
    

 

 MSc SELECT is a cooperation between 

KTH-Royal Institute of Technology, Sweden │ Aalto University, Finland │ Universitat Politècnica de Catalunya, Spain │ 
Eindhoven University of Technology, Netherlands │Politecnico di Torino, Italy │ AGH University of Science and 

Technology, Poland │ Instituto Superior Técnico, Portugal 

 

 

 MSc Environomical Pathways for  

Sustainable Energy Systems - SELECT 

MSc Thesis 

Modelling laminar flame using simple chemical reacting 

system 

 

 

Author: ZEIN ELDIN MOHAMED ELSERFY 

Supervisor: 

Principal supervisor:  ASSENSI OLIVA  

 

 

Session: August 2015 

 

 

 

 

 



 

 

  

     

  



 

 

  

     

 

Abstract 

The objective of my thesis work is to model laminar diffusion flame using simple chemical 

reacting system (SCRS) combustion model. This combustion model assumes that the 

chemical reactions are infinitely fast and take place via a global one-step without 

intermediate reactions. The detailed kinetics is considered unimportant as this model is 

concerned with the global nature of the combustion process and with the final major 

species concentration. The model is developed using C++ computer language. The 

algorithm used for solving Navier-stokes and mixture fraction equations is the fractional 

step method for compressible flow with low Mach number. Low Mach number 

approximation is used in simplifying the flow equations as flow speed is very low 

compared to speed of sound. By modelling diffusion flame through an SCRS, flame 

temperature and species concentration are retrieved from mixture fraction field.  

The thesis is divided into six chapters. Chapter 1 is an introductory chapter about 

objective, scope and justification of the work. In Chapter 2 the conservation laws of fluid 

motion are explained. In chapter 3, the discretization of the computational domain and 

discretization of different terms in the transport equations are explained. The fractional 

step method algorithm for incompressible flow and compressible flow with low Mach 

number are illustrated in chapter 4.In chapter 5, the code is verified for incompressible 

flow by the method of manufactured solution (MMS) and by comparing code results with 

benchmark solutions of driven cavity and differentially heated cavity for incompressible 

flow, while for compressible flow code result is compared with benchmark solution of 

differentially heated cavity with high temperature difference. In chapter 6 SCRS model is 

discussed and the simulation results for diluted methane diffusion flame are presented.  

The simulation results for the laminar diffusion flame show that the flame reaches its 

maximum temperature at the stoichiometric mixture fraction contour line where oxygen 

and fuel are completely consumed. The flame length is changed by altering fuel or 

oxidant streams velocities. Also changing the percentage of nitrogen gas in the fuel and 

oxidant stream affect both flame length and flame maximum temperature. 
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1 Introduction 

1.1 Objective 

The object of my work is to study the modelling of diffusion laminar flames using simple 

chemical reacting system (SCRS) combustion model. This model assumes that the 

chemical reactions are infinitely fast and take place in a single step process neglecting 

the detailed kinetics involved in the combustion process and concerned only with the 

global nature of the combustion process and the final major species concentrations. In 

this model low Mach number approximation is used in Navier stokes and mixture faction 

equations as flow velocity is very low compared to speed of sound. The aim of modelling 

laminar flame is to calculate temperature, mixture fraction and species mass fraction 

distribution and to study the influence of some parameters like fuel jet velocity on flame 

length.  

1.2 Justification 

Computational fluid dynamics (CFD) is nowadays used for simulating combustion 

process which is important for many industries like automotive, aerospace, chemical 

process, energy and home appliances. CFD tool is used for modelling combustion 

process using basic transport equation for fluid flow and heat transfer with additional 

models for combustion chemistry. Modelling combustion process using CFD help in 

optimizing combustion process and studying different parameters influence on 

combustion. It also reduces cost and save time compared to experimental testing that 

consumes a lot of money and time as it requires expensive temperature resistant 

measurement probes, laser measurements or atomization particle analysis. It can 

provide detailed insights for different scenarios that are difficult to be obtained through 

experimental testing and measurement.   

