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ABSTRACT. This work deals with the use of previous or colateral information to improve the 
behaviour of adaptive algorithms. The study is made on gradient-baseq methods due te the 
relatively simple and good performances that they use to exhibit. 

This paper shows that the complete knowledge of the data at the input of the adaptive fil­
ter (and in consequence of its autocorrelation matrix and its inverse) can be used to mo­
dify the classic L.M.S. algorithm leading to new expressions for the gradient and for the 
optimum 1 step size 1

, alternative, in sorne cases, to the Powell expression. 

Finally, the description is completed with the comparison between the variation ranges and 
VLSI implementation cost for this two optimum 1 step size 1 values anda natural generaliza­
tion set of parameter is obtained. 

l. INTRODUCTION 

For the sake of simplicity, let us focuss the 
classic problem of Wiener filtering. Two 
possible alternatives can be adopted. The first 
one is the direct use of the optimum Wiener 
equation and the other is that an adaptive 
approach could be better under actual 
situations, where finite arithmetics and 
no-stationary conditions are used to be 
imposed. 

If we adopt the second possibili ty, the 
question is how to use all the previous or 
colateral information available in a given 
adaptive algorithm. 

From our point of view, there would be two 
possible Choices to reflect these additional 
information in an adaptive squeme with a 
quadratic objective. They are the following: 

a) To use it to estimate better the parameters 
or associated functions involved in the 
adaptive algorithm. 

b) To include the colateral information as 
constrains or just in the minimization process. 

This work is driven in both senses. The first 
one is the most obvious and will be used only 
to improve the gradient estimate. 

On the other hand, the second ene is not so 
direct as the previous, and, in general, i t 
will try to modify the whole structure into the 
adaptive scheme to satisfy the constrains or 
the pursued error minimization criterion. 
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Thus, althrough it seems an atractive 
possibility, the designer will have to pay 
attention because, as a matter of fact, often 
the structure obtained will need a very 
intensive compu tation. In our case, only an 
optimum value for the step size will be 
searched, keeping the usual adaptive scheme. 

2. REVIEW OF THE MINIMUM M.S.E. LINEAR 
FILTERING: 111,121,131, 141, 

Let's consider the general scheme given in the 
figure l. The objective is to minimize the mean 
square error (m.s.e.) between a reference 
signa! y(n) and an estímate of this signa! at 
the output of a Q arder F.I.R. filter defined 
by the coefficient vector W. Thus, given an 
input data signa! x(n), we dispose of a data 
vector X and the desired estimation: ..., 

y(n) = x T.w = wT.x (2.1) 
-n - - -n 

where: 

X T = (x(n),x(n-l), ••• ,x(n-Q+l) ..., 
T 
~ = (w(O),w(1), ••• ,w(Q-1)) 

The weight vector will be chosen so that the 
M.S.E. is minimum: 

2 ~ 2 T 2 
€ = E((y(n)-y(n)) )=E((y(n)-!. .~) ) (2,2) 

and developing the expression: 

2 
€ E(y2(n))-E(y(n)X T)W­__, -

- WTE(y(n)X )+WTR W 
- -n-xx-

(2. 3) 










