have a small effect. However,
the CSThr is impacted significantly by the execution of
3, 4 and 5 BWThr, which implies that 3 or more BWThr
utilize significant amounts of cache capacity. This induces L3

misses in the CSThr, which cause it to slow down and use
more bandwidth. As discussed in Section 2.1, each BWThr
utilizes 5.6GB/s of total memory bandwidth, which means
that up to 11.2GB/s can be stolen without impacting cache
capacity. Since the total memory bandwidth measured in
the Xeon20MB architecture is near 40GB/s, that means we
can impact on 28% of it while keeping the independence of
the interference threads. Another important measurement
provided in the left hand side of Figure 11 is the bandwidth
utilization of the CSThr from main memory to L3. A single
CSThr without additional interference utilizes very little
memory bandwidth. These experiments show the design
choices under which the orthogonality of CSThr and BWThr
is guaranteed.

These results demonstrate that our measurements are
indeed highly focused for a significant part of their dynamic
range. Further, when their effects are orthogonal they can be
used to represent the application’s overall memory behavior
as a simple 2-dimensional linear space where BWThr and
CSThr identify the basis vectors: the application’s utiliza-
tion of storage and bandwidth. This projection enables
application developers and architects to reason about an
application’s memory use in the same terms as if they were
using a cache simulator without paying the big burden in
terms of computing time that architectural simulation has.

4 APPLICATION SET

Our experiments focus on the following applications:

• AMG [11] - An implementation of the Algebraic
Multi Grid Solver by using the Hypre library.

• FFTW [12] - Fast Fourier Transform library that uses
hierarchical composition of multiple FFT algorithms,
applied to perform a 2D transform of a matrix.

• Lulesh [19] - The Livermore Unstructured La-
grangian Explicit Shock Hydrodynamics simulation
that is a materials science proxy application, exe-
cuted on a cube domain.

• MCB [14] - A continuous energy Monte Carlo Burn-
up Simulation Code for studying nuclear waste
transmutation systems.

• MILC [1] - The MIMD Lattice Computation, a Quan-
tum Chromodynamics simulation with lattice size.

• VPFFT [21] -A structure sensitive crystal plasticity
simulation code.

The set of applications is representative of the typical
workloads that run in HPC infrastructures. AMG carries out
several iterations of an iterative solver over the same linear
system at different levels of granularity, which means that it
behaves like a CPU intensive benchmark when it operates
over a dense representation of the system and like a commu-
nication and memory bound application when it performs
solver iterations over a sparse representation of the system.
Thus, AMG runs will display very different phases. FFTW
and VPFFT applications contain expensive all-to-all com-
munications. The difference between these two applications
is that VPFFT performs expensive computation between
two communication phases while FFTW does not. As such,
VPFFT has some flexibility to overlap communication and
computation while FFTW has much less. Lulesh is a typical
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finite difference method code with local communication
phases interleaved by intensive computation phases. MCB
is a monte carlo simulation code, which means that it does
not have much communication and, therefore, its usage of
the interconnecting network is expected to be low. Finally,
MILC spends most of its time running the conjugate gra-
dient solver, which means that most of its communications
involve point to point communications with the neighbors
and global reductions once in a while.

5 PARALLEL APPLICATION STUDIES

Having presented and validated our basic measurement
methodology we now show how it can be applied to parallel
applications to gain insight into how they utilize the mem-
ory hierarchy. Our evaluation focuses on two performance
aspects of the applications presented in section 4.

• Measuring the amount of L3 storage and L3↔Main
Memory bandwidth used by these applications, and

• Characterizing their sensitivity to being provided
less of either of these resources.

In each experiment we increase the amount of storage
or bandwidth utilized by the BWThrs and CSThrs to ob-
serve both the point where the application’s execution time
degraded (indicated the amount of resource used by the
application) as well as the relationship between resource
availability and performance degradation. Importantly, the
slowdown of each process is stochastic, with individual
instructions on different processors affected very differently
by interference. This non-deterministic slowdown of in-
structions introduces noise into the application’s execution,
which is a well-known source of slowdown for parallel
applications [27], [17].

