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ABSTRACT. This work deals with the use of previous or colateral information to improve the
behaviour of adaptive algorithms. The study is made on gradient-based methods due to the
relatively simple and good performances that they use to exhibit.

This paper shows that the complete knowledge of the data at the input of the adaptive £il-
ter (and in consequence of its autocorrelaticn matrix and its inverse) can be used to mo-
dify the classic L.M.S. algorithm leading to new expressions for the gradient and for the
optimum 'step size', alternative, in some cases, to the Powell expression.

Finally, the description is completed with the comparison between the variation ranges and
VLSI implementation cost for this two optimum 'step size' values and a natural generaliza-

tion set of parameter i1s obtained.

1. INTRODUCTION

For the sake of simplicity, let us focuss the
classic problem of Wiener filtering. Two
possible alternatives can be adopted. The first
one 1Is the direct use of the optimum Wiener
equation and the other is that an adaptive
approach could be better under actual
situations, where finite arithmetics and
no-stationary conditions are wused to be
imposed.

If we adopt the sgecond possibility, the
question is how to use all the previous or
colateral information available im a given
adaptive algorithm.

From our point of view, there would be two
possible c¢holces to reflect these additionmal
information in an adaptive squeme with a
quadratic objective. They are the following:

a) To use it to estimate better the parameters
or assoclated functions dinvolved in the
adaptive algorithm.

b) To include the colateral information as
constrains or just in the minimization process.

This work is driven in both senses. The first
one is the most obvious and will be used only
. to fmprove the gradient estimate,

On the other hand, the second one is not so
direct as the previous, and, {n general, it
will try to modify the whole structure into the
adaptive scheme to satisfy the constrains or
the pursued error minimization criterion.
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Thus, althrough 1t seems an atractive
possibility, the designer will have to pay
attention because, as a matter of fact, often
the structure obtained will need a very
intensive computation. In our case, only an
optimum value for the step size will be
searched, keeping the usual adaptive scheme.

2. REVIEW OF THE MINIMUM M.5.E. LINEAR
FILTERING: (11, {21, (3], [4].

Let's consider the general scheme given in the
figure 1. The objective is to minimize the mean
square error (m.s.e,) between a reference
signal y(n) and an estimate of this signal at
the output of a Q order F.I.R, filter defined
by the coefficlent vector W. Thus, given an
input data signal x{n), we dispose of a data
vector En and the desired estimation:

Fn) = x T.H =W (2.1)
where:

gﬂT = (x(n),x{n-1),...,x{n~Q+l)

W= (w0}, w(1), e u,w(Q-1))

The weight wvector will be chosen so that the
M.S.E. {is minimum:

¥ = BN D=E(ymx Tw?)  (2.2)

and developing the expression:

2 2 T
= E(y"(n))=E(y(n)X "W -
) - (2.3)

T T
- WE(yZX 4R _F
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The minimization of this expression leads to
the well known optimal Wiener solution:

-1

Wopt = Bax B (2.4)

Where RXX=E(X 1§nT) is the 0QxQ autocorrelation
matrix ‘8f che “data sequence x{n) and
P=E(y(n).X ) 1is a cross-correlation wector
between the data vectors §n and the reference
samples y{n) .

Q)

i

R,

Y({n)

Figure l. General dilagram.

In general, without additional information
about R % and P, the designer has to use
estimates8 of both R__ and P. The most familiar
approach 1s the Sté%%est Descent Method based
in the gradient of the error given in (1.2):

sl = 9 (2.5)
with V = -P the exact gradient wvector of

W
the M.S E. End -h the step size.

But,‘the knowledge about R__ and P is partial
and thus, the exact gradie&?‘is substituted by
an estimate (En):

¥y = ¥ (2.6)

Widrow proposed as gradient V =e(n).X (i.e.
the so-called instantaneous gradient) [3], and
L.J. Griffiths to y(n)X -P !2| in an adaptive
array context. As it "is seen, the Widrow
approach 1s a complete instantaneous estimate
and it presents a very computation simplicity.
For this reasons, this proposal will be used in
one of our final algorithms.

3. DESCRIPTION OF THE METHOD:

In some cases, the data sequence {x(n)} 1is
exactly known {(i.e. active somar, time delay
estimation, +.«..), and in counsequence, its
autocorrelation matrix and its inverse matrix
can be considered as data. Thus, under this
condition, it seems that the best alternative
is directly the Wiener equation for the filter
coefficient estimation, that is:

W =R LB .1
-n XX -n
where: fn is a vector cross-correlation

estimate;_for instance, an instantaneous one:
P = . 3.2
B, = y(n).X (3.2

but it is clear that this methed doesan't make
enough use of the past information. Among many
alternatives, a possible one could be the
following smoothed version:

AP SERTC B W (3.3)
where ¢ is a constant such that 0<a{l. However,
in aetual .situations, the evaluation of the
expressions will be made with finite
arithmetics and between them, basically, in
fixed point. On the other hand, the election of
parameter ¢ is a difficult issue because 1t
will affect stromgly to the convergence speed
and it is not clear.

