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Abstract— This paper addresses the issue of lack of force 
feedback in robotic-assisted minimally invasive surgeries. Force 
is an important measure for surgeons in order to prevent 
intra-operative complications and tissue damage. Thus, an 
innovative neuro-vision based force estimation approach is 
proposed. Tissue surface displacement is first measured via 
minimization of an energy functional. A neuro  approach  is 
then used to establish a geometric-visual relation and estimate 
the applied force. The proposed approach eliminates the need 
of add-on sensors, carrying out biocompatibility studies and is 
applicable to tissues of any shape. Moreover, we provided an 
improvement from 15.14% to 56.16% over other approaches 
which demonstrate the potential of our proposal. 

 
I. INTRODUCTION 

Robotic Assisted Minimally Invasive Surgery (RAMIS) 
systems, besides preserving the advantages of traditional 
laparoscopic procedures, offer additional benefits for both 
surgeons and patients. They  enhance  surgeons’  precision 
by restoring hand-eye coordination and filtering physiologic 
tremors. Moreover, RAMIS is often associated with better 
patient outcomes and less pain, blood loss, scarring and 
recovery time [1].  However,  these  benefits  have  come 
at the expense of the surgeon’s ability to feel, which 
eliminates all natural haptic feedback [2]. Force feedback is 
of utmost importance to prevent tissue damage, and increase 
both surgeon-patient transparency and procedure accuracy. 
Moreover, it is associated with task completion time and 
increased intraoperative injury [3]. 

The lack of force feedback has motivated some researchers 
to develop force sensors for restoring this feature to RAMIS 
[4], [5], [6]. However, biocompatibility and sterilizability 
problems, space restrictions, long-term stability, devices’ 
high cost and the difficulty of adapting them to the surgical 
tool, put severe restrictions on their use in real clinical 
environments [7]. An alternative approach  is  to  estimate 
the applied forces from the  observable  displacements  of 
the deformable object. Since the camera integrated in the 
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endoscope is able to infer tool-tissue interaction forces and 
prevent disturbances at the contact point, Vision-Based Force 
Measurement (VBFM) can be used. 

The viability of using visual information for estimating 
forces has been proved in different scenarios. Authors in [8], 
[9] showed that vision-based force measurement provides 
a robust and non-contact approach for estimating force 
feedback, in macro- and micro-scale systems, in which 
displacement of the object’s contour was enough to recover 
the applied forces. However, calculating the properties of the 
materials in these approaches is highly complex. 

Force estimation in 3D space is more challenging and 
only few results have been reported. A 3D contact force 
estimator, based on the Extended Kalman  filter  (EKF) 
and a Lyapunov-based adaptation law, was proposed in 
[10]. Ammi et al. [11] estimated forces using a nonlinear 
mass-spring-damper model and snakes based visual tracking 
of cell deformations. Later on, a deformation-strain-stress 
relation was proposed in [12] to retrieve surface deformation 
using monocular images. However, as shown in [13], 
mass-spring models offer limited accuracy. 

Most recently, researchers have used Neural Networks to 
improve force feedback estimation in different scenarios. 
Authors in [14] applied image processing techniques in 
conjunction with artificial neural networks to estimate the 
force applied to cells in 2D space. In a previous work [15], 
we proposed a 3D force estimation approach, in RAMIS 
scenarios, in which an information-force relation was created 
by means of a recurrent  neural  network.  Additionally, 
the combination of 3D VBFM and artificial intelligence 
techniques was first reported in that work. 

In this work, a neuro-vision based approach for 
estimating applied forces is presented in which tissue 
surface deformation is reconstructed by minimizing an 
energy funcional. To guarantee good performance even 
under occlusions, a geometric-visual relation is created 
using a neural approach. The proposed approach has the 
benefits of eliminating the need of using sensors, conducting 
biocompatibility studies and knowing tissue shape. 

II. VISUAL-FORCE ESTIMATION STRATEGY  
For  tackling  the  problem  of  estimating  the  applied 

forces,  a  solution  composed  of  two  modules,  illustrated 
in Fig. 1, is proposed. The former, vision-based approach, 
allows estimating the displacements produced during the 
deformation of the tissue. The latter, neuro approach, 
generates the information-force relation. In the remainder of 
this section, the stated modules are described in detail. 
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Fig. 1: Flow chart of the proposed solution for estimating 
the applied forces in RAMIS environments. 