5.1 Experimental Setup
We run our parallel experiments on a cluster of NUMA
nodes where each one of them has two Xeon20MB sockets.
Nodes have 32GB of RAM and are connected via Infini-
Band QDR (QLogic) interconnect (40Gb/sec bandwidth).
Our measurements are performed by running the bench-
marks on several nodes while allocating some cores to the
application and executing BWThrs or CSThrs on some or all
of the remaining cores. We run MCB on 24 MPI processes,
Lulesh on 64 and AMG, MILC, VPFFT and FFTW on 72. For
each application, we consider several mappings: 1, 2, 3, 4
and 6 MPI processes per Xeon20MB socket in case of MCB,
MILC, VPFFT, AMG and FFTW. In case of Lulesh we map 1,
2, 4 and 8 MPI processes per socket due to some application
specific restrictions. In bandwidth experiments we run 1 or 2
BWThrs on dedicated cores with a buffer size of 520KB each
to interfere with up to 28% of the total memory bandwidth.
In storage experiments we run between 1 and 5 CSThrs with
a buffer size of 4MB each to utilize upto 87% of the total L3
cache capacity (17.5MB out of 20MB).

5.2 MCB
The top graphs of Figure 12 show in detail the performance
degradations we measure for several different mappings of
the processes of MCB to compute nodes when the input set

size is 20,000 particles. The x-axis corresponds to different
numbers of CSThrs or BWThrs running on the available
cores. The y-axis shows MCB’s execution time in different
mapping and interference levels. Note that since different
mappings leave different numbers of cores available, not
all combinations of mapping and interference can be run.
The bottom graphs show the performance degradations
measured when running MCB on problems with 20,000
to 260,000 particles. They correspond to MCB runs on 24
Xeon20MB processors (12 nodes), with 1 MCB process and
7 available cores per processor. The graphs on the left focus
on storage interference and the graphs on the right present
bandwidth interference results.

In the top-left graph of Figure 12 we can see the consis-
tency of the performance degradations across all the con-
sidered MPI mappings: the more processes mapped on each
processor, the less cache capacity is available for each pro-
cess and thus the same performance degradation is induced
with fewer CSThrs. This representation suggests a simple
way to calculate the average cache capacity utilization of
MCB processes. For each process mapping, we consider the
experiments with no performance degradation and pick the
one that has the most CSThrs. We then consider the experi-
ments with performance degradation and pick the one with
the fewest CSThrs. Our prior analysis has determined that
1, 2, 3, 4, and 5 CSThrs with a 4MB buffer size leave 15, 12,
7, 4 and 3MB of cache capacity available to the application.
We use this information to compute for each of the above
configurations the ratio Available cache capacity

#processes to obtain the
upper and lower bound on the amount of storage available
to each application process. For MCB running on 20,000 par-
ticles (top-left graph of Figure 12) each MCB process needs
between 3.75 and 5MB of L3 capacity when 4 processes are
mapped on each processor, 3.5-6MB are required when 2 run
on each processor and 4-7MB for 1 process per processor.
Performing the same analysis for the memory bandwidth
we calculate that each MCB process’ bandwidth utilization
is 8.6-10.0GB/s and 9.6-11.5GB/s when we map 4 and 3
processes per socket.

The bottom-left graph of Figure 12 shows MCB’s per-
formance degradation as 1 through 5 CSThrs are executed
on the available cores, which is equivalent to an L3 cache
size of 15MB, 12MB, 7MB, 4MB and 3MB, respectively,
according to the measurements described in Section 3.2.3.
The data shows that when MCB simulates 20,000 to 260,000
particles, there is little performance degradation with one,
two or three CSThrs and significant degradation of 20-25%
with four or five CSThrs. This means that on this input
range each MCB process uses between 4MB and 7MB of
the L3 cache. The fact that even when given 2.5MB MCB’s
performance only suffers by less than 30% indicates that this
application would not perform much worse even if the L3
cache was not available on this architecture.

