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Abstract

The objective of my thesis work is to model laminar diffusion flame using simple chemical
reacting system (SCRS) combustion model. This combustion model assumes that the
chemical reactions are infinitely fast and take place via a global one-step without
intermediate reactions. The detailed kinetics is considered unimportant as this model is
concerned with the global nature of the combustion process and with the final major
species concentration. The model is developed using C++ computer language. The
algorithm used for solving Navier-stokes and mixture fraction equations is the fractional
step method for compressible flow with low Mach number. Low Mach number
approximation is used in simplifying the flow equations as flow speed is very low
compared to speed of sound. By modelling diffusion flame through an SCRS, flame
temperature and species concentration are retrieved from mixture fraction field.

The thesis is divided into six chapters. Chapter 1 is an introductory chapter about
objective, scope and justification of the work. In Chapter 2 the conservation laws of fluid
motion are explained. In chapter 3, the discretization of the computational domain and
discretization of different terms in the transport equations are explained. The fractional
step method algorithm for incompressible flow and compressible flow with low Mach
number are illustrated in chapter 4.In chapter 5, the code is verified for incompressible
flow by the method of manufactured solution (MMS) and by comparing code results with
benchmark solutions of driven cavity and differentially heated cavity for incompressible
flow, while for compressible flow code result is compared with benchmark solution of
differentially heated cavity with high temperature difference. In chapter 6 SCRS model is
discussed and the simulation results for diluted methane diffusion flame are presented.

The simulation results for the laminar diffusion flame show that the flame reaches its
maximum temperature at the stoichiometric mixture fraction contour line where oxygen
and fuel are completely consumed. The flame length is changed by altering fuel or
oxidant streams velocities. Also changing the percentage of nitrogen gas in the fuel and
oxidant stream affect both flame length and flame maximum temperature.
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Ch. 1| Introduction

1 Introduction

1.1 Objective

The object of my work is to study the modelling of diffusion laminar flames using simple
chemical reacting system (SCRS) combustion model. This model assumes that the
chemical reactions are infinitely fast and take place in a single step process neglecting
the detailed kinetics involved in the combustion process and concerned only with the
global nature of the combustion process and the final major species concentrations. In
this model low Mach number approximation is used in Navier stokes and mixture faction
eguations as flow velocity is very low compared to speed of sound. The aim of modelling
laminar flame is to calculate temperature, mixture fraction and species mass fraction
distribution and to study the influence of some parameters like fuel jet velocity on flame
length.

1.2 Justification

Computational fluid dynamics (CFD) is nowadays used for simulating combustion
process which is important for many industries like automotive, aerospace, chemical
process, energy and home appliances. CFD tool is used for modelling combustion
process using basic transport equation for fluid flow and heat transfer with additional
models for combustion chemistry. Modelling combustion process using CFD help in
optimizing combustion process and studying different parameters influence on
combustion. It also reduces cost and save time compared to experimental testing that
consumes a lot of money and time as it requires expensive temperature resistant
measurement probes, laser measurements or atomization particle analysis. It can
provide detailed insights for different scenarios that are difficult to be obtained through
experimental testing and measurement.

1.3 Scope

The scope of the work is modelling laminar diffusion flame using simple chemical
reacting system model that assumes that the chemical reaction is fast and takes place in
one step concerned only with the final major species concentration. The flow is
considered compressible flowing with low speed compared to the speed of sound
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therefore low Mach number approximation is used in simplifying Navier Stokes and
Energy transport equations. The specific heat (Cp) is assumed to be constant in the
simulation. The computational domain is 2D due to geometric configuration of the case of
study. The code is verified for incompressible flow cases using method of manufactured
solutions (MMS) and by analysing two benchmark cases: driven cavity and differentially
heated thermal cavity. After that, the code is verified for compressible flow case by
comparing its results with benchmark solution for differentially heated thermal cavity with
large temperature difference. The unsteady numerical simulations are performed with a
finite volume code based on the fractional step method algorithm in a staggered grid
system.
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Ch. 2 | Governing equations

2 Governing equations

2.1 Introduction

In this chapter we will develop the mathematical formulation for general purpose model of
fluid flow and heat transfer based on conservation of mass, momentum and energy. The
governing equations of fluid flow represent mathematical statements of the conservation
laws of physics:

e The mass of a fluid is conserved as mass can neither be created nor destroyed.

e The rate of change of momentum equals the sum of the forces on a fluid particle
(Newton’s second law)

e The rate of change of energy is equal to the sum of the rate of heat addition to
and the rate of work done on a fluid particle (first law of thermodynamics)

2.2 Hypotheses

Newtonian fluid
compressible flow

single phase flow
negligible radiation energy
low Mach number flow

a s w N e

2.3 Conservation of mass equation

For the derivation of mass conservation equation, we should first write down mass
balance for a fluid element.

Rate of increase of mass = Net influx of mass

The conservation of mass can be written in integral form, considering density (p) as
function of space coordinates and time (p = p(x, vy, z, t)) and velocity vector of the flow

LEG ?c.-
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(V) function of space coordinates and time and has three components u, v and w
aligned to the coordinate axes X, y and z respectively. The fluid element has volume (dV)
and elemental surface area (ds).

0

= 2.
dvat(pdV)+LV.(pU)dV 0 (2.1)

\’4

Using Gauss'’s theorem states that volume integral of the divergence of a vector field in
a region inside a volume, is equal to the surface integral of the outward flux normal to the
closed surface that bounds the volume. For a vector a, the Gauss theorem is given by,

j V.adef a.nds (2.2)
av ds

The volume integration can be converted to surface integration and the mass
conservation can be written as follows, where n is unit vector normal to surface.

0

(paV)+ | (pU).nds=0 (2.3)
av 0t ds

For incompressible flow, the density is considered constant (Z—’t’)=0, SO mass

conservation equation can be reduced to the following form

f Unds=0 (2.4)
ds

Mass conservation can be written in differential form for compressible and
incompressible flow as shown in equation (2.5) & (2.6) respectively.

dp _
StV =0 (2.5)

V.U=0 (2.6)

Luﬁ w
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2.4 Momentum equation

Newton’s second law states that the rate of change of momentum of a fluid particle
eqguals the sum of the forces on the particle:

Rate of increase in momentum=Net influx of momentum + body force + surface force

The surface forces include pressure force and viscous force, while body force includes
gravity force, centrifugal force and Coriolis force and electromagnetic force.

The momentum equation can be written as shown in the following equation

0
—f pUdv=-f pUU.nds-f Pn.ds+f r:ndS+f pgdVv (2.7)
ot gy ds ds ds av

Where,

U: Velocity vector

T : Viscous Stress tensor

g: Acceleration due to gravity

For Newtonian fluid, viscous stresses are linearly related to the rates of strain arising
from shear and dilatation and must be symmetric so that 7;; = 7;; .The viscous stress
tensor is shown in equation (2.8).

T=(AV.U)I +2uD (2.8)

Where,
A : Dilatational viscosity ((A =- 2/3 u) for gases)
I: Identity matrix

M : Dynamic viscosity

LEG ?c.-
Peqel
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D : Deformation tensor

The deformation tensor for Newtonian fluid are shown in the following equation

D=%(V.U+V.UT) (2.9)

The momentum equation in i - direction can be written as shown in equation (2.10)

d
—f p udV= -f py; (U.n)ds f P n; dS +f n; T; dS+f pgdv  (2.10)
ot Jay ds ds ds v

And the viscous stress can be written in the following form

R P e | 2.11)
Y Y ax] axi

For incompressible flow with constant viscosity, the momentum equation can be
simplified as shown in equation (2.13).In this equation, Boussinesq approximation is
used for simplifying the gravity force term, in which density is related to density at
reference temperature and thermal expansion coefficient as shown in equation (2.12).

p=po[1—PB, (T—Tyl (2.12)

Where,
po : Density at reference temperature

Bo : Thermal expansion coefficient at reference temperature

d
—f p uidV=-f y; (pU.n)ds f P n; dS +f uVu;.ndS f po Bogi(T-Ty) dV  (2.13)
0t Jay ds ds ds av

Momentum equation can be written in differential form for compressible and
incompressible flow as shown in equation (2.14) & (2.15).

Luﬁ w
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dpu;  Opuy; 0p+arij
ot dx; Ox; Ox;

+pgi (2.14)

p—= ——._7+ﬂAui_p0 Bogi(T —To) (2.15)

2.5 Conservation of energy

The energy equation is a mathematical statement which is based on the physical law that
states

Rate of change of energy in particle = Rate of energy received by heat and work
transfers by that particle.

Using Reynolds transport theorem we can put the energy conservation in integral form
as shown below

D 1
De . P [e T35 uiui] dv = f pgiuidv + f n; [-pu; + 5w — q;]dS
0
= f [pgiui + —(—pui + Tijjuj — ql)] av (216)
av 0x;
Where,

e : Internal energy
q; : Heat flux vector

From the integral energy equation we obtain the total energy equation in differential form
by the observation that the volume is arbitrary and thus that the integration itself has to
be zero as shown in equation (2.17)

D

P 9q; @
Pt

1
[e +5 uiui] =PIt Y T o T o

— () 2.17)

The mechanical energy equation is found by taking the dot product between the
momentum equation and u as shown below

Lﬁ'ﬁ ?c.-
Peqel
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th Zuiui =pgiu; “"axi Uj dx, .

The thermal energy equation can be obtained by subtracting mechanical energy equation
form total energy equation

De 8ui+ Ju; 0dq; 219
Pt~ Py, T T , (2.19)

Alternative form for writing thermal energy equation using enthalpy definition

h=e+p/p (2.20)

By taking derivative to the previous equation, we get the following equation

Dh De 1Dp p Dp

=4 - 2.21
Dt Dt+th p? Dt ( )

. D du;
From conservation of mass equatlon,D—‘t’ can be replaced by —pa—Zf , so we get the
i

following equation

De Dh 1Dp pauy;

—_— = — 2.22
Dt Dt pDt pdx; ( )

By substituting equation (2.22) into equation (2.19) , the thermal energy equation can be
written in the following form

Dh Dp Ju; 0q;

pE=E+TUa—xj—a—Xi (223)

The heat flux is related to the temperature gradients using Fourier’s law

Luﬁ w
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T
ai = —k=— (2.24)
L

Where, K is the thermal conductivity

Using Fourier’s law, the thermal energy can be written as shown in equation (2.25)

Dh Dp Juy;

Pt =De T ax] 8xl( (2.25)

axl

For flow with variable density and low Mach number, the thermal energy equation can be

modified to the following form neglecting viscous heating term rija—:‘f and ulg—p and
J Xi

assuming that total pressure will be equal thermodynamics part as hydrodynamic part (P)
is negligible, so that p can be replaced by P, ,which is the thermodynamic pressure that
is spatially uniform.

Dh dP,

Prr=—77 1

Dt dt axl( _) (2.26)

For incompressible flow, the thermal energy equation can be written as shown below
using equation (2.19) in which the viscous heating term TU% is neglected and p% is

J i
equal to zero.

De aql

2.27
P bt Dt axl ( )

As for incompressible flow e=cT, where c is the specific heat. The thermal energy
eguation for incompressible flow can be written as follow

DT aT 208
ST (')xl( Ax; (2.28)
9
an
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Yo



Ch. 2 | Governing equations

2.6 Differential and integral forms of the general transport equations

There are significant commonalities between different conservation equations, so a
general variable @ can be used for writing the different conservation equations in one
general form as shown below in which @ can represent any scalar quantity like T or u or
v
0
(p0) (2.29)

T + dlU(pU@) = dw(F gradQ)) + SQ)

This equation is called transport equation for property @, which includes different
transport process: the rate of change term and the convective term on the left hand side
and the diffusive term (I" = diffusion coefficient) and the source term respectively on the
right hand side. The equation can be also written in integral form as shown below

j d(p9)
14

5t dV+f div(pU®) dV =j div(I' grad®) dV+f Sp dV (2.30)
4 14 14

Using the Gauss divergence theorem, the integration over the volume can be rewritten
as integration over the entire bounding surface of the control volume

f d(p9)
14

y dV+j n.(pUQ®) dS :j n. (I’ grad®) dS+f Sp dV (2.31)
S S %4

The different values of property(®) , diffusion coefficient (I") and source term (Syz) for
various conservation equations are listed in Table 2.1, Where ¢ is thermal energy source

term
Conservation 0] r Sy
equation
Mass 1 0 0
Momentum - x direction u aP
for incompressible flow K  dx
Momentum - x direction dp 0 A divU du d / Ov
for compressible flow u H “ax T a( wi+u E) T3 (“ a)
10
an
gy
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Momentum -y direction op

for incompressible flow | Vv 1 Ty Po Bogi(T —To)
Momentum - y direction dp 0 1 divl ov d / ou
for compressible flow v Kol 7%y + ay ( U + ”@) e (“ @) t PGy
Thermal energy for k ®
incompressible flow T — .

(constant c,) “p P

Thermal energy for

compressible flow |k ¢ 1dp
(constant c, with low Cp G, C,dt

Mach no.)