 

1.3 Scope 

The scope of the work is modelling laminar diffusion flame using simple chemical 

reacting system model that assumes that the chemical reaction is fast and takes place in 

one step concerned only with the final major species concentration. The flow is 

considered compressible flowing with low speed compared to the speed of sound 
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therefore low Mach number approximation is used in simplifying Navier Stokes and 

Energy transport equations. The specific heat (CP) is assumed to be constant in the 

simulation. The computational domain is 2D due to geometric configuration of the case of 

study. The code is verified for incompressible flow cases using method of manufactured 

solutions (MMS) and by analysing two benchmark cases: driven cavity and differentially 

heated thermal cavity. After that, the code is verified for compressible flow case by 

comparing its results with benchmark solution for differentially heated thermal cavity with 

large temperature difference. The unsteady numerical simulations are performed with a 

finite volume code based on the fractional step method algorithm in a staggered grid 

system. 
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2 Governing equations 

 

2.1 Introduction 

In this chapter we will develop the mathematical formulation for general purpose model of 

fluid flow and heat transfer based on conservation of mass, momentum and energy. The 

governing equations of fluid flow represent mathematical statements of the conservation 

laws of physics: 

 The mass of a fluid is conserved as mass can neither be created nor destroyed. 

 The rate of change of momentum equals the sum of the forces on a fluid particle 

(Newton’s second law) 

 The rate of change of energy is equal to the sum of the rate of heat addition to 

and the rate of work done on a fluid particle (first law of thermodynamics) 

2.2 Hypotheses 

1. Newtonian fluid 

2. compressible flow 

3. single phase flow 

4. negligible radiation energy 

5. low Mach number flow 

 

2.3 Conservation of mass equation 

For the derivation of mass conservation equation, we should first write down mass 

balance for a fluid element. 

 

Rate of increase of mass  = Net influx of mass 

 

The conservation of mass can be written in integral form, considering density (ρ) as 

function of space coordinates and time (ρ = ρ(x, y, z, t)) and velocity vector of the flow 
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(U) function of space coordinates and time and has three components u, v and w  

aligned to the coordinate axes x, y and z respectively. The fluid element has volume (dV) 

and elemental surface area (ds). 

 

 
∫

𝜕

𝜕𝑡
( 𝜌 𝑑𝑉 ) + ∫ ∇. ( 𝜌 𝑈 )𝑑𝑉 = 0

𝑑𝑉𝑑𝑉

 (2.1) 

 Using Gauss’s theorem states that volume integral of the divergence of a vector field in 

a region inside a volume, is equal to the surface integral of the outward flux normal to the 

closed surface that bounds the volume. For a vector a, the Gauss theorem is given by, 

 
∫ ∇. 𝑎 𝑑𝑉 = ∫ 𝑎 . 𝒏 𝑑𝑠

𝑑𝑆𝑑𝑉

 (2.2) 

 The volume integration can be converted to surface integration and the mass 

conservation can be written as follows, where n is unit vector normal to surface. 

 
∫

𝜕

𝜕𝑡
( 𝜌 𝑑𝑉 ) + ∫ (𝜌 𝑈). 𝒏 𝑑𝑠 = 0

𝑑𝑆𝑑𝑉

 (2.3) 

 

For incompressible flow, the density is considered constant ( 
𝜕𝜌

𝜕𝑡
 ) = 0, so mass 

conservation equation can be reduced to the following form 

 
∫ 𝑈. 𝑛 𝑑𝑠 = 0
𝑑𝑆

 (2.4) 

 

Mass conservation can be written in differential form for compressible and 

incompressible flow as shown in equation (2.5) & (2.6) respectively. 