Thus, even 4in this case, it seems to be
reasonable the election of adaptive expressions
based on the gradient of the mean square error.

Under the conditions of the problem, our
proposal for the gradient estimate is:

Y =R H y(m).X (3.4)
instead of the reported by Widrow and Grifflths
in other contexts. If the prior knowledge of
RXx is not complete, an adaptive actualitation
cotild be made by the successfully employed
expression:

R () = -®)R  (-148% *x T 0ga1 (3.5)

Where: * denotes complex conjugate, expression
that has been verified, recently, into the
Window Methods of Spectral Estimation fS], ]6],
giving a good physical sense to its ordinary
use.

At this moment, it is necessary to describe
the 'step size' (M) actualitation in each
iteration. As it is well known, the election of
this parameter will affect to the convergence
time, the stability and many other parameters
of the algorithm. In this sense, for the L.M.S.
method, it is shown that a sufficient condition
to guarantee stability is that O0<HLL/ A

where A is the maximum eigenvalue of R max
max XX

Another strategy is the so-named Accelerated
Gradient (A.G.) appreachs. In this way, Powell
argued that a suitable election of ;1 is such
that the M.S5.E. (2.3) is minimized in each
iteration. The obtained expression is:
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LA
U = ——mm———e= (3'6)
-0 XX

Thus, the optimum is just the invers of the
Raylelgh quotient, which it 1s ensured to be
bounded by the inverses of the maximum and
minimim eigenvalues of Rxx:

1 1
-——= < un< - (3.7}
Rmax Amin
Our proposal differs in the minimization
objective. Assuming Rxx exactly known, we
consider that the best éfror te be minimized is
the M.S.E. associated to the weights, given by:

= BCQw, O R) (3.8)

For this new objective, the optimum 'step size'
(un') is found to be:

T ~1
R
[ gﬂ.-§§-;¥5 (3.9)
Hn T, '
V.Y
~n ‘n

relation that cam be expressed in many other
equivalent forms through the use of the various
gradient estimates.

The analysis of the new quotient (3.9) shows
that its variation ramge is bounded by the same
values (3.7) that for Powell's relation (3.6).
As 1t is seen, this optimum needs the knowledge
of the inverse of R__, and thus, it will be a
usefull relation 6§iy in the problem under
study.

The gradient in (3.9) can be evaluated by the
proposed relation (3.4), but for the sake of
simplicity, other possibility is the use of the
Wiener's gradient, leading to an equivalent
approach such that:

yv=R_EXX "o (3.10)

that represent the most simplified estimate.

The comparison between the Powell's step size
(3.6} and the new quotient suggests the
following natural generalitation:

p& o2 (3.11)

This complete set of possible values are shown
to satisfy the bound conditions (3.7) for each
K, too, and particularly leads to (3.6) and
(3.9) for K=0 and K=-1, respectively.

Again for (3.11) any approach could be adopted
for the gradient, suplying different estimates
of (3.11) like in (3.10).

Under our approach, the gradient mnoise,
coefflicients error, missadjustment error and
convergence rate have shown a better
performance with respect other algorithms.
Besides, the A.G. propossal presents the same
computation cost as for Powell's one, and the
same structure.

Finally, a complete study of (3.11) for

different K-values will be presented in further
papers.,

4. ALGORITHMS AND IMPLEMENTATIONS

As it has been described, the main proposed
scheme consists in the iterative evaluation of
(2.6), where the gradient is given by (3.4) and
the step size by (3.9).

It is known that the A.G. Methods present a
hard computation effort, nevertheless, using
VLSI techniques, it is not a trouble. Keeping
it in mind, our scheme c¢an be modified to
achleve maximim simplicity. For intamce, the
gradient (3.4) could be substituted by the
simpler one given by Widrow, leading to
relation (3.10). The analysis of this way shows
that many systolic realizations can be adopted,
and among them, the CORDIC one seems to be the
best under low sampling rate assumption.

One possible implementation is shown in fig, 2,
making use of only twe of the six basic CORDIC
elements. Note in fig. 2, that normalizations
needed to ensure convergence in CORDIC elements
can be applied jointly te the reference signal
y{(n). So, it is just needed a constant factor,
and it ylelds a very compact realization.

The network to evaluate the value (3.10),
that 1s not in fig. 2, will only requiere a
normalized matrix-vecter and vector-vector
product and no-particular comment will be
necessary.

5. CONCLUSIONS

This paper has considered the use of prior

-information into adaptive algorithms. It has

shown that the complete knowledge of the input
data autocorrelation matrix or power spectrum
density function can be used to improve the
gradient estimate and defining a better
criterion that Powells' to optimize the step
size in each iteration. As a consecuence of the
found relation a generalization of the step
size computation has been presented. The
proposal has shown an improvement in the main
parameters of the adaptive system.
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Figure 2. Systolic Implementation,
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