Table 2.1: Parameter to be replaced in general transport equation to reproduce conservation
equations
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Ch. 3| Discretization of governing equation

3 Discretization of governing equation

3.1 Domain discretization

The process of domain discretization is the first step in finite volume analysis. In order to
solve physical problem numerically the computational domain has to be discretised into
elemental volumes. The network of discrete volume is called grid. The governing
equations are solved numerically over these control volumes to give a solution over the
domain. Computational grids are classified according to their type of construction into
structured and non-structured mesh.

3.1.1 Unstructured mesh

Unstructured meshes contain cells having triangle in 2D mesh or tetrahedral shape in
3D mesh as shown in (Figure 3.1). The number of corner nodal points surrounding each
cell is not necessarily constant. It is characterized by irregular connectivity which makes
it more suitable for complex geometries.
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Figure 3.1: unstructured mesh in 2 D (a) and 3D (b).[1]

3.1.2 Structured mesh

Structured mesh contains cells having either regular quadrilateral shape element with
four nodal corner points in 2D mesh or hexahedral shape with 8 nodal points in 3D mesh.
It is characterized by regular connectivity and its orthogonal mesh in Cartesian system.
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Ch. 3 | Discretization of governing equation

This means that it is more suitable for geometries with orthogonal shapes. It can be
uniform or non-uniform structured mesh. For uniform mesh cell spacing is equal in all
directions, while non-uniform mesh the spacing can take any values as shown in
Figure 3.2 (b).

Ax, < Mesh Ax;3Ax>Ax;

—— spacing \\\
_‘_‘_‘_ oo

A,"}'
——o—o
Grid point
L‘Lr_s/m{
(@) (b)

Figure 3.2: Types of structure mesh in 2D mesh:(a) uniform mesh,(b) non-uniform mesh[2]

3.1.2.1 Collocated grid system

In collocated grids, the velocities (u, v) and the pressure and other scalars are stored at
the at cell centre as shown in Figure 3.3. The volume fluxes are calculated at cell faces
by interpolating for cell cantered velocity to the faces and multiplying them by cell face
area. Collocated mesh has one major difficulty as cell face velocity are linearly
interpolated between neighbouring momentum cell velocities and pressure gradient
present in the momentum equation is represented by central differencing, so if the
pressure field has a checkboard pattern, it would be seen by momentum equation as
uniform field. One way to solve this problem is to use staggered mesh. It has some
advantages compared to staggered grid in which all variables are stored in the same
control volume so that convection coefficients in the discretised equations are the same
for all variables.

13

Lfi'q ?c.-
Peel



Ch. 3| Discretization of governing equation

Figure 3.3: collocated structured mesh[3]

3.1.2.2 Staggered grid mesh

On staggered grid the scalar variables (pressure, density, temperature etc.) are stored in
the cell centre of the control volumes, while velocity (u, v) are located at the cell faces as
shown in Figure 3.4 , this is different from collocated grid in which velocity was stored in
cell centre. The staggered grid is mainly used for structured meshes. The advantage of
staggered grid is avoiding odd-even coupling between pressure and velocity that occur in
collocated grid and leads to checkerboard pattern, while it disadvantage is that different
variable are stored at different places and this makes it difficult to work with different
control volume for different variable.

i
AV
P ) L P
W _._E‘ E

Figure 3.4: staggered structured grid[3]
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3.2 Discretization of the Transport Equation

In this section, different term of the general transport equation will be discretised. The
equation is written in the form of general transport equation over control volume v as
shown below

3(p®

f D 4y + f V.(oU®YAV = f varvea + | syav

174 at 1% — v T —— v —_—— (31)
Temporal convective term Dif fusion term source term

derivative

It can be seen from previous equation that general transport equation is second order as
the diffusion term includes as second order derivative of @ in space. To represent this
equation with acceptable accuracy, the different terms must be discretised with order
equal to or higher than the order of discretised equation.

As mentioned before that by using Gauss theorem, the volume integration of vector
divergence field for region inside volume is equal to surface integration of outward flux
normal to closed surface that surround the volume, so that general transport equation
can be modified to the following form

jv MdV+f n. (pU®)ds =j n. (I'V@)dS +f Sg dV (3.2)

ot
convection flux S Diffusion flux v

3.2.1 Approximation of Surface Integrals and Volume Integrals

In equation (3.2), there are a series of surface and volume integration need to be
calculated over the control volume. These integration need to be approximated to at least
second order accuracy to confirm same level of accuracy.

To calculate the surface integration for convective and diffusion flux term, we need the
value of the transported property @ on the faces of the control volume. This information is
not available as these variables are calculated at control volume centroid, so some
approximations need to be introduced:

1- ¢ Varies linearly over the face over each face of the control volume, so the
surface integration can be approximated in terms of variable values for @ at one
or more location on the cell face. The integral can be evaluated using different
rules (a) midpoint, (b) trapezoid, or (c) Simpson’s rule. By using midpoint rule
which is of second order accuracy, @ can be represented by its mean value at

15

Lﬁ'ﬁ ?c.-
Peqel
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face centroid, so the surface integral can be approximated as the product of the
mean value of @ over the surface and surface area.
2- Approximate the cell face values in terms of the CV central value.

Using these approximations and assumptions the surface integral for convection and
diffusion fluxes can be approximated as follows:

fs n.(pU@)dS = fos n.(pUQ); ds = z:fn.(pU_(D)f S¢= an.(pU(Z))f S¢ (3.3)

f n. (I V(D)dS:ZJ n.(l vq))fdszzfn.(m)fsfzzfn.(r vo):S; (3.4

To approximate volume integrals in equation (3.2), similar approximation used in surface
integral is utilised. Sy varies linearly over the control volume and Sz can be represented
by mean value at control volume centroid S,, using midpoint rule.

f SpdV =S,V =5,V (3.5)
%4

Introducing equation (3.3) , (3.4) & (3.5) into equation (3.2), we get the following equation

9
=-POV + an.(puo))f S = an.(r VO S +S,V (3.6)

3.2.2 Convective Term Spatial Discretization

The convective term in equation (3.1) is discretised using equation (3.3)
j V. (pU®)dV = an.(puc))f S,
v

= Zfﬂ-(PU) 95 St (3.7)

Where, F in equation (3.7) represents mass flux through control volume faces

F=n.(pU) s S (3.8)
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Ch. 3 | Discretization of governing equation

From the previous equation, it can be seen that values of F depend on face values of p
and U.For momentum equation in x-direction, the mass flux terms across different control
volume faces are calculated as shown below

Fy, = (pv) 444y + (pv)pAgn (3.9)
F; = (pv) Ay + (pv)pAgy (3.10)
Uur +u
F, = pe% e (3.11)
Uy +u
F, = pw¥ ” (3.12)
U py
AEH
-— i
FA ————————— — UB
Aﬂﬂ":—" - -------- .? 1 E
- rw“ - = i EE - o=
Ly Up i i Ug
.
l‘L- — T ‘L*D
U

Figure 3.5: Mass fluxes across u control volume

The mass fluxes across v control volume are calculated in similar way like u control
volume shown above. For temperature control volume, the mass fluxes are calculated
using values of p, u and v already computed at the faces of the control volume.

While the face value of transported quantity (@) is calculated using convection
differencing scheme.

3.2.2.1 Convection Interpolation Schemes

The role of convection interpolation schemes is to determine the value of transported
quantity (@) at the face of the control volume, so that @; is determined using the values of
@ at neighbouring control volumes
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Ch. 3| Discretization of governing equation

Upwind Differencing (UD) scheme.

The face value is determined according to the direction of the flow as shown in
Figure 3.6.

F=0
F<O0

Dp
Dy

Q= (3.13)

The upwind scheme guarantees the Conservativeness, boundedness and
transportiveness as it account for the direction of the flow [4],but it has low
accuracy as it is a first order accurate based on backward differencing that leads to
introducing numerical diffusion error.

™~ 7 iy
(A | B | |
Dy @ Dy
[ ]
o o
F F
(,'I:? P {_.'I}J.l { l_-'l} o
* ]
t 8 b ]
P / P 7l N
'\ J "

Figure 3.6: upwind interpolation scheme A) F=0, B) F<O0 [5]

Central Differencing (CD) scheme

This scheme is also known as linear interpolation scheme in which the face centred
value of the transported quantity is calculated from simple weighted linear
interpolation between the values of the control volumes @p and @y as shown in

Figure 3.7.
Jron(=i)

In case of using uniform mesh, the face is located at the midway between two

XN Xf — Xp

0r =0 (3.14)

Xy — Xp Xy — Xp

neighbouring control volumes of node P and N, so the value at face can be
calculated using arithmetic average.
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 0p+ 0y

. (3.15)

Df

d

[
P f N

Figure 3.7: Central Differencing (CD) scheme [5]

The central scheme satisfies conservativeness and it is a second order accuracy,
but it does not possess the transportiveness property at high peclet number
because central scheme does not recognize the direction of the flow or the strength
of the convection relative to diffusion. Also the boundedness property is not
guaranteed at high peclet number which might cause non-physical oscillation in the
solution.

e QUICK scheme

QUICK stands for Quadratic Upwind Interpolation for Convective Kinetics, which is
a quadratic curve fitting using two nodes upstream (U,C) and one node
downstream (D) in order to calculate the transported quantity (@) at face center as
shown in Figure 3.8.The formula of quick scheme is shown below using the
notation of Darwish [6]

M 0, -%.) (3.16)

Where, X and @ are the normalized distance and transported property respectively
given by equation (2.15) & (3.18)

X — Xy

R (3.17)
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Ch. 3| Discretization of governing equation

— 0-0y
=— A
? oy (3.18)

b -

o

L 2

velocity direction

Figure 3.8: quick scheme

This scheme is third order accuracy, but it may leads to stability problems in
regions with strong gradients, overshoot and undershoot.

e Smart scheme

Smart stands for Sharp and Monotonic Algorithm for Realistic Transport, this
scheme employ a composite approach as it combined a high resolution schemes
with low order scheme. This scheme is bounded and prevents the spatial
oscillation while maintain a high order of accuracy [7],but its disadvantage is that
it requires more computational time compared to other conventional schemes.
The accuracy of smart scheme is between second and fourth order. The formula
is shown below
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w0-x) o L 050=3
Xe(Xr —x.) xr(xr—1 X 1+x — X)X
_ f(f_c)+_f(_f ) TR CS( r e)Xc
0r=9 1-% X.(x.— 1) ?£+_ % (3.19)
X — X)X
1 if Shtls C)C<®Cs1
Wi
\ D otherwise
3.2.3 Diffusion Term Spatial Discretization
The diffusion term in equation (3.1) is discretised using equation (3.4)
f V.(F V@)V = Z n.(I" V@); S
v f
- Zfz} n.(V0); S¢ (3.20)

The diffusion coefficient at the control volume faces (I} ) is calculated by taking harmonic
mean for diffusion coefficient values at control volume centre. The diffusion coefficient at
the east face is calculated in equation (3.21). (V@) is calculated at the face centre using
central differencing scheme. (V@), at the east face is calculated as shown in equation
(3.22)

roo_
L 321)
deg * dpe
®E - @p
(VO). X5 =X, (3.22)
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Figure 3.9: calculating diffusion term

3.2.4 Source Term Spatial Discretization

For discretizing the source term in momentum equation in X-direction shown in
Table 2.1.The source term is shown in integral form in equation (3.23)

dp 0 du d / ov
- _ - — )+ —(u— 3.23
L So AV f,, [ 0x * 0x (A divl + ax) * 6y<uax)] v ( )

By using Gauss theorem, equation (3.23) is modified to the following form

] du dav
f So dV:—f pnxds+f (AdlvU+,u—)nx ds+f p—n,ds (3.24)
v s s Ox s Ox

The term g—: at east and west surface and term % at north and south surface are

discretised using central differencing scheme

Ju Ug — Up
I . = T Ar (3.25)
Ju Uy — Uy
x . = Ax (3.26)
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dv Vg — Uy
x . = Thx, (3.27)
dv vp — V¢
Ix . = —Axu (3.28)

Where,
Ax: Distance between two consecutive control volume centres
Ax,: Distance between control volume faces

Se, Su, Sh, Ss : East, west, north and south faces of control volume

>
-

T
0
]
-~
s

<
a

<
o

Figure 3.10: u control volume

The source terms of momentum equation in y-direction is discretised by the same
method described above.

3.2.5 Temporal Discretization

The fractional step method will be used for solving the momentum and energy equations
and this method will be explained in detail in the following chapter. For carrying out the
time integration for these equations, a fully explicit time scheme is proposed. In order to
simplify the notation, momentum in x-direction, momentum in y-direction and thermal
energy equations can be rewritten in the following forms:
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ou JP
_ _9F 3.29
2 R(u) I (3.29)
W ey - (3.30)
Pac = "W Ty '
T
o _ 3.31
P R(T) (3.31)

Where, R(u) ,R(v) and R(T) stands for convection, diffusion and source terms in
momentum in Xx-direction, momentum in y-direction and thermal energy equations
respectively. These terms are listed in Table 2.1.