 𝜕𝜌

𝜕𝑡
+ ∇. (𝜌 𝑈) = 0 (2.5) 

 ∇. 𝑈 = 0 (2.6) 
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2.4 Momentum equation 

Newton’s second law states that the rate of change of momentum of a fluid particle 

equals the sum of the forces on the particle: 

  

Rate of increase in momentum=Net influx of momentum + body force + surface force 

 

The surface forces include pressure force and viscous force, while body force includes 
gravity force, centrifugal force and Coriolis force and electromagnetic force. 

The momentum equation can be written as shown in the following equation 

 ∂

∂t
∫ ρ U dV=-∫ ρU U.n ds-∫ P n. dS

dS

+∫ τ: n dS+∫ ρ g dV
dVdSdSdV

 (2.7) 

 

Where, 

U: Velocity vector  

𝜏 : Viscous Stress tensor 

g: Acceleration due to gravity 

 

 For Newtonian fluid, viscous stresses are linearly related to the rates of strain arising 

from shear and dilatation and must be symmetric so that  𝜏𝑖𝑗 = 𝜏𝑗𝑖 .The viscous stress 

tensor is shown in equation (2.8). 

 𝜏 = (𝜆 ∇.𝑈)𝐼 + 2𝜇𝐷 (2.8) 

Where, 

𝜆 : Dilatational viscosity ((λ =- 2/3 μ) for gases) 

I: Identity matrix 

μ : Dynamic viscosity 
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D : Deformation  tensor 

The deformation tensor for Newtonian fluid are shown in the following equation 

 
𝐷 =

1

2
 (∇. 𝑈 + ∇ . 𝑈𝑇) (2.9) 

 

The momentum equation in i - direction can be written as shown in equation (2.10)  

 ∂

∂t
∫ ρ uidV= -∫ ρui (U.n)ds -∫ P ni dS

dS

+∫ nj τij  dS+∫ ρ gi dV
dVdSdSdV

 (2.10) 

 

And the viscous stress can be written in the following form 

 
 𝜏𝑖𝑗 = 𝜆 𝛿𝑖𝑗 ∇.𝑈 + 𝜇(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) (2.11) 

 

For incompressible flow with constant viscosity, the momentum equation can be 

simplified as shown in equation (2.13).In this equation, Boussinesq approximation is 

used for simplifying the gravity force term, in which density is related to density at 

reference temperature and thermal expansion coefficient as shown in equation (2.12). 

 𝜌 = 𝜌0 [1 − 𝛽𝑜 (𝑇 − 𝑇0)] (2.12) 

Where, 

𝜌0 : Density at reference temperature 

𝛽0 : Thermal expansion coefficient at reference temperature 

 

∂

∂t
∫ ρ uidV=-∫ ui (ρU.n)ds -∫ P ni dS

dS

+∫  μ ∇ ui .n dS -∫ ρ0 β0gi(T-T0) dV
dVdSdSdV

 (2.13) 

 

Momentum equation can be written in differential form for compressible and 

incompressible flow as shown in equation (2.14) & (2.15). 
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 𝜕𝜌𝑢𝑖
𝜕𝑡

= −
𝜕𝜌𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
−
𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 (2.14) 

 

 
𝜌
𝜕𝑢𝑖
𝜕𝑡

= −
𝜌𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
−
𝜕𝑝

𝜕𝑥𝑖
+ 𝜇∆𝑢𝑖 − 𝜌0 𝛽0𝑔𝑖(𝑇 − 𝑇0) (2.15) 

 

2.5 Conservation of energy  

The energy equation is a mathematical statement which is based on the physical law that 

states 

Rate of change of energy in particle =  Rate of energy received by heat and work 
transfers by that particle. 