The bottom-right graph of Figure 12 shows MCB’s
performance degradation when one or two BWThrs are
executed to reduce the available bandwidth (as discussed
above, running more than 2 BWThrs also uses up cache
storage). The impact on MCB’s performance grows as the
number of particles increases from 20,000 to 90,000 because
its communication and thus miss rate grows with increasing
workloads. Above 90,000 particles the impact of bandwidth
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Fig. 12. Performance Degradations of MCB on 24 MPI tasks. The two top figures show results obtained considering several MPI mappings and
using a 20,000 particles domain. The two figures at the bottom show results obtained when we map 1 MPI tasks per processor. Numbers of particles
between 20,000 and 260,000 are considered.

interference drops because the application spends more time
computing and less time communicating, which reduces the
pressure on the memory buses.

5.3 Lulesh

Figure 13 shows the performance degradation of Lulesh [19]
as it runs with 64 MPI processes. The physical domains
simulated by Lulesh are cubes of sizes from 22x22x22 to
36x36x36 units (the size of one dimension is reported on the
x axis), using the same format as Figure 12. The graphs in the
top show performance degradations we measure running
Lulesh on 22x22x22 cube across different process mappings.
Experiments with 4 processes per processor show that
Lulesh overflows the L3 cache when any number of CSThrs
run, meaning that for all inputs each Lulesh process uses
more than 3.5MB of storage (15MB that one CSThr leaves
available, divided by 4 Lulesh processes per processor).

The bottom-left graph of Figure 13 shows the perfor-
mance degradation of Lulesh with increasing number of
CSThrs when mapping 1 process per socket. When domain
size is 32x32x32 or smaller degradation is less than 5% for 1
and 2 CSThrs but more than 10% for 5 CSThrs, indicating
that each Lulesh process uses between 2.5MB and 10MB
of cache storage. For larger cubes Lulesh overflows the L3
cache with any amount of storage interference, suggesting
that for these input sizes Lulesh processes use more than
15MB of cache each. The bottom-right graph of Figure 13
shows that performance degradation is larger than 10%
when domain sizes are 32 and 36 with one or two BWThrs.
This is consistent with the fact the L3 cache memory is not
large enough for sizes bigger than 30 so the application
needs the memory bus regularly to fetch data into the cache
memory.

5.4 MIMD Lattice Computation (MILC)
Experiments obtained considering the MILC code are
shown in Figure 14. The two top graphs are obtained
using a lattice size size of nx=16, ny=32, nz=32, nt=36
as input. The top-left graph shows how MILC suffers no
degradation when one MPI process is mapped per socket
and less than 4 CSThrs threads co-run with it. Moderate
performance degradation is experimented by MILC when
1 MPI process shares the socket resources with 4 CSThrs.
The degradation becomes significant when 5 cache inter-
ference are active. This behavior indicates that each MILC
MPI process needs between 5 and 7.5 MB of L3 shared
cache when the input size is x=32, ny=16, nz=32, nt=36.
In terms of memory bandwidth, the results are shown in
the top right hand side of Figure 14. When just 1 or 2
MPI processes are mapped per socket, there is no impact.
However, when more than 2 MPI processes are mapped per
socket, there is a significant performance impact when just
one BWThrs is executed. That means that 3 MPI processes
already consume the whole memory bandwidth capacity of
Xeon20MB processors, 40 GB/s. In the two bottom graph
we show results obtained by mapping just 1 MPI process
per socket and considering several lattice sizes. The nx and
ny sizes are specified in the x-axis of the graph while nz
and nt are 32 and 36 respectively. Larger lattice sizes show
more sensitivity to shared memory resources. In particular,
when the considered lattice size is equal to nx=32, ny=32,
nz=32, nt=36, we observe a significant sensitivity to shared
L3 cache capacity (45% degradation when 5 CSThrs co-run
with the main application) and memory bandwidth (12%
degradation when 2 BWThrs are considered).