 
 

A. Vision-Based Approach 
Consider a stereo-pair image sequence during the time, 

t = 1, ..., N, where definitions of the left and right images 
are given by Il : Ω Il → R and Ir : Ω Ir → R, with 
compact support on Ω , respectively. Now, let P be a set 
of control points which belong to a uniform lattice on 
Ω Il  and Ω Ir , 
then, the three-dimensional grid is given by the projections 
of the corresponding points of each lattice (See left side Fig. 
2). Thus, deformation structure is given by the repercussion 
of P (see right side Fig. 2). Mathematically, the changes 
produced on the tissue’s surface are treated as an energy 
minimization problem, where the goal is to find P of 

min{Ediscr (Il (dm(x; P) + x), Ir (x)) + γEpnl (dm(x; P))}  (1) 

where Ediscr measures the level of  alignment  between 
both images at each t, Epnl represents  the  penalization 
term used  to  obtain  a  plausible  transformation,  γ  gives 
a balance between  Ediscr  and  Epnl ,  and  x  is  a  vector  in 
Rd , d-dimensional space. Moreover, for each x ∈ Rd the 
disparity function, dm, is described by 

contol points 

Fig. 2: 3D deformation structure is reconstructed, at each 
time instant, from the given lattices of corresponding pair of 
cameras (right side). Then, observed displacements can be 
seen due to the applied force (left side). 

 
 

The  set  of  control  points  minimized  in   Eq.   3   has 
been obtained by applying the  Powells  dogleg  (DL) 
method because, besides combining the advantages of the 
Gauss-Newton and steepest descent methods, it offers better 
results than Levenberg-Marquardt with a fastest performance. 
Detailed description can be found in our previous works 
related to complex deformation [17], [18]. 

B. Neural Approach 
In this paper, the applied forces estimation in RAMIS is 

carried out by using a Recurrent Neural Network (RNN). 
RNNs are a class of artificial neural networks (ANNs) that 
have feedback connections, which enable the networks to 
do temporal processing and learn sequences taking into 
account past information.  Moreover,  RNNs  are  capable 
of dealing with problems related to complex input-output 
relations as well as handling high noise-contaminated input 
data. Previous characteristics make RNNs very suitable for 
estimating forces in our system as they will allow us to 
create the visual-geometric-force relationship and use past 
information to improve final results. 

The architecture used in this paper is illustrated in Fig. 
3. Unlike our previous work [15], in which full feedback 
connections were considered, in this work, two main types of 

n n   d 
dm(x; P) = ∑  ... ∑  Pj      , 

.. ∏  ξ (x 
) (2) 

feedback, with delay, are introduced: global output-to-input 
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feedback and local feedback in the input and output of the 
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Where  ξk    are  the  B-splines  basis  functions  of  degree 
n = 3.  These  functions  have  been  selected  due  to  their 

global loops. According to these feedback, three types of 
outputs can be defined: i) local delay unit OLD ii) global 
delay unit OGD ii) no-delay unit ON−D of the i − th neuron. 
They are expressed as follows 

ease of manipulation, low computational cost and optimal (t) (t) (t−1) 

mathematical properties [16]. We now turn to reformulate SLDi = ∑ wi  j + In j   + bi + ∑ wi j SLDi
 

the energy functional presented in Eq. 1. In this work, the 
sum of squared differences (SSD) and Tikhonov method are 
considered for evaluating the discrepancy and penalization 
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terms, Ediscr  and Epnl , respectively. Thus, energy functional OLD(t) 

= φ (S(t) GD(t) (t) 

becomes  
N−D(t) LDi) O  

 (t) 
= φ (SGDi) 

 
discrepancy   penalizat ion   O = φ (∑ wi j + In j    + bi) j 

     .. 
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   .. 
2 (3) where inputs are defined by In, b denotes the bias, weights 

2 ∑  (Il (dm(x; P)) − Ir 

(x)) 
x∈Ω  

+ γ ∑  ∑  |∇ dmi (x; 
P)| 

i=1 x∈Ω  

are  represented  by  w  and  S  refers  to  the  current  state. 
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Fig. 4: Relationship between the RNN output and the targets 
obtained for the training and test datasets (left and right 
graphics, respectively). 

 
 
 
 
 
 
 

Fig. 3: Estimation of the applied forces is achieved by 
means of a RNN in which three types of output units can 
be identified  (zoom in  the upper  row). Those units  with 
delayed feedback save past information that helps to increase 
accuracy (bottom row). 