 Using Reynolds transport theorem we can put the energy conservation in integral form 

as shown below 

𝐷

𝐷𝑡
∫ 𝜌 [𝑒 +

1

2
 𝑢𝑖𝑢𝑖] 𝑑𝑉 = ∫ 𝜌𝑔𝑖𝑢𝑖𝑑𝑣 + ∫ 𝑛𝑖 [−𝑝𝑢𝑖 + 𝜏𝑖𝑗𝑢𝑗 − 𝑞𝑖]𝑑𝑆

𝑑𝑆𝑑𝑣𝑑𝑉

  

                                         = ∫ [𝜌𝑔𝑖𝑢𝑖 +
𝜕

𝜕𝑥𝑖
(−𝑝𝑢𝑖 + 𝜏𝑖𝑗𝑢𝑗 − 𝑞𝑖)] 𝑑𝑉

𝑑𝑉

 (2.16) 

Where, 

e : Internal energy 

𝑞𝑖 : Heat flux vector 

From the integral energy equation we obtain the total energy equation in differential form 

by the observation that the volume is arbitrary and thus that the integration itself has to 

be zero as shown in equation (2.17) 

 
𝜌
𝐷

𝐷𝑡
[𝑒 +

1

2
 𝑢𝑖𝑢𝑖] = 𝜌𝑔𝑖𝑢𝑖 +

𝜕

𝜕𝑥𝑖
𝜏𝑖𝑗𝑢𝑗 −

𝜕𝑞𝑖
𝜕𝑥𝑖

−
𝜕

𝜕𝑥𝑖
(𝑝𝑢𝑖) (2.17) 

 

The mechanical energy equation is found by taking the dot product between the 

momentum equation and u as shown below 
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𝜌
𝐷

𝐷𝑡
(
1

2
𝑢𝑖𝑢𝑖) = 𝜌𝑔𝑖𝑢𝑖 − 𝑢𝑖

𝜕𝑝

𝜕𝑥𝑖
+ 𝑢𝑖

𝜕𝜏𝑖𝑗

𝜕𝑥𝑖
 (2.18) 

 

The thermal energy equation can be obtained by subtracting mechanical energy equation 

form total energy equation 

 
𝜌
𝐷𝑒

𝐷𝑡
= −𝑝

𝜕𝑢𝑖
𝜕𝑥𝑖

+ 𝜏𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑞𝑖
𝜕𝑥𝑖

 (2.19) 

 

Alternative form for writing thermal energy equation using enthalpy definition 

 ℎ = 𝑒 + 𝑝/𝜌 (2.20) 

 

By taking derivative to the previous equation, we get the following equation 

 𝐷ℎ

𝐷𝑡
=
𝐷𝑒

𝐷𝑡
+
1

𝜌

𝐷𝑝

𝐷𝑡
−
𝑝

𝜌2
𝐷𝜌

𝐷𝑡
 (2.21) 

 

From conservation of mass equation, 
𝐷𝜌

𝐷𝑡
 can be replaced by −𝜌

𝜕𝑢𝑖

𝜕𝑥𝑖
 , so we get the 

following equation 

 𝐷𝑒

𝐷𝑡
=
𝐷ℎ

𝐷𝑡
−
1

𝜌

𝐷𝑝

𝐷𝑡
−
𝑝

𝜌

𝜕𝑢𝑖
𝜕𝑥𝑖

 (2.22) 

 

By substituting equation (2.22) into equation (2.19) , the thermal energy equation can be 

written in the following form 

 
𝜌
𝐷ℎ

𝐷𝑡
=
𝐷𝑝

𝐷𝑡
+ 𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑞𝑖
𝜕𝑥𝑖

 (2.23) 

 

The heat flux is related to the temperature gradients using Fourier’s law 
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𝑞𝑖 = −𝑘

𝜕𝑇

𝜕𝑥𝑖
 (2.24) 

Where, K is the thermal conductivity 

 

Using Fourier’s law, the thermal energy can be written as shown in equation (2.25)  

 
𝜌
𝐷ℎ

𝐷𝑡
=
𝐷𝑝

𝐷𝑡
+ 𝜏𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕

𝜕𝑥𝑖
(𝑘
𝜕𝑇

𝜕𝑥𝑖
) (2.25) 

 

For flow with variable density and low Mach number, the thermal energy equation can be 

modified to the following form neglecting viscous heating term  𝜏𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
  and  𝑢𝑖

𝜕𝑝

𝜕𝑥𝑖
  and 

assuming that total pressure will be equal thermodynamics part as hydrodynamic part (P) 

is negligible, so that  p can be replaced by P0 ,which is the thermodynamic pressure that 

is spatially uniform. 