5.5 Crystal Viscoplasticity Proxy Application (VPFFT)
Results concerning the Crystal Viscoplasticity Proxy Ap-
plication (VPFFT) are shown in Figure 15. The considered
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Fig. 13. Performance Degradations of Lulesh on 64 MPI tasks. The two top figures show results obtained considering several MPI mappings and
using a 22x22x22 domain. The two figures at the bottom show results obtained when we map 1 MPI process per processor. The domains considered
are between 22x22x22 and 36x36x36.

Fig. 14. Performance Degradations of MILC on 72 MPI tasks. The two top figures consider an input domain of nx=16, ny=32, nz=32, nt=36. The
two graph at the bottom are obtained running a single MPI process per socket and considering several lattice sizes, from nx=16, ny=16, nz=32 and
nt=36 to nx=32, ny=32, nz=32 and nt=36.

input domain is a 4x4x4 cube and the maximum number of
iterations is 300. The two graphs at the bottom show results
obtained considering 5 different mappings, from 1 MPI
process per socket up to 6. The impact of the interference
threads, either if they are CSThrs or BWThrs, is negligible
except when there are 3 or more MPI process in the same
socket. In such scenarios, the application suffers significant
performance slowdown when run together with 2 or more
CSThrs. Since 2 CSThrs steal 10MB of the Xeon20MB L3
cache, we can infer that 3 MPI process need between 10 and
15MB to run at maximum performance, that is, each MPI
process requires between 3.3 and 5MB of L3 cache storage.

A very interesting property of the VPFFT application is that
it gets some benefit from mapping at the same socket several
MPI processes. As we can see in the top-left figure, there is a
very important improvement if 3 MPI processes are mapped
in the same socket instead of 1 or 2. Such improvement
comes from that fact that it is much cheaper to exchange
data between two cores of the same socket than two cores
belonging to different sockets. However, the benefits of such
approach are not that important when we map more than 3
MPI processes per socket. As said before, one MPI process
needs between 3.3 and 5MB of L3 capacity which means
that when we map more than 3 processes we are close to
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Fig. 15. Performance Degradations of VPFFT on 72 MPI tasks considering a cubic input domain. The two graphs in the top consider several
mappings of MPI processes per socket. The two in the bottom consider several input sizes when mapping a single MPI process to a socket.

Fig. 16. Performance Degradations of AMG run on 72 MPI tasks and applied to a 3D Laplace problem on a cube. In the top we see results mapping
different numbers of MPI processes to each socket and considering a 160x160x160 cube. In the two graphs displayed at the bottom we map one
single MPI process per socket and show results considering different cube sizes. The x-axis display the size of the x dimension of the cube. The
sizes of dimensions y and z are both 160.

the 20MB total capacity. Such lack of cache storage reduces
the benefits of faster communications.

5.6 Algebraic Multi-Grid (AMG) Solver
The impact of shared memory resources on the AMG
solver has also been evaluated. The results are shown in
Figure 16. The two top graphs display results considering
a 3D Laplace problem on a 160x160x160 cube. When we
map a single MPI process to each socket, the significant
performance degradation takes place when 4 CSThrs are
active, which means that each MPI process needs between 5

and 7.5MB of the Xeon20MB L3 cache. In terms of memory
bandwidth, significant performance degradations take place
when 3 MPI processes are executed with 2 BWThrs in the
same socket, meaning that the 3 MPI ranks need between
28.8 and 34.4 GB/s of memory bandwidth (each BWThrs
consumes 5.6 GB/s, as we show in section 3). The two
graphs at the bottom of Figure 16 show results mapping
one MPI processes per socket and considering cube sizes
from 100x160x160 up up 600x160x160. As we can see in
the figures, the considered problem sizes do not impact
the application sensitivity to shared memory resources. In
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Fig. 17. Performance Degradations of suffered by FFTW performed over a 2D matrix and run on 72 MPI tasks. In the top we see results obtained
from a 600x600 matrix and considering several mappings. The two graphs at the bottom show results mapping a single MPI process per socket
and considering matrix sized from 300x300 up to 1000x1000.

any case, the measured performance degradations are never
larger than 10%.