R(u) = =V.(pUu) — V. (uVu) + S, (3.32)
R(w) = =V.(pUv) — V. (uVv) + S, (3.33)
_ k 1 dp,

R(T) = =V.(pUT) — V. <aVT> + S+ T (3.34)

For the time derivative term, a central difference scheme is used. The time derivative
term of momentum equation in x-direction is shown in the following equation

1
out="+7 ptiyntl — pnyn (3.35)

~

P ot ~ At

A fully explicit second order Adams-Bashforth scheme is used for R(u)

R(u)'=""7 ~ ; R(u™) —% R(u™ 1) (3.36)

For the pressure gradient term, a first order backward Euler scheme is used, so the
momentum equation in x-direction can be written in the following form

n+1un+1 _ pnun 3 1 apn+1

P 3 ey Lo ay Y 3.37
i —ZR(u) ZR(u 1 - (3.37)

The same step can be done for temporal discretization of momentum equation in y-
direction and thermal energy equations as they can be written as shown in equation
(3.38) & (3.39) respectively.

n+1

p"tty

n+l _

At

Pn+1

nyn 3 1
pv — E R(v™) _E R(vn—l) _a_y (3.38)
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pn+1Tn+1 _ pnTn 3

1
— 2 R(T™) — = R(T" 1 3.39
v ZR(T) ZR(T ) (3.39)
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4 Fractional step method algorithm

4.1 Fractional step method for incompressible flow

The time integration of Navier-Stokes equation is carried out by the fractional step
method which is a projection method. The solution of Navier-stokes equation is carried
out in two steps. In the first step, an incomplete form of momentum equation that does
not include the pressure gradients term is integrated at each time step to yield an
approximate velocity field that is called predictor velocity. This predictor velocity is not
divergence free, then Poisson equation is solved using the predictor velocity and the
yield pressure field is used to correct the predictor velocity to produce divergence free
velocity field that satisfies the incompressibility constraint[8].

As mentioned before in the previous chapter in section (2.5) that a fully explicit time
integration scheme is used for the momentum equation.

U
p—; =R —VP (4.1)

After using a central differencing scheme for time derivative term (Z—'tj) and fully explicit

second order Adams-Bashforth scheme for R (u) and first order backward Euler scheme
for pressure gradient term, the momentum equation can be modified to the following
form:

pn+1 UTL+1 _ ann
At

3 1
=2 R(U™ =5 R@U"™) —vpri (4.2)

As the density is constant for incompressible flow, so equation (4.2) can be written in the
following form

At (3 1
yntl = yn + ?<§ R(U™) — 5 R(Un—1)> — ypntt (4.3)

Equation (4.3) can be modified to the following form using the predictor velocity vector
(Up).From this equation it can be seen that velocity field (UP) can be decomposed into

divergence free part (U™*1) and scalar part (p).This decomposition sometimes called
Helmholtz-Hodge theorem.

At
UP — UTl+1 + _vpn‘l'l (44)
p
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The Predictor velocity (U?) is that is given by the following equation
At (3 1
UP =U"+ ?(E R(U™) — 5 R(U”—1)> (4.5)

Poisson equation for determining the pressure is derived from velocity decomposition
equation (4.4) by applying divergence operator

At
V.UP = V.U 4V, (7 vpn+1) (4.6)

As V.U™1 =0 , the final form of Poisson equation for the pressure is shown in
equation(4.7)

p
AP = vy yP 4.7
At (4.7)

After solving Poisson equation, the pressure is used for correcting the predictor velocity
to get velocity at new time step

At
Untt =, - ;VP"“ (4.8)

4.1.1 Discretization of Poisson equation

Poisson equation can be written in integral form as shown in equation (4.9)

f AP gy = f L yuray (4.9)
; A:

By using Gauss divergence theorem, Poisson equation is modified to the following form

fVPf"Hds:f év.uf’fds (4.10)
S S

Poisson equation is discretised as shown in equation (4.11)

pEn+1 _ ppn+1 A ppn+1 _ an+1 M N pNn+1 _ ppn+1 a an+1 _ psn+1 M
dgp 81 dpw v dnp N dps ° (4 11)
= E [(pupA)e - (pupA)w + (pva)n - (pupA)s] '
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Poisson equation can be written in the following form

apppn+1 — aEpETl+1 + aWpWTl+1 + aNpNTl+1 + aSpSn+1 + bp (412)

Where, coefficients are determined from the following equations

Ae
agp = (4.13)
dgp
A
ay = —— (4.14)
dpw
A
ay = — (4.15)
dnp
_ 4 (4.16)
as = s .
ap =ag +ay +ay+ag (4.17)
1
by = == [(PuPA), = (puPA)y, + (pVPA), — (puPA),] (4.18)
Py
)
UP
t
Llp up
®e —9—> @ —eo— ©
Pw w P e P.
+ s
®
P.

[

Figure 4.1: Poisson equation discretization

After writing Poisson equation in the discretised form, a system of linear algebraic will
need to be solved. The complexity and size of the set of equations depend on the
problem dimensions and number of grid nodes and the way of discretising the equations.
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4.1.2 Solver

For solving set of algebraic equations two technique are used: direct and iterative
methods. lIterative methods are based on repeated application of relatively simple
algorithm after a number of repetitions convergences to exact solution is reached. The
number of operations to solve a system of N equations with N unknowns is of the order
of N per iteration. Iterative methods have the advantages of simplicity and easy to be
implemented. Examples of iterative methods are Jacobi and Gauss—Seidel point .One
other hand; in direct methods the number of operations is of N°. Examples of direct
methods are Cramer’s rule matrix inversion and Gaussian elimination.

Gauss-Seidel algorithm

Gauss-Seidel method is applied to any matrix with non-zero elements on the
diagonals. Convergence is guaranteed if one of these criteria is achieved[9], the
first one is that the matrix should be diagonally dominant. Diagonally dominant
means that coefficient on the diagonal for every row in the matrix must be equal to
or larger than the sum of the other coefficient in the row and at least one row with a
diagonal coefficient greater than the sum of other coefficients. The second criteria
is that the matrix must be symmetric and positive definite. The solution procedures
start by assuming initial guess solution, then the new values for @ are calculated
from equation (4.19) using values calculated at current iteration and values stored
form previous iteration. After that the approximate relative error is calculated using
equation (4.20) and checked with the pre-specified tolerance. If the error is less
than pre-specified tolerance, iterative process is stopped if not the solution at the
current iteration is used as initial guess for the next iteration and iterative process is
continued until convergence is reached.

apQ)p = aE®E + awq)w + aNQ)N + asws + bp (419)

\/Z(@pk _ wpk—l)z
E=

(4.20)
k_
(@, H?
Where,
K: current iteration
K-1: previous iteration
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Tri-diagonal matrix algorithm

It is also known as Thomas algorithm as it was developed by Thomas (1949)[4].It is
a simplified form of Gaussian elimination that can be used for solving tri-diagonal
system of equation. The TDMA is considered direct method for one dimensional
matrix, but applied iteratively in a line by line for solving multi-dimensional matrix.
Its advantages are computationally inexpensive and a minimum amount of storage
is required.

Consider a system of equations has a tri-diagonal form as shown below

1 —a; O 0 0 0 0 1r 91 1 €1

-5, D, —a, O 0 0 0 D, C1
0 —-f3 D3 —-az; O 0 0 D 1
0 0 =B, D, -—a, 0 0 G, |=| Q1 (4.21)
0 0 0 0 —fn D, —a, |l 0, Cn

L0 0 0 0 0 —Bn+1 Dpyadl@pyqil  Honta-

In the above set of equations @, and @,,; are known boundary values, so
equations can be written in general form

—Bj®j-1 + Dj0j—040;41 = ¢ (4.22)

Using forward elimination, equation (4.22) can be modified to the following form

Q)] = Aj®]'+1 + Cj’ (423)
Where,
Aj = & 4.24
7 D= BiAj (#.29
Ci_ ! + c;
c.' = u (4.25)

After getting the values of A;and ¢;’ for all unknown @ using forward elimination
from j=2 to j=n-1, backward substitution is used. As the value of 0
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is known at boundary location (n + 1), so the value of @; can be obtained in
reverse order (0,,, D1, Dp—2y-----.. , @) using equation (4.23).

TDMA can be applied iteratively to solve system of equations for two-dimensional
problems. The general form of system of equation in 2-dimensional system is
shown in equation

ap®P = aEQ)E + aw®w + aN®N + asws + bp (426)

If TDMA is used for solving (n-s) lines as shown in Figure 3.1 , equation (4.26)
can be written in the following form:

_asws + aPQ)P - aNQ)N = aEQ)E + an)W + bp (427)

Comparing equation (4.27) to equation (4.22), we can deduce the following

relations
Bj = as (4.28)
D; = a, (4.29)
o = ay (4.30)
¢ = agPg + ay Py + by, (4.31)

The right hand side of equation (4.27) is assumed to be temporary known, so that
equation along n-s line can be solved for j =2, 3... n as shown in Figure 4.2.After
that calculation is moved to the next n-s line. The sequence in which n-s lines are
calculated is called swept direction. If the swept direction is from west to east the
values of @,, are known from previous line calculations, while the values of @
are unknown so they are assumed equal to their values at previous iteration. This
makes solution process iterative and this process is repeated until convergence is
reached.
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® Points to calculate
values values

Figure 4.2: using TDMA for solving n-s lines (line by line)

4.1.3 Boundary Conditions and Initial Conditions

Each control volume provides one algebraic equation. Volume integrals are calculated in
the same manner for all interior control volumes, but fluxes through control volume face
coincident with problem domain boundary need special treatment. These fluxes must be
known or expressed as function of interior control volume values. Since these nodes are
located on the domain boundary and no nodes located outside the boundary, their values
can be only calculated based on one-side differences (forward or backward differences)
or extrapolations.

Common types of boundary conditions are constant gradient, fixed value and symmetry
boundary condition.

e Constant gradient boundary conditions, this condition is also known as
Neumann boundary condition, where the gradient of the variable in direction
normal to domain boundary is equal constant.

9 _ tant 4.32
- constan (4.32)
Where,
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n: Normal direction

This condition is implemented for Poisson equation by setting the equation
coefficient as shown below for north boundary condition with zero pressure
gradient as an example.

aE:0
aW=0
aP:].
(4.33)
ay =20
as =1
b, =0

For velocity boundary condition, zero gradient boundary condition is implemented
as shown below for north boundary as an example

Up = uS (434)

e Fixed value boundary condition, that is also known as Dirichlet, which is
implemented by setting the value of variable of the nodes at domain boundary to
fixed value.

@ = constant (4.35)

This condition is implemented for Poisson equation by setting all equation as
shown below

aE:O
ay =0
ap=1
(4.36)
ay =0
as =1

bp = constant

While, for velocity equation, it is implement by setting velocity value to fixed value
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u = constant (4.37)

Symmetry boundary condition, which treats the variables as if the boundary is
a mirror plane. This condition sets the component of the variables normal to
symmetry plane to zero; while parallel components and scalar quantity are
calculated by setting their gradient in direction normal to the plane to zero. An
example of symmetry boundary condition if it is applied on the west boundary is
shown below

u=20 (4.38)
Jv
= 4.39
dx 0 ( )
9 _, (4.40)
0x

4.1.4 Determination of At

As explicit temporal scheme is used in the fractional step method, so some time
restrictions on the time step will be introduce to guarantee solution stability and obtain
converged solution. Courant-Friedrichs-Lewy Condition for the numerical stability of
difference schemes is used for determining the time step which states that for given a
space discretization, a time step bigger than some computable quantity should not be
taken, so that time step must be kept small to allow information to have sufficient time to
travel through space discretization[10] and it is mathematically expressed as shown:

|l
At | — <C .
<AXi o — conv (4 41)
r
p
At Axiz < Cyise (4.42)
max

Where, the bounding values C.,,,, and C,;s. must be smaller than unity. In our case, we
use values recommended by [11] using values of C,,,, = 0.35 and Cy;5c = 0.2.
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4.1.5 Algorithm flow chart

In the previous sections, we have discussed different procedures of fractional step
method for incompressible flow. Now we will show how they work together as one unit as
shown below.

Input numerical data
e Domain dimensions (L ,W)
¢ Number of control volumes
(N*M)
e Accenptable error (¢€)

v

Input physical data
e Density, viscosity, specific heat
e Simulation time

v

Mesh creation

v

Initial conditions

e set initial values for u®,\°
e setinitial value for p°

!

Calculate initial time step At

!

Calculate R (u), R (v),and R (T) at t "*
using convective and diffusive terms

'

Save R (u), R(v),and R (T) att"*
un—l =u"

pn—1 = pn

35

LS
Frael



Ch. 4 | Fractional step method algorithm

Calculate R (u), R(v),and R(T) att"
using convective and diffusive terms

!

Calculate predictor velocity

=+ (5 RGN 5 REY)
Up =1u (3 u 5 R(u

= 0"+ (5 RGN 5 RETY)
Vp =V (3 v 5 RO

Calculate Poisson equation
coefficient

ag,aw,an, as, bp

v

Solve Poisson equation using

TDMA iterative solver

n+1

appp™tt = agpg™t + awpw ™ + aypy™ !t + asps™t + by,

Y

Calculate velocity at t

n+l

p Ox

n+1

u =up+

Ata n+1
Vp +— P

p Oy
y

Calculate Temperature at t

n+l _

14

n+l

At (3 1
T =Tn +—(— R(T™) — = R(Tn—l))
p\2 2
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g

Calculate At

t=t+ At
u = ynt?
p" = pntl
T" = Tn+1

Check for steady state

PN T
i 1 = VEET
V2@n)?