 
𝜌
𝐷ℎ

𝐷𝑡
=
𝑑𝑃0
𝑑𝑡

+
𝜕

𝜕𝑥𝑖
(𝑘
𝜕𝑇

𝜕𝑥𝑖
) (2.26) 

 

For incompressible flow, the thermal energy equation can be written as shown below 

using equation (2.19) in which the viscous heating term  𝜏𝑖𝑗
𝜕𝑢𝑖

𝜕𝑥𝑗
  is neglected and 𝑝

𝜕𝑢𝑖

𝜕𝑥𝑖
 is 

equal to zero. 

 
𝜌
𝐷𝑒

𝐷𝑡
= −

𝜕𝑞𝑖
𝜕𝑥𝑖

 (2.27) 

 

As for incompressible flow e=cT, where c is the specific heat. The thermal energy 

equation for incompressible flow can be written as follow 

 
𝜌𝑐 
𝐷𝑇

𝐷𝑡
= −

𝜕

𝜕𝑥𝑖
(𝑘
𝜕𝑇

𝜕𝑥𝑖
) (2.28) 
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2.6 Differential and integral forms of the general transport equations 

There are significant commonalities between different conservation equations, so a 

general variable ∅ can be used for writing the different conservation equations in one 

general form as shown below in which ∅ can represent any scalar quantity like T or u or 

v: 

 𝜕(𝜌∅)

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝑈∅) = 𝑑𝑖𝑣(𝛤 𝑔𝑟𝑎𝑑∅) + 𝑆∅ (2.29) 

This equation is called transport equation for property ∅, which includes different 

transport process: the rate of change term and the convective term on the left hand side 

and the diffusive term (Γ = diffusion coefficient) and the source term respectively on the 

right hand side. The equation can be also written in integral form as shown below 

 
∫

𝜕(𝜌∅)

𝜕𝑡
𝑑𝑉

𝑉

+∫ 𝑑𝑖𝑣(𝜌𝑈∅)
𝑉

 𝑑𝑉 = ∫ 𝑑𝑖𝑣(𝛤 𝑔𝑟𝑎𝑑∅)
𝑉

𝑑𝑉 +∫ 𝑆∅
𝑉

 𝑑𝑉 (2.30) 

 

Using the Gauss divergence theorem, the integration over the volume can be rewritten 

as integration over the entire bounding surface of the control volume 

 
∫

𝜕(𝜌∅)

𝜕𝑡
𝑑𝑉

𝑉

+∫ 𝑛. (𝜌𝑈∅)
𝑠

 𝑑𝑆 = ∫ 𝑛. (𝛤 𝑔𝑟𝑎𝑑∅)
𝑠

𝑑𝑆 +∫ 𝑆∅
𝑉

 𝑑𝑉 (2.31) 

 

The different values of property(∅) , diffusion coefficient  (𝛤) and source term (𝑆∅) for 

various conservation equations are listed in Table 2.1, Where 𝜑 is thermal energy source 

term 

 

Conservation 
equation 

∅ 𝜞 𝑺∅ 

Mass  1 0 0 

Momentum - x direction 
for incompressible flow 

u 𝜇 −
𝜕𝑃

𝜕𝑥
 

Momentum - x direction 
for compressible flow 

u 𝜇 −
𝜕𝑝

𝜕𝑥
+
𝜕

𝜕𝑥
(𝜆 𝑑𝑖𝑣𝑈 + 𝜇

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜇
𝜕𝑣

𝜕𝑥
) 
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Momentum - y direction 
for incompressible flow 

v 𝜇 −
𝜕𝑝

𝜕𝑦
− 𝜌0 𝛽0𝑔𝑖(𝑇 − 𝑇0) 