5.7 Fast Fourier Transform (FFTW)

Results concerning a 2D Fast Fourier Transformed imple-
mented using the FFTW library [12] are shown in Figure 17.
The two graphs in the top display results obtained by using
a 600x600 matrix as input set. The top left graph shows
results considering several mappings, from 1 to 6 MPI pro-
cesses per socket, and different cache capacity interference
degrees. The top right graph shows similar experiments
considering the memory bandwidth interference threads.
The experiments regarding the CSThrs interference show
that when 3 MPI processes run together with a single in-
terference thread there is already a significant performance
perturbation. That means that the 3 MPI processes need
between 15 and 20MB, which is between 5 and 6.6MB
per MPI process. The experiments regarding the memory
bandwidth, displayed at the top right graph of Figure 17,
show that there is a significant performance slowdown
when 3 MPI process are run together with a single BWThrs.
This behavior indicates that 3 MPI process consume be-
tween 37.2 and 40 GB/s. The two figures at the bottom of
Figure 17 show results concerning different input matrices,
from 300x300 up to 1000x1000. The left figure shows results
obtained by using different numbers of CSThrs. We can see
that performance slowdowns become more significant once
the input set sizes are increased, specially when considering
matrices larger than 600x600. On the bottom right we see the
results obtained when the application runs together with the
BWThrs. The behavior seems less dependent of the input set
size although there is some spiky behavior due the natural
irregular behavior of MPI collectives that the FFT code has.

6 ACTIVE MEASUREMENTS USEFULNESS

Active measurement techniques are able to emulate ap-
plication’s behavior in computational environments with
restricted memory resources, which allows a wide range
of possible analysis from the parallel programmer’s per-
spective. In this section, we describe three possible analysis
based on the data shown in section 5.

Finding the Optimal Mapping: By putting a single MPI
process per socket and progressively filling the empty cores
with CSThrs or BWThrs, we can realize the amount of
shared memory resources each MPI tasks needs to avoid
performance penalties. The user could blindly try several
possible mappings and select the best one in terms of
performance, but that would not provide any insight. In
contrast, our method provides the reason why an applica-
tion experiments performance degradations when too many
MPI processes are mapped in the same socket. For example,
FFTW experiments a severe performance degradation when
6 MPI processes are mapped in the same socket (from 2.5
seconds of execution time when a single MPI process is
mapped per socket to 4.5 seconds when 6 are mapped),
as we can see in the two top graphs of Figure 17. Does
this degradation come from the exhaustion of L3 cache
capacity or is the lack of available memory bandwidth what
brings such large degradations? By inspecting the left hand
side graph in the top of Figure 17, we can see that such
huge performance degradation appears when there is not
enough cache capacity. The right hand side graph shows
the performance degradation due to the lack of memory
bandwidth, which is not that intense. Other tools like the
Structural Simulation Toolkit (SST) [29] may give a similar
insights but they require a significant simulation effort.

Applications Behavior on Reduced Memory Resources:
Applications’ requirements of shared memory resources
may vary depending on the input data. While Performance
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Tools based on sampling and visualization of hardware
counters, like Paraver [28] or HPCtoolkit [24], are very
good in providing an analysis of program performance,
they cannot provide significant insight about the perfor-
mance impact of cache storage reductions or input set size
changes. Simulators are very expensive even when they use
sophisticated statistical techniques [34]. In contrast, active
measurement methods provide useful hints. For example,
at the bottom of Figure 13 we display how the performance
degradation that lulesh suffers under restricted cache capac-
ity environments increases from 13% to 34% as the input
cube-domain sizes grow from 22x22x22 to 36x36x36. De-
pending on the size of the problem, computational scientists
may decide which machine should be used to run their
simulations by taking into account analysis derived from
active measurement techniques.