I ]
VZ(™)?

Z(Tn+1 — Tn)z
2(T™)?

diff 3 =

Steady state loop break

Max (diff 1, diff 2, diff 3) <e

Final calculations

Calculate streamlines. nusselt number. etc.

!

Save result

|

Exit
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4.2 Fractional step method for compressible flow with low Mach number

Fractional step for incompressible flow can be extended using Adams-Bashforth and
Crank-Nicolson time integration schemes to simulate compressible flow with low Mach
number and high density variations[12, 13].In this case Bossinesq approximation that
neglect density variation cannot be used in describing fluxes with high density variation.
In low Mach number Navier-stokes equation the velocity divergence is not zero and
acoustic waves are neglected and high order terms that depend on Mach number are
removed.The pressure is split into dynamic pressure and thermodynamic pressure. The
thermodynamic pressure is used to calculate the density using ideal gas state law.

4.2.1 Numerical algorithm

The fractional step method for compressible flow with low Mach number is done in
predictor-corrector sub-steps. In the predictor step a second order Adams-Bashforth time
integration scheme is used to calculate the predicted scalar fields and predictor velocity
is calculated after correcting the pseudo velocity in the pressure correction step to satisfy
the continuity equation. While in the corrector step a Crank-Nicolson time integration
scheme is used to calculate scalar field at the new time step and velocity is calculated
after the pressure correction step. In both steps pressure correction requires solving
Poisson equation using TDMA solver.

The algorithm scheme will be discussed in the following sub sections and it will be
divided into two parts: predictor step and corrector step. Before discussing the algorithm,
we will summarize flow equations which are continuity, Navier-Stokes and energy
equation shown in equation (4.43) , (4.44) & (4.45).

dp dpy;
E + a—xJ =0 (4.43)
apui apuiuj ap aTl'j
ot~ ox ox  ox P9 (#.49
oh oh dp, 9q;
pa— —puja—xj-l'E—a—xj (445)
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4.2.1.1 Predictor

1. Predicted scalar fields are calculated using second order Adams-Bashforth time
integration scheme, so that Predicted enthalpy is calculated by applying Adams-
Bashforth time integration scheme on energy transport equation as shown in
eqguation (4.46) .This scheme is fully explicit time scheme that depend on scalar
fields and density at current time step (t ") and previous time step (t "*%).

™ 1/ ok
— — p —
2 ot

2. The temperature at each control volume can be calculated using equation of the
enthalpy of non-reacting flows which is equal to the sensible enthalpy.

n

h*—h™ 3 < 0h
p _

n-1
_3 (ol 4.46
ac 2 \P ot ) (4.48)

T
h= f Cp dT (4.47)

To

3. Evaluate thermodynamic pressure which is constant and equal to ambient
pressure for open system but for closed system, the pressure at given time is
calculated using the total mass in the enclosure and temperature field.

Po 1
M, =P = 4.48
°T Ry Tdv (449
M, R;
Po=—7 (4.49)
% 7

Where,

Po: Thermodynamic pressure
M,: Total mass in the closure
R; : Universal gas constant

4. Calculate predicted density from equation of state as shown in equation

pr=—r (4.50)

5. The intermediate velocity field #@; that is calculated by integrating pressure-split
momentum equation.
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o, — p"u;™ 3 1
# = ERi” — ERi” 1 (4.51)

Where,

Opuiuj 6p aTij
Rj=——>~t_— : .

6. The predicted hydrodynamic pressure p* is determined by solving Poisson
equation

Vip = V. (0" ) ~ V. (o', )] (4.53)

Where, V. ( p*u;*) can be replaced by —Z—‘t)| from continuity equation

*

V.(pu) = _Z_ft’ (4.54)
and % is given by second order discretization
dp" _ 1 n oy onet
ot T 2ac P AP (4.55)

7. Finally , the predicted velocity field u;* is determined using the projection step

prut — pry dp*
R —————— e —— 4-56
At c')xl- ( )

4.2.1.2 Corrector

1. The temporal derivative of scalar fields at new time step are calculated based on
predicted values and values at old time step (t "). Enthalpy at the new time step
is calculated using second order Crank-Nicolson time integration scheme.

p (4.57)

A Y L *6h|**
A 2\ B¢ P 5t

Where, time derivative of predicted enthalpy %| is calculated from equation

(4.45) using predicted values.

2. Calculate thermodynamic pressure p, if it is not constant from equation (4.49).
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3. evaluate gas density at the new tine step using ideal gas law
pP==-= (4.58)

4. Determine second intermediate velocity u;" from pressure split momentum
equation.
pn+1ui, _ pnuin 3 1

R L (@59

5. the pressure at the new time step is calculated from Poisson equation

1
VZpntl = N [V.(o™* ;") = V. (p" 1y )] (4.60)

n+1
Where, V. (p™*1u;"*1) can be replaced by —% from continuity equation

ap n+1
V. (p"* iy ") = —5| (4.61)
T . o
and T is given by second order discretization
ap n+1
il = — (3p"+1l _ 4" n-1 (4.62)
PR 5 ag P p"+p" )
6. finally , calculate the velocity at the new time step
n+1,, n+l _ n+l,, ./ opntl
p U L S (4.63)
At c')xl-
4.2.2 Algorithm flow chart
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Input numerical data
e Domain dimensions (L ,W)
¢ Number of control volumes
(N*M)
e Acceptable error (¢)

v

Input physical data

e Density, viscosity, specific heat
e Simulation time

v

Mesh creation

v

Initial conditions

e set initial values for u°,\°
e set initial value for p°,u,p

|

Calculate initial time step At

!

Calculate R (u), R (v), and % att"t

using convective and diffusive terms

v

Save R (u), R (v), and % att"?

v

Calculate R (u), R (v), and % att"

using convective and diffusive terms

\

Save R (u), R (v), and % att"”
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y

Calculate predicted enthalpy h’

Jhe—h" 3 om™\ 1( . on"T*
__p —_—
2 ot

p

— n___
T
Calculate predicted temperature T’

At 2
T

h: Cp dT
To

v

Calculate predicted thermodynamic
pressure p,

v

Calculate predicted density p’,
predicted viscosity u* and predicted
thermal conductivity K*

!

Calculate intermediate velocity u;
M = ER." _ER."—l
At 2 2

v

Calculate Poisson equation coefficient
ag,aw,ay, as, bp

!

Solve Poisson equation using
TDMA iterative solver to get predicted dynamics
pressure p*

ayp,” = agpg” + awpw” + aypy” + asps* + b,”

v

Calculate predicted velocity u;*
Pt = p i _ oy’

At axi
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!

oh|** . ,
Calculate E| using predicted values

'

Calculate enthalpy h™*

at new time step

R — g 1( O 6h|**)
p —_—

ar o 2\P al TP e
\

Calculate temperature at new time step T "**

v

Calculate thermodynamic pressure p,

v

Calculate density, viscosity and thermal
conductivity at new time step

|

Calculate second intermediate velocity u;’

n+1uil

p —p " 3 1

At 2

Calculate Poisson equation coefficient
aElanaNl aS1 bP

v

Solve Poisson equation using
TDMA iterative solver to get dynamics pressure p "™

n+1 _ n+1 n+1 n+1 n+1 n+1
ApPp =agpg"" +awpw" +aypy™ T+ asps"T + by
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l

Calculate At
t=t+ A4t
Save older values
n—-1

u =u"

p~1 = pn

(Dn—l =@"
Save old values

ut = yn1
p" = pn1

Q)n — Q)n—l

Calculate velocity at new time step u;"*1!

pn+1uin+1 _ Pn+1ui’ _ apn+1
At - Bxi
Check for steady state
R a0
i _ve: T
VE@™)?
) Z(vn+1 — vn)z
diff 2 = ——F—=—
l N CRE
) Z(Tn+1 — Tn)z
diff 3= —F7=—
l N GRE

Steady state loop break

Max (diff 1, diff 2, diff 3) <e

v

Final calculations
Calculate streamlines, nusselt number, etc.

v

Save result

v

Exit

45

r_ﬁﬁﬁ-‘-

FF < {,u



Ch. 5| Code verification

5 Code verification

In this chapter, we will verify and assesses our code to make sure that it is correctly
implemented. In verification process the accuracy of the solution provided by our
computational simulation code is compared with known solution or experimental data.
Verification is defined as the process of testing how far the model implementation
accurately represents the developer's conceptual description of the model and the
solution to the model. This process strategy is based on identification, quantification and
reduction of error in the model and its solution. To measure numerical solution error,

model solution should be compared to highly accurate analytical or numerical solution
(benchmark solution),so that verification can provides an evidence that the conceptual
model is correctly solved using discretized mathematical equations implemented in

simulation code.

CONCEPTUAL
MODEL

COMPUTATIONAL
MODEL

VERIFICATION

TEST

COMPUTATIONAL
SOLUTION

Comparison and
Test of Agreement

CORRECT ANSWER
PROVIDED BY HIGHLY
ACCURATE SOLUTIONS

= Analytical Solutions

+ Benchmark Ordinary
Differential Equation
Solutions

+ Benchmark Partial
Differential Equation
Solutions

Figure 5.1: Verification process[14]

The five major sources of errors in CFD are[14]:

computer round-off
computer programming errors

o s~ w DN PE

insufficient spatial discretization convergence
insufficient temporal discretization convergence
insufficient convergence of an iterative procedure

The first three errors are considered to be within the realm of CFD as the first two errors
depend mainly on the way of discretizing different terms in flow governing equations and

the third one depend on convergence criteria set for the iterative process. The fourth

46

i;""" w

Fecet



Ch. 5| Code verification

error source is of minor importance and rarely dealt within CFD. The fifth source of error
belongs to computer science field as it dealt with programming errors.

5.1 Incompressible flow

The incompressible flow program code will be firstly checked by method of manufactured
solutions (MMS) in the next subsection which is considered to be in the category of
analytical solution and after that results of code will be compared with benchmark
solution for driven cavity and thermal differential heated cauvity.

5.1.1 The Method of manufactured solutions (MMS)

The MMS method provides a straight forward technique for verifying code accuracy by
generating an analytical solution that can be compared with numerical solution. The idea
of MMS method is to simply manufacture an exact solution for a system of equations
without being concerned with physical realism as the verification is a purely mathematical
exercise[15].Suppose we need to solve a differential equation for quantity @ in the
following form:

toJ0]

After that a source term S is added to the previous equation

a9

And the source term is calculated for a manufactured solution @™ as shown in equation
(5.3)
apM

S = 7 _ F(@M) (53)

The source term is calculated analytically and added to equation need to be tested. After
that modified equation is solved numerically and compared to analytical solution and the
error is calculated for different mesh sizes.

To make the verification process using the MMS easier, it will be divided into three steps:
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1. The velocity component in x-direction u(x,y) is considered unknown while the rest
of functions and parameters are known and the numerical solution of u(x,y) is
compared with known analytical solution.

2. The velocity component in y-direction v(X,y) is considered unknown while the rest
of functions and parameters are known and the numerical solution of v(x,y) is
compared with known analytical solution.

3. The resolution of coupling of continuity and momentum equations is tested. In this
step, both u(x,y) and v(x,y) are assumed unknown and their numerical solutions
are compared to known analytical solutions.

The analytical known velocity and pressure fields that will be used in our testing our code
are listed below:

u(x,y) = x%y (5.4)
v(x,y) = —xy? (5.5)
P(x,y) =x3+y3 (5.6)

The velocity field (u,v) satisfies the continuity equation and the divergence of the velocity
vector is zero (div U=0) as the flow is incompressible.

1. First step:

The velocity component in x-direction is unknown and the other functions v(x,y)
and p(x,y) are known. The analytical velocity field u, is compared with the
numerical one u, A source term F, , should be added to the momentum
equation in x-direction as shown below and it is calculated using partial
derivatives that are substituted in the momentum equation. The expression is
shown in equation

6u+ ou 6p+ 62u+62u TR 5.7)
e 'Dvay_ ax  H\ax2 dy? *ota '
Fe u, = px3y? +3x% = 2uy (5.8)
The equations are solved considering:
e Density:;p = 1kg/m3
e viscosity:u = 0.5 kg/m?s
48
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2.

e domaini? =X=xY ,onL=15,L~1
e criteria to stop execution: |@" — @""1| < 10710

The numerical solution of u is calculated for different number of control volumes
and the results are compared to the analytical solution. The error is calculated as
shown below:

max(|ug — un|)

Ep(u) = (5.9)

max(|ug|)

The goal of this test is to check the coincidence between the order of the used
numerical scheme and the order of the calculated error convergence obtained
with our code. The results are shown in Table 2.1.