Momentum - y direction 
for compressible flow 

v 𝜇 −
𝜕𝑝

𝜕𝑦
+
𝜕

𝜕𝑦
(𝜆 𝑑𝑖𝑣𝑈 + 𝜇

𝜕𝑣

𝜕𝑦
) +

𝜕

𝜕𝑥
(𝜇
𝜕𝑢

𝜕𝑦
) + 𝜌𝑔𝑦 

Thermal energy for 
incompressible flow 
(constant cp) 

T 
𝑘

𝑐𝑝
 

𝜑

𝐶𝑝
 

Thermal energy for 
compressible flow 
(constant cp with low 
Mach no.) 

T 
𝑘

𝑐𝑝
 

𝜑

𝐶𝑝
+
1

𝐶𝑝

𝑑𝑃0
𝑑𝑡

 

Table 2.1: Parameter to be replaced in general transport equation to reproduce conservation 
equations 
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3 Discretization of governing equation 

 

3.1 Domain discretization 

The process of domain discretization is the first step in finite volume analysis. In order to 

solve physical problem numerically the computational domain has to be discretised into 

elemental volumes. The network of discrete volume is called grid. The governing 

equations are solved numerically over these control volumes to give a solution over the 

domain. Computational grids are classified according to their type of construction into 

structured and non-structured mesh. 

3.1.1 Unstructured mesh 

 

 Unstructured meshes contain cells having triangle in 2D mesh or tetrahedral shape in 

3D mesh as shown in (Figure 3.1). The number of corner nodal points surrounding each 

cell is not necessarily constant. It is characterized by irregular connectivity which makes 

it more suitable for complex geometries. 

 

  

(a)                                                                         (b) 

Figure 3.1: unstructured mesh in 2 D (a) and 3D (b).[1]  
 

 

3.1.2 Structured mesh  

Structured mesh contains cells having either regular quadrilateral shape element with 

four nodal corner points in 2D mesh or hexahedral shape with 8 nodal points in 3D mesh. 

It is characterized by regular connectivity and its orthogonal mesh in Cartesian system. 
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This means that it is more suitable for geometries with orthogonal shapes. It can be 

uniform or non-uniform structured mesh. For uniform mesh cell spacing is equal in all 

directions, while non-uniform mesh the spacing can take any values as shown in 

Figure 3.2 (b). 

 

(a)                                                                             (b) 

Figure 3.2: Types of structure mesh in 2D mesh:(a) uniform mesh,(b) non-uniform mesh[2] 

 

3.1.2.1 Collocated grid system 

In collocated grids, the velocities (u, v) and the pressure and other scalars are stored at 

the at cell centre as shown in Figure 3.3. The volume fluxes are calculated at cell faces 

by interpolating for cell cantered velocity to the faces and multiplying them by cell face 

area. Collocated mesh has one major difficulty as cell face velocity are linearly 

interpolated between neighbouring momentum cell velocities and pressure gradient 

present in the momentum equation is represented by central differencing, so if the 

pressure field has a checkboard pattern, it would be seen by momentum equation as 

uniform field. One way to solve this problem is to use staggered mesh. It has some 

advantages compared to staggered grid in which all variables are stored in the same 

control volume so that convection coefficients in the discretised equations are the same 

for all variables.  
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Figure 3.3: collocated structured mesh[3] 

 
 

3.1.2.2 Staggered grid mesh 

On staggered grid the scalar variables (pressure, density, temperature etc.) are stored in 

the cell centre of the control volumes, while velocity (u, v) are located at the cell faces as 

shown in Figure 3.4 , this is different from collocated grid in which velocity was stored in 

cell centre. The staggered grid is mainly used for structured meshes. The advantage of 

staggered grid is avoiding odd-even coupling between pressure and velocity that occur in 

collocated grid and leads to checkerboard pattern, while it disadvantage is that different 

variable are stored at different places and this makes it difficult to work with different 

control volume for different variable. 