 
 

Moreover, φ represents the activation function. As activation 
functions highly affect the performance of RNNs, two 
functions are used: identity activation function on the output 
layer and hyperbolic tangent sigmoid on the other layers to 
take advantage of the multilayer configuration. They were 
selected since in combination they improve the learning 
characteristics and increase accuracy and speed. One of the 
main concerns when using a RNN, because of the vanishing 
and the exploding gradient problems, is the training process. 
With the aim of obtaining faster convergence and stability, 
in  this  work  the  Levenberg-Marquardt  method  has  been 
applied.  Thus,  the  weight  update  is  expressed  by  ∆ w 
= 
−(JT J + ρI)−1JT e, where J and I are the Jacobian and 
identity matrices, ρ  is a non-negative value that allows the 
Hessian be positive definite, and e is the vector error that is 
obtained between the output and the target. 

III. EXPERIMENTAL RESULTS 
The validation of the proposed approach has been carried 

out on a realistic scenario (upper left image of Fig. 5) 
composed of a pair of cameras from IDS, a Stäubli RX60B 
manipulator robot, and an ATI Gamma SI-32-2.5 force 
sensor. Furthermore, a fabric made of ECOFLEX 0030, 
which has mechanical properties similar to human tissue, 
has been used. The computational analysis of the proposed 
vision-based approach has shown a high performance with 
an average time per frame of 0.0060 seconds and a fast 
convergence (17 iterations in average). The top of Fig.5 
shows a 3D plot of the observed displacement of the lattice 
vision output, while at the bottom of this figure, 2D graphs 
of displacements of the contact point (left) and its neighbors 

(right) are displayed. This information is used as input of 
the proposed RNN. To evaluate the association strength 
between the real and estimated force measurements, a linear 
regression test was applied. To do so, 60% out of the total 
data was used for training and the remainder for test. In both 
cases, there were a very tight relationship between estimated 
and real force values, as shown by fitting of the points to 
the lines in Fig.4, and the R-values greater than and close 
to 0.99 for the training and test data, respectively. These 
results demonstrate the significant robustness and accuracy 
of the proposed RNN in estimating the applied forces 

Additionally, root mean square (RMS) error was used to 
assess the performance of the proposed neuro-vision based 
approach, and compare it with the error obtained by other 
approaches. Red bar in left side of Fig.  6  identifies  the 
RMS error obtained by the proposed approach, and is used 
as reference for comparison with the approaches reported 
in Table I. Moreover, blue line shows the percentage of 
improvement of our approach against these studies. As can 
be appreciated, the estimated forces closest to the target 
values are obtained with the system presented here, which 
provides an accuracy improvement ranging from 15.14% to 
56.16% over other approaches and outperforms our previous 
proposal, [15], by a 5.26%. Apart from the improved force 
estimation accuracy (see right side Fig. 6) a significant 
reduction, in comparison to our previous work, of about 
62.2% in computational cost was achieved. These results 
demonstrate the viability and significance of our proposed 
approach for RAMIS scenarios. 

IV. CONCLUSION 
We presented a novel approach to estimate the applied 

forces in the RAMIS context  in  which  deformation  of 
the tissue surface (given by the visual information) and 
geometric information (obtained by the robot manipulator) 
are used as input to the RNN. Moreover, the combination 
of two types of feedback allowed reducing both,  the 
error, RMS= 0.0594, and the computational time. These 
factors, together with eliminating the need of conducting 
biocompatibility studies and knowing tissue shape, 
demonstrate the potential of the proposed approach. 
Moreover, we reported a significant improvement over the 
state of the art in force feedback from 15.14% to 56.16%. 
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Fig. 5: At top of the first column, experimental platform can be seen, in which force is applied to the tissue at different 
time instants. 3D displacements, obtained from the vision based approach, are plotted (bottom of first column). Observed 
displacements of the contact point and its four neighboring points are also shown (second column). 

 
TABLE I: Performance assessment, using the Root-Mean Square Error, of proposed and existing approaches. 

 
Compared Methods Yip et al. [4] Puangmali et al. [5] Faragasso et al. [6] Aviles et al. [15] Noohi et al. [12] Proposed Approach 

RMS Error (N) 0.13 0.075 0.1355 0.0627 0.07 0.0594 
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Fig. 6: The RMS Error reported by all approaches in Table I. Red bar identifies RMS Error obtained by the proposed 
approach and is used as reference for the graph (at left side). Percentage of change against other studies is also shown. 
Comparison between the real and estimated forces, in Z-direction, are shown (at right side). 
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