Number of Ey () lo Ep(u),—q
control volumes b 2\ Ep(w),
15,10 1.0306*107
30,20 5.4349*10°° 0.924
60,40 2.7487*10° 0.982
120,80 1.3865*10° 0.984
240,160 6.6385*10* 1.062

Table 5.1: Error convergence for u variable

second step

a similar procedures carried in the first step will be applied, but in this case
velocity component in y-direction v will be unknown and other functions u(x,y) and
p(x,y) will be known. The source term F, , ~that will be added to momentum

equation in y-direction is calculated:

6v+ v 6p+ 62v+62v R (5.10)
PUox pvc’)y_ dy K\ ox2 dy? YVa '
Ey v, = px?y® 4+ 3y? + 2ux (5.11)
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The numerical solution of velocity in y direction v, is compared to analytical
solution v, and the convergence error are calculated as shown in Table 5.2

Number of control E,(v) to Ep(V)p-1
volumes D 2\ Ep(v),
15,10 1.96*107°
30,20 8.62 *10°® 1.182234
60,40 4.08 *10°3 1.07876
120,80 1.99 *10° 1.038502
240,160 9.78 *10™ 1.023605

Table 5.2: Error convergence for v variable

3. Third step:

Once momentum equations in both x and y directions are correctly checked, the
resolution of the coupling needs to be verified. The same analytical velocity and
pressure are used and the same source term in equation (5.8) and (5.11) are
added to momentum equation in x and y direction respectively.

The unknown variable will be u(x,y),v(x,y) and p(x,y).The numerical solutions for
these variable u,, v, and p, are compared to the analytical solution.

The equations are solved considering:

e Density:p = 2 kg/m3

e viscosity:u = 0.8 kg/m?s

e domain?=X=*Y ,onL=1,L~15

e criteria to stop solver: € < 10~1° where € simulation result error

e criteria to stop iterative loop of Poisson equation: |p; — p;_1| < 107

The convergence error for u and v variable are listed in Table 5.3 and
convergence error for p is listed in Table 5.4.
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Number
cog'{rol Ep(u) log, <E115) ;?33:) Ep(v) log: <Ell:")5()1)21):1>
volumes
10,15 | 4.80*10° 6.64*10°
20,30 | 2.41*10° 0.9958 2.53*10° 1.387863
40,60 | 1.21*10° 0.9953 1.11*10° 1.183043
80,120 | 6.02*10™ 1.0045 5.23*10* 1.094013
160,240 | 3.01*10" 0.9983 2.53*10™ 1.046203
Table 5.3: Error convergence for u and v variable
Number of control volumes Ep(p) log, (M)
Ep(p)n
10,15 6.954*10°
20,30 3.521*10° 0.981896
40,60 1.767*10% 0.994408
80,120 8.958*10° 0.980314
160,240 4.564*10° 0.972842

Table 5.4: Error convergence for p variable

It can be concluded from the results of error convergence in Table 5.1, Table 5.2,
Table 5.3 and Table 5.4 that the logarithms of the quotients of consecutive error

ED(A)n—l
lO 2 ( ED(A)n

discretized using numerical schemes of different orders . The diffusive terms are
discretized using second order central differencing scheme, while the convective
terms are discretized according to the convective numerical scheme used. In this
case upwind scheme is used for discretizing convective terms which are of order
1.From the results, we can deduce that the error in the convective terms
predominate over the others as the logarithms of the quotients of consecutive error
is approaching 1 which is equal to the order of upwind scheme.

) is nearly equal to 1.The momentum and Poisson equation are
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5.1.2 Lid Driven cavity

The objective of comparing our results with the benchmark solution of the driven cavity
case is to ensure that continuity and Navier-Stokes equations for incompressible flow
have been modelled correctly in our code.

5.1.2.1 Problem description

The problem considers incompressible flow in square cavity with upper wall moving with
velocity u while other walls have no-slip tangential and zero normal velocity boundary
condition as shown in Figure 3.1.

= 1,u,=0
— -
________________ ” - 1.0
/ Z
7
7
7
b
;=0 / ) =0
7
Z
>—1)
: v U
= ~ 00
ue=1,=0
0.0 1.0

Table 5.5: Driven cavity problem description [16]

5.1.2.2 Boundary conditions

The upper wall has a uniform velocity in x-direction (u =1 m/s) and zero velocity
component in the normal direction (v =0 m/s), while the other walls has zero tangential
and normal velocity components (u=0 m/s & v=0 m/s).

For pressure boundary conditions, zero pressure gradients in the normal direction are
assumed for all the walls (Z—: = 0). As the Poisson equation is solved by TDMA solver, so

it will have infinite number of solutions with the zero gradients boundary condition for all
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the walls. In order to avoid this problem, the pressure is set to fixed value at one control
volume in the problem domain.

5.1.2.3 Results

In this section, we will compare our numerical results with the benchmark solution [17] for
different Reynold numbers (100,400,3200,5000,7200). The benchmark solution is
presented by the values of horizontal velocity component (u) along vertical axis passing
through geometric center of cavity and vertical velocity component (v) along horizontal
axis passing through the geometric center of the cavity.

First, we will compare our numerical result at Reynold number 400 using different
numerical schemes for the convective terms to benchmark solution. The numerical
schemes used for convective terms are upwind, hybrid, central and smart scheme. The
results using different scheme are compared to the benchmark solution as shown in
Figure 5.2 and Figure 5.3.The mesh size used in our simulation is 50*50 control volume.
From the figures we can conclude that both central and smart schemes give quite
identical results to benchmark solution. If we compare smart and central scheme results,
we can deduce that smart is better and the reason is that its accuracy is between second
and fourth order compared to central scheme which is of second order.

As smart scheme provides results with the smallest error compared to benchmark
solution, so smart scheme will be used for comparing our results for different Reynold
numbers .A mesh size of 150*150 control volume is used. The results are compared with
reference solution from Figure 5.2 to Figure 5.13.The streamlines for different Reynold
numbers are shown in Figure 5.14 to Figure 5.18.
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1 ;
upwind
—hyhbird
0.8 central
smart
0.6 O Benchmark f
~ 04
K%
g 7
5 02
0
-0.2
-04
0 0.2 0.4 0.6 0.8 1

x(m)

Figure 5.2: Results of u-velocity along the vertical axis passing through geometric centre of cavity
Re=400 (50*50 CV)

0.4
upwind
0.3 —2 ——hybird
N
/ Aﬁ\ central
0.2
f smart
0.1 ©  Benchmark
0

v (m/s)

. /
-0.3 f
/

0 0.2 0.4 0.6 0.8 1
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Figure 5.3: Results of v-velocity along the horizontal axis passing through geometric centre of
cavity Re=400 (50*50 CV)
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smart
O Benchmark

0.8 i{
0.6

u (m/s)

.O P
~ /

0 0.2 0.4 0.6 0.8 1
y (m)

Figure 5.4: Results of u-velocity along the horizontal axis passing through geometric centre of
cavity Re=100 (150*150 CV)
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Figure 5.5: Results of v-velocity along the horizontal axis passing through geometric centre of
cavity Re=100 (150*150 CV)
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1
smart
O  Benchmark
0.8 ;
0.6 f
—~ 04
Y
E /
2 02 =
0 /
-0.2 \\9//
-0.4
0 0.2 0.4 0.6 0.8
y (m)

Figure 5.6: Results of u-velocity along the horizontal axis passing through geometric centre of
cavity Re=400 (150*150 CV)
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Figure 5.7: Results of v-velocity along the horizontal axis passing through geometric centre of
cavity Re=400 (150*150 CV)
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O Benchmark
smart

e

u (m/s)

o//

~0 0.2 0.4 0.6 0.8 1
y (m)

Figure 5.8: Results of u-velocity along the horizontal axis passing through geometric centre of
cavity Re=3200 (150*150 CV)
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smart
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~
hY;
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Figure 5.9: Results of v-velocity along the horizontal axis passing through geometric centre of
cavity Re=3200 (150*150 CV)
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Figure 5.10: Results of u-velocity along the horizontal axis passing through geometric centre of
cavity Re=5000 (150*150 CV)
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Figure 5.11: Results of v-velocity along the horizontal axis passing through geometric
centre of cavity Re=5000 (150*150 CV)
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Figure 5.12: Results of u-velocity along the horizontal axis passing through geometric centre of
cavity Re=7200 (150*150 CV)
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Figure 5.13 : Results of v-velocity along the horizontal axis passing through geometric centre of
cavity Re=7200 (150*150 CV)
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Figure 5.15: streamlines at Re=400
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Figure 5.16: streamlines at Re=3200

Figure 5.17: streamlines at Re=5000
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Figure 5.18: streamlines at Re=72000

The steady-state u and v profiles along the vertical and horizontal center lines showed a
good agreement with benchmark solutions at different Reynold numbers. As Reynold
number increases, a new secondary vortex appear in the top left side of the corner as
shown in the streamlines drawing at Re=3200, 5000 and 7200 Figure 5.16 , Figure 5.17
& Figure 5.18.
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5.1.3 Differentially heated cavity

The objective of comparing our results with the benchmark solution of the differentially
heated cavity case is to ensure that continuity, Navier-Stokes equations and energy
equations for incompressible flow have been modelled correctly in our code.

5.1.3.1 Problem description

The flow being considered is two dimensional incompressible flow of Prandtl number
0.71 in an upright square cavity of length L. Boussinesq approximation is describing
continuity and momentum equations which assume that density variation is negligible in
continuity equation and inertia terms in momentum equation, while density variation in
buoyancy terms in momentum equation in the vertical direction cannot be neglected.
Both velocity components are zero on the boundaries. The horizontal walls are insulated,
and the vertical sides are at temperatures T, and T.. The solutions of this problem-
velocities, temperature and rates of heat transfer-have been obtained at Rayleigh
number of 10°, 10%, 10° and 10°.

Figure 5.19: Differentially heated cavity problem description

5.1.3.2 Boundary conditions

The velocity components in tangential and normal direction are equal to zero for all the
walls (u=v=0 m/s).
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For pressure boundary conditions, zero pressure gradients in the normal direction are
assumed for all the walls (Z—: = 0). As the Poisson equation is solved by TDMA solver, so

it will have infinite number of solutions with the zero gradients boundary condition for all
the walls. In order to avoid this problem, the pressure is set to fixed value at one control
volume in the problem domain.

For temperature boundary conditions, top and bottom walls are insulated, so the

d

temperature gradient in direction normal to wall is equal to zero (%: O).While the

vertical walls temperatures are fixed to T, and T..

5.1.3.3 Results

The results at different Rayleigh number 10°, 10* 10° and 10° are calculated using
different mesh sizes. For Rayleigh number 10° and10” uniform mesh of 50*50 is used as
this mesh size was sufficient to get quite similar solution to benchmark solution [18, 19],
while for higher Rayleigh 10° and 10° a finer concentrated mesh of 100*100 is utilized.

To compare our results with the benchmark solution, the following quantities are showed
in Table 5.6 to Table 5.9
|Wimid The stream function at the mid-point of the cavity

|W|max The maximum absolute value of the stream function (together with its location):
for Ra= 10°and 10°, the maximum does not occur at the cavity mid-point

Unax The maximum horizontal velocity on the vertical mid-plane of the cavity
(together with its location)

Winax The maximum vertical velocity on the horizontal mid-plane of the cavity
(together with its location)

NU 1»  The average Nusselt number on the vertical mid-plane of the cavity

NUq The average Nusselt number on the vertical boundary of the cavity at x =0
NU; The average Nusselt number on the vertical boundary of the cavity at x = 1
NUmax  The maximum value of the local Nusselt number on the boundary at x = 0
(together with its location)
NUmin The minimum value of the local Nusselt number on the boundary at x = 0
(together with its location).
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Ra=10°

Mesh type Uniform mesh Concentrated mesh (k=2)
No of control volumes 50*50 50*50 50*50
’c?lol;rz/ﬁlsgtii(i/ae: ts:?;r:e for Central scheme Central scheme Smart scheme

Reference | Obtained Error Obtained Error Obtained Error

value value (%) value (%) value (%)
[Wmidl 1.174 1.1815 0.621 1.177 0.256 1.1765 0.212
[Wlmax
)< O OO OO OOV O v
74 [ o v
Urmax 3.649 3.663 0.685 3.677 0.767 3.676 0.739
Z 0.813 0.8229 0.516 0.815 0.344 0.8158 0.344
Wnax 3.697 3.721 0.676 3.727 0.811 3.726 0.784
X 0.178 0.1771 2.696 0.184 3.483 0.1842 3.483
NU 1o 1.117 1.119 0.242 1.118 0.132 1.11809 0.008
NU, 1.118 1.119 0.172 1.122 0.424 1.12286 0.524
NU, | - 1.119 | - 1.115 | - 1.11534 | -
NUmax 1.505 1.512 0.525 1.513 0.593 1.51391 0.592
Z 0.092 0.093 9.597 0.0964 4.866 0.0964 4.867
NUmin 0.692 0.689 0.394 6.931 0.171 0.693 0.194
Z 1 1 0 1 0 1 0
Table 5.6: Comparing results at Ra=10°
Ra=10"
Mesh type Uniform mesh
No of control volumes 50*50
Numerical scheme for convective terms Central scheme
Reference value | Obtained results Error (%)
Wil 5.071 5.064 0.138
Wl | e e e
D e et —
Unmnax 16.178 16.14 0.234
Z 0.823 0.8229 0.012
Winax 19.617 19.6 0.086
X 0.119 0.1146 3.697
NU 152 2.243 2.25 0.312
NUo 2.238 2.25 0.536
NU, e 225 | e
65
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NUax 3.528 3.5571 0.824
Z 0.143 0.135 5.594
NUmin 0.586 0.5819 0.699
Z 1 1 0