 

Figure 3.4: staggered structured grid[3] 
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3.2 Discretization of the Transport Equation 

In this section, different term of the general transport equation will be discretised. The 

equation is written in the form of general transport equation over control volume v as 

shown below 

 
∫

𝜕(𝜌∅)

𝜕𝑡
𝑑𝑉

⏟      
𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 
𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒

𝑉

+∫  ∇. (𝜌𝑈∅)𝑑𝑉⏟      
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑒𝑟𝑚𝑉

= ∫ ∇. (𝛤 ∇∅)𝑑𝑉⏟        
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑡𝑒𝑟𝑚𝑉

+∫ 𝑆∅ 𝑑𝑉⏟  
𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑒𝑟𝑚𝑉

  
(3.1) 

It can be seen from previous equation that general transport equation is second order as 

the diffusion term includes as second order derivative of ∅ in space. To represent this 

equation with acceptable accuracy, the different terms must be discretised with order 

equal to or higher than the order of discretised equation. 

As mentioned before that by using Gauss theorem, the volume integration of vector 

divergence field for region inside volume is equal to surface integration of outward flux 

normal to closed surface that surround the volume, so that general transport equation 

can be modified to the following form 

 
∫

𝜕(𝜌∅)

𝜕𝑡
𝑑𝑉

𝑉

+∫ 𝑛. (𝜌𝑈∅)𝑑𝑆⏟      
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑙𝑢𝑥𝑠

 = ∫ 𝑛. (𝛤 ∇∅)𝑑𝑆⏟        
𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑓𝑙𝑢𝑥𝑠

+∫ 𝑆∅
𝑉

 𝑑𝑉 (3.2) 

 

3.2.1 Approximation of Surface Integrals and Volume Integrals 

In equation (3.2), there are a series of surface and volume integration need to be 

calculated over the control volume. These integration need to be approximated to at least 

second order accuracy to confirm same level of accuracy. 

To calculate the surface integration for convective and diffusion flux term, we need the 

value of the transported property  ∅ on the faces of the control volume. This information is 

not available as these variables are calculated at control volume centroid, so some 

approximations need to be introduced: 

1- ∅ Varies linearly over the face over each face of the control volume, so the 

surface integration can be approximated in terms of variable values for ∅ at one 

or more location on the cell face. The integral can be evaluated using different 

rules (a) midpoint, (b) trapezoid, or (c) Simpson’s rule. By using midpoint rule 

which is of second order accuracy, ∅ can be represented by its mean value at 
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face centroid, so the surface integral can be approximated as the product of the 

mean value of ∅ over the surface and surface area. 

2- Approximate the cell face values in terms of the CV central value. 

Using these approximations and assumptions the surface integral for convection and 

diffusion fluxes can be approximated as follows: 

 
∫ n.(ρU∅)dS
s

=∑ ∫ n.(ρU∅)f ds
sf

≈∑ n.(ρU∅)
f
 Sf

f
=∑n.(ρU∅)f Sf

f
 (3.3) 

 
∫ 𝑛. (𝛤 ∇∅)𝑑𝑆
s

=∑ ∫ n.(𝛤 ∇∅)f ds
sf

≈∑ n.(𝛤 ∇∅)
f
 Sf

f
=∑n.(𝛤 ∇∅)f Sf

f
 (3.4) 

 

To approximate volume integrals in equation (3.2), similar approximation used in surface 

integral is utilised. 𝑆∅ varies linearly over the control volume and 𝑆∅ can be represented 

by mean value at control volume centroid  𝑆𝑝  using midpoint rule. 