Applications co-schedule: Computational resources are
scarce and potential co-scheduling opportunities are rarely
explored because the potential performance degradation
they may bring to parallel applications are unknown. How-
ever, active measurement techniques make possible to esti-
mate such degradation and provide some hints to compu-
tational scientists on whether or not it is convenient to put
more than one parallel workload in the same socket. Despite
the fact that we do not conduct any co-schedule experiment
in this paper, active measurements can certainly provide
useful insights to do it. Also, the information derived from
active measurements can be used to improve the scheduling
of parallel workloads by feeding the OS or the runtime
system with information regarding applications’ resource
needs.

7 RELATED WORK

Some approaches [32] and [7] use interference threads to
steal available cache storage from a targeted application.
However, they do not control the working set size of their
cache-stealing routines or validate the exact resources they
utilize.

Eklov et al’s work [9], [10] is a valuable contribution.
Like us, Eklov et al develop interference workloads that
utilize cache storage and bandwidth. However, their work
falls short in a few critical areas. First, our methodology
validates the independence between the BWThr and the
cache interference (CSThr), while Eklov et al do not consider
the possible impact of the Bandwidth Bandit on the cache
storage capacity. As such, the performance slowdowns re-
ported by Eklov et al can be misleading since the Band-
width Bandit can erase some cache lines and thus increase
applications cache miss rate. The resulting performance
slowdowns are thus difficult to interpret since they are
caused by interference in multiple resources. Second, while
BWThr is much simpler than Eklov et al’s Bandwidth Pirate,
experiments show that it is at least as effective at reducing
available memory bandwidth. As reported in the top of page
6 of [10], the Bandwidth Pirate method can steal up to 4.6
GB/s (43% of total system bandwidth) with an unknown
impact on cache storage. Our method steals up to 28%
of total bandwidth without significantly impacting cache
storage. Third, our work proposes a method to precisely
evaluate the effective reduction in cache capacity due to

cache interference while Eklov et al use of a simple heuristic
to estimate the point where their cache storage interference
is inaccurate, what causes them to assign low accuracy to
experiments where 66%-75% of cache capacity is stolen. Our
more accurate validation methodology allows us to ensure
accurate results when interfering with up to 87% of cache
storage capacity.

In [22] a ”bubble” kernel with tunable capacity and
memory activity is presented. While the bubble is very
useful on analyzing applications’ performance degradation
due to generic memory activity, it is not able to decompose
such degradation into several factors, as our work does. As
such, using the bubble we would be able to predict the
performance interference between co-located applications,
but not the particular resource that is exhausted. In [33] the
approach is improved to provide accurate QoS control and
maximized server utilization via interference measurement.

Finally, techniques to accurately measure the parameters
of hardware components have been proposed [36], [35]. The
authors argue that existing micro-benchmarks are inade-
quate, and present novel micro-benchmarks for determin-
ing the parameters of all levels of the memory hierarchy,
including registers, all cache levels and the translation look-
aside buffer. The experimental results show that the tool
successfully determines memory hierarchy parameters on
many current platforms.

8 CONCLUSION

It is becoming critical to quantify how applications use the
memory hierarchy to enable developers to identify perfor-
mance bottlenecks. We present and validate the Active Mea-
surement methodology, which quantifies an application’s
utilization of the memory hierarchy, specifically the storage
and bandwidth of shared caches, and predicts the appli-
cation’s performance when the required memory resources
are not available. Our approach is a significant improvement
over the prior work. It provides information that today can
only be derived by simulators but it is much faster than
current simulation-based techniques and unlike simulation
makes predictions for any architecture the application may
run on with no information about its proprietary internal
details. Further, it is much more actionable than perfor-
mance counter analysis techniques because it can predict
application performance when different amounts of key
resources are available.
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