Table 5.7: Comparing results at Ra=10"

Ra=10"
Mesh type Uniform mesh Uniform mesh
Mesh size 50*50 100*100
{\‘lalinr?:ncal scheme for convective Central scheme Central scheme
Reference Obtained Error (%) Obtained | Error (%)

values values values
|Wmidl 9.111 9.111 0 9.1135 0.0274
|Wlmax 9.612 9.617 0.052 9.617 0
X 0.285 0.2917 2.35 0.285 0
z 0.601 0.5938 1.212 0.5969 0.6
Unmax 34.73 34.44 0.835 34.68 0.14
z 0.855 0.8646 1.122 0.852 0.35
W max 68.59 67.72 1.2684 68.57 0.0291
X 0.066 0.07292 10.484 0.066 0
NU 12 4519 4.538 0.420 4.52545 0.14
NU, 4519 4.538 0.420 4.52515 0.136
NU, ] 4539 | @ - 452507 | @ -
NUmax 7.717 7.9795 3.401 7.7837 0.864
z 0.081 0.0729 10 0.0765 5.55
NUnin 0.729 0.7124 2.277 0.724123 0.669
VA 1 1 0 1 0

Table 5.8: Comparing results at Ra=10°
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Ra=10°

Mesh type

Concentrated mesh (k=2)

Mesh size

50*50

100*100

Numerical scheme for convective
terms

Central scheme

Central scheme

Referenc Obtained Error Obtained Error
e value values (%) values (%)
|Wmidl 16.32 16.345 0.153186 16.38 0.368
|Wlmax 16.750 16.81 0.358209 16.82 0.418
X 0.151 0.1461 3.4437 0.1509 0.066
Z 0.547 0.5216 4.64351 0.5317 2.797
Umax 64.63 64.32 0.4796 64.78 0.232
z 0.850 0.8648 1.741176 0.8547 0.553
Wnax 219.36 220.5 0.52 220.395 0.472
X 0.0379 0.03475 8.311346 0.0355 6.095
NU 12 8.799 8.82753 0.324 8.8255 0.302
NUq 8.817 8.82956 0.142452 8.8345 0.199
NGO, 8.82583 | - 88173 | -
NU max 17.925 17.6515 1.525802 17.5791 1.930
Z 0.0378 0.0347515 | 8.064815 0.03993 5.656
NUmin 0.989 0.988328 | 0.067947 0.9833 0.572
Z 1 1 0 0 0
Table 5.9: Comparing results at Ra=10°
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Figure 5.20: Contour maps of horizontal velocity u

(a)Re=10° (b) Re=10", (c) Re=10°, (d) Re=10°
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Figure 5.21: Contour maps of horizontal velocity v

(a)Re=10°, (b) Re=10" (c) Re=10°, (d) Re=10°
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Figure 5.22: contour maps of streamline function

(a)Re=10° (b) Re=10", (c) Re=10°, (d) Re=10°
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Figure 5.23: Contour maps of Temperature T

(a)Re=10° (b) Re=10", (c) Re=10°, (d) Re=10°
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The result for Ra=10° and 10* showed that mesh of 50*50 gives a solutions with error
percent less than 1% for all calculated quantities but error percent was higher for location
of these quantities. Both uniform mesh and concentrated mesh are tested and results
showed that both give good results for the calculated quantity while the concentrated
mesh gives better results for the location of these quantities especially for that calculated
at boundaries as more control volumes are concentrated in these regions. Comparing the
results using smart scheme to central scheme for convective term, results do not show
considerable improvement.

For Ra=10° and 10°, a finer mesh of 100*100 is used to get error percent less than 1%
for the calculated quantities. At high Rayleigh number the velocity and temperature
gradients near the walls are high so concentrated mesh near the walls gives more
precise results compared to uniform mesh.

5.2 Compressible flow with low Mach number

Compressible flow program code will be checked by comparing its results with
benchmark solution for differentially heated cavity with large temperature difference.

5.2.1 Differentially heated cavity with high temperature difference

The objective of comparing our results with the benchmark solution of the differentially
heated cavity case is to ensure that continuity, Navier-Stokes equations and energy
equations for compressible flow with low Mach number have been modelled correctly in
our code.

5.2.1.1 Problem description

Flow of compressible fluid is considered in a differentially heated square cavity of length
L in which a large temperature difference is applied to the vertical walls (AT=720 °C)
while horizontal walls are thermally insulated. The left wall is at high temperature (T,) and
the right is at low temperature (T.).The temperatures difference can be represented by
dimensionless parameter €

Th - Tc
€= 5.12
T (5.12)
Where,
T,: Reference temperature
72
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The fluid filling the cavity is air of constant prandtl number of 0.71 and constant specific
heat (C,=1004.5 KJ/kg.k) neglecting temperature influence on C, while the dynamic
viscosity is calculated using Sutherland’s law equation (5.13) and thermal conductivity is
calculated from equation (5.14)

pw \1*) T+S
ey =20 (5.14)

Where,

T*: Reference temperature (T* = 273 k)

u*: Reference viscosity (u* = 1.68 x 10~°kg/m.s)
S: Sutherland constant (S = 110.5 K)

The case is defined by Rayleigh number, value of € , fluid properties ,cavity dimensions ,
initial mass content in the cavity and reference state: py=101.325 Kpa,T,= 600K and

_ Po
Po = 7p Ty

5.2.1.2 Boundary conditions

The same boundary conditions are the same conditions mentioned in section (7.1.3.2) for
differentially heated cavity for incompressible flow.

5.2.1.3 Results

We compare our results for Ra=10° and 10° and €=0.6 with the benchmark solution[20].
The benchmark solution was computed on 1024*1024 stretched mesh. In our result,
different uniform mesh sized is used and error convergence of different dimensionless
quantities is computed for every mesh size. Mesh sizes tested are 64*64, 128*128 and
256*256. Table 5.10 and Table 5.11 show values for different dimensionless parameter
at Ra=10° and 10° respectively and £=0.6.The parameters are:

NU max Maximum local Nussult number at wall plane and its location
NU min Minimum local Nussult number at wall plane and its location
NU g Local Nussult number at mid-point of wall plane (y=0.5)
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NU
p/po

V max (y=0.5)

V min (y=0.5)

U max (x=0.5)

U min (x=0.5)

l:bmid
1l)max

Average Nussult number over wall plane

Ratio between thermodynamic pressure (p) and its initial value (po)

The maximum vertical velocity on the vertical mid-plane of the cavity
(together with its location)

The minimum vertical velocity on the vertical mid-plane of the cavity
(together with its location)

The maximum horizontal velocity on the horizontal mid-plane of the
cavity (together with its location)

The minimum horizontal velocity on the horizontal mid-plane of the
cavity (together with its location)

Streamline function at the centre of the cavity

The maximum value for streamline function and its location

Comparing the results for different mesh sizes with benchmark reference solution, we
can conclude that error percentage decreases with increasing mesh size and results
show a good agreement with reference solution. For the finest mesh with (256*256)
nodes, error percentages for all variables are less than 1%, while error percentages of
the locations for these variables have higher error but still less than 2.5%.

The contour maps for Ra=10° and 10° with £€=0.6 for horizontal velocity component (u),

vertical velocity component (v), streamline function (y) and temperature (T) are shown in
Figure 5.24 , Figure 5.25, Figure 5.26 & Figure 5.27 respectively
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variable | 64*64 | Error (%) | 128*128 | Error (%) | 256*256 Error Reference
(%) values
Left
NU rmax 8.91611 | 3.183775 8.70537 | 0.74493 8.63057 | -0.1207 8.641
location 0.07258 | -3.73926 | 0.075397 | -0.00424 | 0.076772 | 1.81923 0.0754
NU min 0.85281 | 0.567689 | 0.849215 | 0.14327 | 0.846921 | -0.1272 0.848
location 1 0 1 0 1 0 1
NU mig 4,225 | 0.523436 4.20896 | 0.14180 4,19597 | -0.1672 4.203
NU 4.54612 | 1.475893 4.49597 | 0.35647 4.47346 | -0.1459 4.48
Right
NU max 7.18226 | 3.595269 7.03298 | 1.44208 6.96903 | 0.51968 6.933
location 0.94354 | 1.304273 | 0.940476 | 0.97444 | 0.935039 | 0.39070 0.9314
NU min 0.49090 | -4.67864 | 0.509007 | -1.16369 | 0.515903 | 0.17534 0.515
location 0 0 0 0 0 0 0
NU g 4.79075 | 1.070675 4.74754 | 0.15907 4.74921 | 0.19430 4,74
NU 4.54743 | 1.505134 4.5 | 0.44642 4.49349 | 0.30111 4.48
p/Po 0.919 | -0.32106 0.9213 | -0.07159 | 0.9229 0.10195 0.92196
V max
(y=0.5) 0.31804 | 0.454833 | 0.316932 | 0.10493 | 0.31624 -0.1136 0.3166
location 0.08871 | -6.42437 0.09127 | -3.72384 | 0.096457 | 1.74757 0.0948
\Y min -
(y=0.5) 0.29285 | -0.35726 | -0.29317 | -0.24995 | -0.29393 | 0.01041 -0.2939
location 0.95967 0.19597 | 0.956349 | -0.15149 | 0.958661 | 0.08989 0.9578
U max
(x=0.5) 0.1953 | 0.359712 | 0.194884 0.146 | 0.194535 | -0.0333 0.1946
location 0.83064 | -0.68807 | 0.837302 | 0.10784 | 0.836614 | 0.02558 0.8364
u min
(x=0.5) -0.1108 | -0.22502 -0.11111 | 0.01214 | -0.11152 | 0.38118 -0.1111
location 0.13709 | -1.65208 | 0.138889 | -0.36657 | 0.139764 | 0.26111 0.1394
Ymid 0.04104 | 0.30303 0.04094 | 0.04887 | 0.040931 | 0.02631 0.04092
Ymax 0.04251 0.44896 | 0.042379 | 0.13837 | 0.042337 | 0.03948 0.04232
X 0.34677 | -0.38093 | 0.345238 | -0.82218 | 0.348425 | 0.09336 0.3481
Y 0.51612 | 0.199767 | 0.515873 | 0.15006 | 0.515748 | 0.12580 0.5151
Table 5.10: comparing results at Ra=10° and £=0.6
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variable 64*64 | Error (%) | 128*128 Error 256*256 Error Reference

(%) (%) values
Left
NU max 22.7675 12.3211 20.9027 3.12136 20.4054 0.66798 20.27
location 0.02419 | -33.7164 | 0.035714 | -2.1526 | 0.037402 | 2.47013 0.0365
NU min 1.06608 | -0.08622 1.07217 0.48453 1.06801 0.09465 1.067
location 1 0 1 0 1 0 1
NU mig 7.454 -0.06703 7.48895 | 0.40152 | 7.46485 | 0.07842 7.459
NU 8.9472 | 2.99516 | 8.78024 | 1.07332 | 8.70621 | 0.22113 8.687
Right
NU max 15.3635 -1.002 16.0834 | 3.63683 | 15.7753 | 1.65152 15.519
location 0.95967 | -0.81883 | 0.972222 | 0.47767 | 0.970472 | 0.29681 0.9676
NU min 0.67213 | -11.3281 0.723573 | -4.5418 | 0.749291 | -1.1489 0.758
location 0 0 0 0 0 0 0
NU mig 9.02605 | 4.310302 8.6916 0.63216 | 8.645595 | 0.09951 8.637
NU 8.9481 | 3.00575 | 8.78283 | 1.10314 | 8.71814 | 0.35846 8.687
p/Po 0.91927 | -0.56464 0.92138 -0.3364 0.9239 -0.0638 0.92449
X/TBXS) 0.32264 | 0.73185 0.3222 0.59319 | 0.320744 | 0.13863 0.3203
location 0.0565 5.12402 0.05159 -3.9292 0.05315 | -1.0249 0.0537
X/Tg 5) -0.2959 | -1.38703 | -0.29614 | -1.3181 | -0.29938 | -0.2403 -0.3001
location 0.97580 | 0.02115 0.9802 0.47150 | 0.974409 | -0.1220 0.9756
&TSXS) 0.11947 | 0.14501 0.12003 | 0.61190 | 0.119742 | 0.37034 0.1193
location 0.8468 -0.8547 0.8532 -0.1053 | 0.852362 | -0.2034 0.8541
(Lif‘(';‘ 5) -0.0779 | -2.17097 | -0.07948 | -0.2985 | -0.07998 | 0.3247 -0.07972
location 0.08871 | -1.9779 0.09127 | 0.85082 | 0.088583 | -2.1185 0.0905
Ymid 0.02223 | 0.63377 | 0.022189 | 0.44816 | 0.022139 | 0.22004 0.02209
WYimax 0.02355 | 0.18502 0.02359 | 0.34028 | 0.023547 | 0.15614 0.02351
X 0.8629 -0.6791 0.869 0.02302 | 0.86811 | -0.0794 0.8688
Y 0.4032 2.69994 0.3889 -0.9424 | 0.389764 | -0.7223 0.3926

Table 5.11: comparing results at Ra=10° and £€=0.6
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Figure 5.24: Contour maps of horizontal velocity u

(a) Re=10° (b) Re=10°
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Figure 5.25 Contour maps of horizontal velocity v

(a) Re=10°, (b) Re=10°
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Figure 5.26: contour maps of streamline function

(a)Re=10°, (b) Re=10°
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Figure 5.27: Contour maps of Temperature T

(a) Re=10° (b) Re=10°
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The verification process for our code using analytical solution and comparing results to
highly accurate solution showed that our code is reliable and gives accurate results as
the verification process using Method of manufactured solutions (MMS) showed the the
logarithms of the quotients of consecutive error is nearly equal to the order of the scheme
used for discretizing convective terms that are dominant over other terms and for
comparison of our results with benchmark solutions, a good agreement between our
results and benchmark solution are shown.
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6 Case study: Modeling laminar diffusion flame using SCRS

Computational fluid dynamics (CFD) can be used for modelling combustion process.
Combustion is defined as a chemical reaction of hydrocarbon fuels and oxidizer to form
combustion products with the release of heat energy. It is one of the most important
process in engineering include in various engineering applications: internal combustion
engines, power station combustors, aero engines, gas turbine combustors, boilers,
furnaces, and much other combustion equipment. Modelling of combustion process is
governed by basic transport equation for fluid flow and heat transfer with additional
models for combustion chemistry.

There are many types of combustion process that can be classified into: Gaseous fuel
combustion, liquid fuel combustion, spray combustion, solid fuel combustion, and
pulverized fuel combustion[4].The gaseous combustion is defined as a chemical reaction
between fuel and oxidizer in the gas phase. The gaseous combustion is classified into:
premixed combustion and non-premixed combustion. In premixed flame, the fuel is
mixed with oxidizer before combustion process. The stoichiometry of the fuel and
oxidizer mixture can be controlled by adjusting fuel to oxidizer ratio and flame
temperature can be controlled by diluting the reactants by increasing inert gas (nitrogen)
percent. Examples of premixed flames are spark ignition engines and Bunsen burner.
While, in non-premixed flame gaseous fuel mixes with the oxidizer stream and at the
same time combustion takes place at region with suitable conditions for combustion. It is
also known as diffusion flame as fuel and oxidizer are introduced from separate streams,
so they are mixed together by diffusion prior to combustion.

oxidant

diffusion flame premixed flame

Figure 6.1: Difference between premixed and diffusion flames[21]

Different combustion models are used for simulating the gaseous combustion like Simple
chemical reacting system model, Eddy break—up model, laminar flamelet model and
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presumed probability distribution function model. For our case study, we will use simple
chemical reacting model that will be explained in the following section.

6.1 Simple chemical reacting system (SCRYS)

This model is concerned only with the global nature of the combustion process and the
final major species concentrations as it assumes that the reaction infinitely fast and takes
place in a single step process neglecting the detailed kinetics involved in the combustion
process[4]. Combustion occurs where the fuel and oxidizer are mixed in stoichiometric
proportions to form combustion products. This model is suitable to be applied to
combustion process where diffusion effects are dominant and combustion takes place by
non-premixed streams of fuel and oxidizer which are diffusing into each forming the
flame structure.

In SCRS, fuel and oxidizer combine together in fixed mass portions to form products,
where s is stoichiometric oxygen/fuel ratio by mass.

1kg of fuel +skg of oxidizer - (1 + s)kg of products (6.1)

For methane combustion, when it burns with air, it is believed to proceed according to the
following reactions shown in Figure 6.2.

CH4+!.I :_-CH3+H+M
CH4+0 :CH3+DH
CH4+H :CH3+H2
CH, + OH = CHy + Hy0
CH3+0 :HCHO+H
C[‘[3+02 2 HCHO + OH
CH3+02 :HCO+H20
HCO + OH :CD+H20
HCHO + OH - H+CD+HED
CO + OH -'-CCI'E-'-H
-

H+'[}2 :DH+D
0+H2 - H+ OH
D+H2'D :ZOH
H+H20 :H2+DH
HED*‘H - H + O0OH + M
HCO + M :_-H+CC-+M

Figure 6.2: Detailed mechanism for methane oxidation

While in SCRS model methane combustion is simplified to the following one step fast
reaction
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CH, + 20, - CO, + 2H,0 (6.2)

This simplification means that intermediate species (CHs, OH, HCHO, H, H,, O, HCO,
CO) do not have concentrations of the same order of those of main reactants (CH,, O,)
and the main products (CO,, H,0).

Ordinary nitrogen gas that can be present with fuel or oxygen streams can in practice
lead to additional chemical reactions as shown in Figure 6.3 reactions between nitrogen
and oxygen. While in SCRS nitrogen is considered as a simple dilute that does not enter
any chemical reactions.

D+I~I2:ND+N
H+DE:NO+D
H2+{J2: H2D+D
H20+{]: 2N0

N2+D2: 2NO0

H+DH:H0+H
H2+DH: H20+H

Figure 6.3: chemical reaction between nitrogen and oxygen

The stoichiometric oxygen/fuel ratio by mass s is equal to 4 for pure methane
combustion. From equation (6.1), it can be deduced that rate of fuel consumption is 1/s
time consumption rate of oxygen.

1
d)fu = ; Wox (6.3)

As in SCRS intermediate reactions are ignored as the chemical reaction is infinitely fast,
so the transport equations of fuel and oxygen mass fraction can be written as shown

a(pY
% + div(pYy,U) = div([}, grad Yp,) + Gy (6.4)
(oY,
% + div(pY,, U) = div(l,, grad Y,,) + oy (6.5)

Where,
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Yr,,: Fuel mass fraction
Y,,: Oxygen mass fraction
I7,.: Fuel diffusion coefficient (I}, = pDy,,)

I,,: Oxygen diffusion coefficient (I}, = pD,,)

Nitrogen gas that can be present in fuel or oxidant streams does not participate in the
chemical reaction so the mass fraction of inert gas (Y;,) will remain constant before and
after combustion and there is no need for writing transport equation for inert gas. Also the
mass fraction of the product can be determined from mass fractions of fuel, oxygen and
inert gas equation (6.6) , so that it is not necessary to solve separate equation for Y, .

YVor =1- (Y}u + Yox + Ym) (6.6)

It is possible to decrease the number of transport equations by introducing variable @ that
is defined as follows:

O = 5Ypy — You (6.7)

Single transport equation can be deduced by subtracting equation (6.5) from s times
eguation (6.4) after assuming single diffusion coefficient for fuel and oxygen (I}u =[,, =

pD = Iy) .The new transport equation can be written as follows:
d(p?)

—5 + div(peU) = div(ly grad @) + (sdfy — Do) (6.8)

From equation (6.3), we can conclude that(sds, — @,,) = 0, So the transport equation
(6.8) can be reduced to the following form:
9(p®) (6.9)

T + div(p@U) = div(ly grad @)

Since @ is a passive quantity, it obeys the scalar transport equation without source terms.
A non-dimensional variable ¢ called mixture fraction can be defined as function of @.

0 - 9,
=—— 6.10
R (6.10)
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Where, suffix 0 denotes stands for oxidant stream and 1 stands for fuel stream. The local
value of & range is from 0 to 1.It is equal 0 when mixture at point contains only oxidant
and equal 1 when mixture contains only fuel.

Equation (6.10) for mixture fraction can be expanded as follows:

_ [SY}u - Yox] - [SY}u - Yox]o

&= (6.11)
[SY}”u - Yox]1 - [SY}”u - Yox]o

If the oxidant stream has no fuel we have
[Yrulo =0 (6.12)

If the fuel stream has no oxidant we have
[Yox]l1 =0 (6.13)

Using the two previous conditions, equation (6.11) can be simplified as follows
SYeu — You | — [—Yoxl sYe, —Yor + Y,

— [ fu ox] ox10 _ 2'fu ox 0x,0 (6.14)

[SquL - [_Yox]o - S qu,l + Yox,O

In stoichiometric mixture where neither fuel nor oxygen is present in the product, the
stoichiometric mixture fraction & can be written as follows

YOX,O

ESt - S Y}‘u,l + Yox,O

(6.15)

Fast chemistry reaction implies that at certain region the mixture is lean. In this region,
there is excess of oxidant and no fuel is present in the product. The mixture fraction is
calculated using equation

Yoy =0 Yo >0 (6.16)

- Yox + Yox,O

i < then €=
f §<&: 3 SYrur + Yoro

(6.17)

While in region with rich mixture, there is excess of fuel and there is no oxidant in the
product. The mixture fraction is calculated as follows

Yor =0 Y >0 (6.18)
Squ + Yox 0
if &> th =1 7 .
if §>%: then §=- Vs ¥ Yors (6.19)
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Ch. 6 | Case study: Modeling laminar diffusion flame using SCRS

From equation (6.10), § is linearly related to @ , so the mixture fraction is also a passive
scalar and obeys the transport equation.

@ + div(ptlU) = div(]“g grad E) (6.20)

The previous can be also written using index notation as shown in the following equation

08  d(pud) _ 0 (r 55) (6.21)

ot dx;  ox;\° Ox;

To obtain the distribution of € , the transport equation of mixture fraction has to be solved.
A suitable boundary conditions should be used, e.g. mixture fraction for fuel and oxidant
inlet streams are known, zero normal flux of & across solid walls and zero gradient of & for
outflow boundaries.

From the previous equations (6.14) - (6.19) for the mixture fraction, we can calculate the
mass fraction of oxygen (Y,,), fuel (Yz,), inert gas (Y;;,) and product (Y,,) after combustion
as shown below

&t — §
Y. = U Yox,o ’ 0 < E < Est (6.22)
ox — Est
0 ) Est S E < 1
0 , 0<&E< &y
Yey = E:Est Vi . Ee<E<1 (6.23)
1—%8
Yin = Yin,o (1 - E) + Yin,l E (6-24)
Yor =1 — (Y + Yox + Yin) (6.25)

The above formulae show that mixture fraction of oxygen and fuel are linearly related to
the mixture faction and these formulae can be illustrated graphically as shown in figure
Figure 6.4
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—-—
-

=

-
e
I

-
-

Yo

Yo
Yox.t)

Mixture fraction &

Figure 6.4: Mixing and fast reaction between fuel and oxidant streams (SCRC relationships)[4]

When the reaction products contain many species, the ratio of the mass fraction of each
component to the total product mass fraction is known from the chemical reaction
equation and this ratio is used for deducing the mass fraction of different product
components. For example, consider combustion of methane with oxygen:

CHy + 20, = CO, + 2H,0 (6.26)

The ratios of H,O (4,0 )and CO; (r¢o,) to the total product by mass are equal to 44/80
and 36/80 respectively. Using the product mass fraction calculated in equation (6.25) the
CO, mass fraction (Yc,) in product is ¢, Y, and H,O mass fraction in product is

T,0 Ypr-

6.2 Modelling of a laminar diffusion flame

The SCRS combustion model can be applied in planer laminar diffusion flame to
calculate temperature and chemical species distribution in the laminar diffusion flame.
First we will discuss the governing equation for laminar compressible low Mach number
flow in Cartesian coordinates.

6.2.1 Governing equations

e Continuity equation

dp Odpu;
—+—=0 6.27
ot (')xl- ( )
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e Momentum equation

apui _ apuiuj ap N Ori]-

ot~ ox ox x| P (6.28)
Where,
B L (6.29)
=K dx;  Ox; 3 7 0xy '
e Mixture fraction

a(py) d(pu®) 9 [ OF
= — —_ 6.30
6t + axi axl- (F 6xl-) ( )

e Energy equation

The energy equation for open system with compressible flow at low Mach number
with the following assumption:

1. Neglecting radiation energy loss or gain
2. Negligible pressure work
3. Assuming constant specific heat ,can be written as follows:

d(ph) d(pw;h) 0 aT

=—(k=— 6.31
at axi axi (k axi ( )

After simplifying the energy equation, it becomes another conserved scalar
equation like mixture fraction equation. We can conclude that both enthalpy and
mixture fraction are scalar quantities and linearly related.

Since enthalpy (h) is a passive quantity, it obeys the scalar transport equation
without source terms. A non-dimensional variable (h*) called non-dimensional
enthalpy can be defined.

h — hair in
h*=—— 6.32
hfu,in - hair,in ( )
Where,
hair,in: Enthalpy of air stream
hsyin: Enthalpy of fuel stream
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Taking the reference temperature as ambient temperature (298°K), the enthalpy
is defined as shown below for combustion of methane as example

h = quhffu + YHZOthZO + YCOthCOZ + C_p(T - 298) (633)
Where,

hs: Enthalpy of formation at 298°K

Enthalpy of the fuel stream where € =1 is

hewin = Yu <hffu +C, fu(Tfu,m - 298)) + Ym_lcpinjl(Tfu,m —298) (6.34)
Enthalpy of the air stream where § = 0 is

hair,in = Cpair(Tair,in - 298) (6.35)

We can see that when §=0,Y;, =0,h* =0 and when §=1,Y;, =1, h" = 1.By
adding simplifying assumptions for mixture fraction and enthalpy transport
eguations which are single diffusion coefficient (I}u =1I,, =pD = I“Q,),unity Lewis
number and negligible pressure work and radiation source. The distribution of
non-dimensional enthalpy (h*) and mixture fraction (&) will be the same, so that
there is no need to solve both equations only solving mixture fraction will be
sufficient and enthalpy can be calculated using mixture fraction using the
following equation

h — hair,in

= h* e —————
E hfu,in - hair,in (6.36)

h = hair,in + E(hfu,in - hair,in)

After calculating enthalpy and mass fractions for different components from SCRS
model relationships, the temperature can be obtained from equation

1
T=2984 [h = (Ypuhy p, + Yisgohr,, o+ Yeo by, )] (6.37)
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6.2.2 Configuration of simulation

The geometry considered is shown in Figure 6.5 in which a planar fuel jet is surrounded
by two planar air jets. The width of fuel jet (d ) is 0.4 cm and the width of air jet (d 4)
is 2.25 cm. The thickness of the wall between fuel and air streams is 0.05 cm. We will
consider burning diluted methane (5% CH,, 95% N,) jet with co-flowing air (23.3% O,,
76.7% N,). Both fuel and air velocity are equal to 0.2 m/s and enter at ambient
temperature 25 °C .The computational domain is rectangle of length L and width W. A
staggered grid of 164*82 nodes is used.

e
A
T

NN~
Air  fuel  Air

Figure 6.5: schematic diagram of the problem considered

6.2.2.1 Boundary conditions

For velocity boundary conditions, at inlet the normal velocity component is constant and
equal to 0.2 m/s (v=0.2 m/s) for fuel and oxygen streams and the tangential component is
equal to zero (u=0 m/s).At the axis of symmetry are applied, the horizontal velocity
component is zero (u=0 m/s) and gradient of vertical component in normal direction is

zero (‘;—: = ).For top and right boundary conditions the velocity gradient for both velocity

components in the normal direction are zero, so for the top boundary the conditions are
du ov . " du av

(a_y =5 = 0) and for right boundary the conditions are (& == )
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For pressure boundary conditions, the pressure is set to zero at the top boundary (p=0),
while the other boundaries, the pressure gradient in the normal direction is set to

9 _
zero( o = 0).
For mixture fraction boundary conditions, at the inlet of fuel stream, the mixture fraction is
equal to 1 (¢ = 1) for fuel stream and for air stream mixture fraction is zero (¢ = 0).For

other boundaries, the gradient of mixture fraction in normal direction is zero, for the top

boundary the condition is (Z—E = 0) and for the left and right boundary (Z—i = 0).

y

6.2.3 Results

After solving fluid flow equations and mixture fraction equation, the pressure, velocity and
mixture fraction distributions are obtained. Mixture fraction defines flame structure and
different species distribution. Species mass fractions are obtained using equation (6.22)-
(6.25) and enthalpy and temperature fields are calculated from (6.36) and (6.37)
respectively. The pressure contour map is shown in Figure 6.6 in which pressure
reaches its maximum values at the walls separating fuel and air stream as the velocity at
the walls boundaries is zero.The horizontal and vertical velocity components contour
maps and streamline function are shown in Figure 6.7 , Figure 6.8 and Figure 6.9
respectively. Mixture fraction and temperature distribution shown in Figure 6.11 and
Figure 6.10 respectively has the same pattern as temperature is linearly related to
mixture fraction equation (6.36), so the stoichiometric contour (§ = &) is corresponding
to contour of maximum flame temperature. In this case flame length is equal to 1.594 cm
and maximum flame temperature is 1275 k .The flame length is defined as the height at
flame axis of symmetry where temperature reaches its maximum value.

To highlight the consequences of fast chemistry assumption in SCRS model, the
temperature, mixture fraction and species mass fraction will be shown at three different
horizontal levels shown in Figure 6.12. The first level is at y=0.781 cm. At this level from
centreline to stoichiometric contour fuel is found without oxygen. Fuel concentration
decreases gradually till it is consumed completely at stoichiometric contour where
temperature peaks. The second level is at y=1.594 cm that is equal to flame length, at
centreline where € = &,; neither oxygen nor fuel exist and temperature is at a maximum.
In third level at y=3.281 cm that lies outside stoichiometric contour(¢ < &), where no
fuel exist and the temperature is lower.
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P: 0.05 0.15 0.25 0.35 0.45 0.55
0.05
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0.03

0.02
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-0.02 -0.01 0 0.01 0.02
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Figure 6.6: contour map of dynamic pressure

u. -0D.06 -0.03 -0.01 0.02 045 0.08 0.11
0.05

0.04
0.03
0.02

0.01

Figure 6.7: contour map of horizontal velocity components u
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v: 0.102030405060.70809 1 11
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Figure 6.8: contour map of vertical velocity component v
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Figure 6.9: contour map of streamline function (y)
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N .

T: 350 450 550 650 750 850 950 1050 1150 1250
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>
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X
Figure 6.10: contour map of temperature
fr: 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
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>
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Figure 6.11: contour map of mixture fraction
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Figure 6.12: species mass fraction, mixture fraction and temperature distribution at different
horizontal planes (a) y=0.781 cm (b) y=1.594 cm (c) y=3.281 cm
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6.2.3.1 Effect of changing fuel stream velocity

The effect of changing fuel jet velocity is studied in this section, in which air jet velocity is
kept constant (0.2 m/s) while fuel jet speed is changed. Different fuel jet velocities are
tested and the results are at fuel jet velocity 0.1, 0.15, 0.2 and 0.25 m/s are shown in
Figure 6.13. The results show that as fuel jet velocity increases, the flame height
increases.

[ | _ a [ I

350 500 650 800 950 1100 1221.65 1267.26 005: 350 500 650 800 950 1100 1232.68 1264.12

0.025
0.02

>

0.015
0.01

0.005

8.
(@) (b)
T: 350 500 650 800 950 1100 1250 T 298 500 700 900 1100 1248.75 1278.16

(c) (d)
Figure 6.13: Effect of changing fuel jet velocity with constant air jet velocity (0.2 m/s)

() V 1e=0.1 m/s, (b) V 1,=0.15 m/s, (C) V 1e=0.2 m/s, (d) V 1,=0.25 m/s
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Flame lengths are plotted versus fuel jet velocity in Figure 6.14 and from the figure it can
be concluded that fuel flame length is linearly related to fuel jet velocity.

0.03 : T

© numerical result $
== |inearly interplared result
0.025+ ,

flame length (m)

r

0 r r
0.05 0.1 0.15 0.2 0.25 0.3
V. (m/s)

fuel

Figure 6.14: flame length variation with increasing fuel stream velocity

6.2.3.2 Effect of changing air stream velocity

The effect of changing air jet velocity is studied in this section, in which fuel jet velocity is
kept constant (0.2 m/s) while air jet speed is changed. Different air jet velocities are
tested and the results are at air jet velocity 0.1, 0.3, 0.5 and 0.7 m/s are shown in
Figure 6.16. The results show that as air jet velocity increases, the flame height
decreases. As shown in following figure that flame length is linearly related to air stream
velocity.

0.018 : : : -
© Numerical result

=== |inearly interploated result

0.017@ m

0.016

0.015
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0.013

0.012

0.011 r r r r r
0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Figure 6.15: flame length variation with increasing air stream velocity
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Figure 6.16: Effect of changing air stream velocity with constant fuel jet velocity (0.2 m/s)

(@) V 1we=0.1 m/s, (b) V 1e=0.2 m/s, (€) V 1,=0.3 m/s, (d) V 1,=0.4 m/s
6.2.3.3 Effect of increasing oxygen concentration in oxidant stream

In this section, the effect of increasing oxygen concentration in oxidant stream is studied.
The oxidant stream contains oxygen and nitrogen gas. From Figure 6.17, it can be
observed that as oxygen mass fraction increases, flame length decreases. This is due to
increasing available oxygen for fuel combustion, so there is no need for fuel to transverse
farther distance from fuel nozzle. Also, maximum flame temperature increases by
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increasing oxygen concentration in oxidant stream as shown in Figure 6.18 (a).This
happen because nitrogen gas that does not enter any chemical reaction in SCRS model
consumes a part of energy of released from combustion to raise its temperature from
inlet temperature to combustion product final temperature, so as nitrogen gas mass
fraction decrease, energy consume by nitrogen gas decreases leading to higher
maximum flame temperature. As shown in Table 6.1 stoichiometric mixture fraction
increases as oxygen gas concentration increases.
| i [ I - a

T: 350 500 650 800 950 1100 1250 T: 400 600 800 1000 1200 1400 1595.99

0.02

0.015
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0.005

() (b)

T 400 600 800 1000 1200 1400 1600 1741.25 T:: 400: 1600. 1500 10001200 140011600. 1600

0.02

0.015

0.01

0.005

—%.01

(€) (d)
Figure 6.17: Effect of increasing oxygen concentration in oxidant stream

(8)Yox =23%, (b) Yox =50%, (C) Yox =80%,(d) Yox =100%
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Figure 6.18: Effect of increasing oxygen concentration on: (a) flame length and (b) max

temperature at axis of symmetry

Oxidant stream

Max flame

composition by mass &t Flame length (cm) temperature (K)
fraction P

23% O, ,77 %N, 0.5348 1.519 1279

30% O, ,70 %N, 0.6 1.213 1400

40% O, ,60 %N, 0.667 0.937 1519

50% O, ,50 %N, 0.7142 0.762 1612

60% O, ,40 %N, 0.75 0.6625 1670

70% O, ,30 %N, 0.778 0.5875 1717

80% O, ,20 %N, 0.8 0.5125 1762
100% O, ,0 %N, 0.833 0.4375 1824

Table 6.1: Effect of increasing oxygen concentration in oxygen stream
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6.2.3.4 Effect of diluting fuel stream with nitrogen

In this section, the effect of diluting fuel stream with nitrogen is investigated. The fuel
stream consists of methane and nitrogen gas. Temperature contour maps for flames with
different fuel concentration are shown in Figure 6.19.It can be seen that as nitrogen gas
concentration increases, the flame length and maximum flame temperature decreases.
The decreasing in flame length is due to the formation of stoichiometric mixture between
fuel and oxidant streams at lower height from fuel nozzle as fuel concentration in fuel
stream deceases. The maximum flame temperature decreases due to decreasing fuel
concentration and increasing nitrogen gas concentration in fuel stream. As shown in
Table 6.2 stoichiometric mixture fraction increases as nitrogen. gas concentration
increases.

Fuel stream composition Max flame
by mass fraction st Flame length (cm) temperature (K)
10% CH, ,90 %N, 0.365 2.906 1640

9% CH,4 ,91 %N, 0.3898 2.656 1583

8% CH, ,92 %N, 0.418 2.344 1523

7% CH, ,93 %N, 0.4509 2.094 1455

6% CH, ,94 %N, 0.489 1.844 1374

5% CH,4,95 %N, 0.5348 1.519 1279

Table 6.2: Effect of diluting fuel stream with nitrogen gas
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T: 400 600 800 1000 1200 1362.82 T. 350 450 550 650 750 850 950 1050 1150 1250

(c) (d)
Figure 6.19: Effect of diluting fuel stream with nitrogen gas

(a)YCH4 :8%, (b) YCH4 :7%,(C) YCH4 :6%,(d) YCH4 =5%
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7 Conclusion

The goal our work is modelling laminar diffusion flame using simple chemical reacting
system (SCRS) model which is simplified combustion model for modelling diffusion
flames as it assumes that chemical reactions are infinitely fast and takes place in one
step neglecting intermediate reactions as it is only concerted with final major species and
it consider that combustion process occur when fuel and oxygen are mixed in
stoichiometric proportions. For modelling diffusion flame, fractional step algorithm for
compressible flow with low Mach number is used in which low Mach number
approximation are utilized in simplifying momentum and energy transport equation. The
code is verified by comparing its results with analytical and highly accurate benchmark
solutions.

The verification process showed that the code is well implemented as the code results
have good agreement with benchmark solution of driven cavity and differentially heated
cavity for incompressible and compressible flow.

The results show that mixture fraction and temperature contour maps have the same
pattern as the stoichiometric mixture fraction contour line is corresponding to maximum
temperature contour line as the mixture fraction and energy transport equations are
linearly related. The region inside stoichiometric contour line (§ > &) only fuel is present
and oxygen is completely consumed and on stoichiometric contour line (§ = ;) neither
oxygen nor fuel is present, while at region outside stoichiometric contour line (§ < &)
only oxygen is present. Increasing fuel stream velocity leads to increasing flame length,
while increasing air stream velocity decreases flame height and the flame maximum
temperature is almost constant in both cases. Increasing oxygen concentration in oxidant
stream leads to decreasing flame length and increasing flame maximum temperature,
while diluting fuel stream with nitrogen also decreases both flame length and flame
maximum temperature.

Future work

One of possible modification that can be done in the future is implementing the
simulation code in cylindrical coordinates which is more convenient for modelling
diffusion. Also included the detailed kinetics involved in combustion process, so we can
compute species with minor concentration like OH and CO that are neglected in SCRS
model.
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