 
∫ 𝑆∅
𝑉

 𝑑𝑉 = 𝑆∅ 𝑉 = 𝑆𝑝 𝑉 (3.5) 

Introducing equation (3.3) , (3.4) & (3.5) into equation (3.2), we get the following equation 

 ∂

∂t
ρ∅V +∑ n.(ρU∅)f Sf

f
=∑ n.(Γ ∇∅)f Sf

f
+ Sp V (3.6) 

 

3.2.2 Convective Term Spatial Discretization 

The convective term in equation (3.1) is discretised using equation (3.3)  

 
∫ ∇. (𝜌𝑈∅)𝑑𝑉
v

=∑n.(ρU∅)f Sf
f

   

                                   = ∑ n.(𝜌𝑈) 𝑓 ∅𝑓   Sf
f

 (3.7) 

                  = ∑ 𝐹 ∅𝑓 
f

   

Where, F in equation (3.7) represents mass flux through control volume faces 

 𝐹 = n.(𝜌𝑈) 𝑓  Sf (3.8) 
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From the previous equation, it can be seen that values of F depend on face values of ρ 

and U.For momentum equation in x-direction, the mass flux terms across different control 

volume faces are calculated as shown below 

 𝐹𝑛 = (𝜌𝑣)𝐴𝐴𝐴𝑁 + (𝜌𝑣)𝐵𝐴𝐵𝑁 (3.9) 

 𝐹𝑠 = (𝜌𝑣)𝑐𝐴𝐴𝑁 + (𝜌𝑣)𝐷𝐴𝐵𝑁 (3.10) 

 
𝐹𝑒 = 𝜌𝑒

𝑢𝐸 + 𝑢𝑃
2

𝐴𝑒 (3.11) 

 
𝐹𝑒 = 𝜌𝑤

𝑢𝑊 + 𝑢𝑃
2

𝐴𝑤 (3.12) 

 

 

Figure 3.5: Mass fluxes across u control volume 

The mass fluxes across v control volume are calculated in similar way like u control 

volume shown above. For temperature control volume, the mass fluxes are calculated 

using values of  𝜌 , u and v already computed at the faces of the control volume. 

While the face value of transported quantity (∅) is calculated using convection 

differencing scheme. 

3.2.2.1  Convection Interpolation Schemes 

The role of convection interpolation schemes is to determine the value of transported 

quantity (∅) at the face of the control volume, so that ∅f is determined using the values of 

∅ at neighbouring control volumes 
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 Upwind Differencing (UD) scheme. 

  The face value is determined according to the direction of the flow as shown in     
Figure 3.6. 

 
∅𝑓 = {

∅𝑃              𝐹 ≥ 0
∅𝑁               𝐹 < 0

 (3.13) 

 
 

The upwind scheme guarantees the Conservativeness, boundedness and 

transportiveness as it account for the direction of the flow [4],but it has low 

accuracy as it is a first order accurate based on backward differencing that leads to 

introducing numerical diffusion error. 

 

Figure 3.6: upwind interpolation scheme A) F≥0, B) F<0 [5] 

 

 Central Differencing (CD) scheme 

This scheme is also known as linear interpolation scheme in which the face centred 

value of the transported quantity is calculated from simple weighted linear 

interpolation between the values of the control volumes ∅P and ∅N as shown in 

Figure 3.7. 

 ∅𝑓 = ∅𝑃 ( 
𝑥𝑁 − 𝑥𝑓

𝑥𝑁 − 𝑥𝑃
 ) + ∅𝑁 ( 

𝑥𝑓 − 𝑥𝑃

𝑥𝑁 − 𝑥𝑃
 ) (3.14) 

In case of using uniform mesh, the face is located at the midway between two 

neighbouring control volumes of node P and N, so the value at face can be 

calculated using arithmetic average. 
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∅𝑓 =

∅𝑃 + ∅𝑁
2

 (3.15) 

 

 

Figure 3.7: Central Differencing (CD) scheme [5] 

The central scheme satisfies conservativeness and it is a second order accuracy, 

but it does not possess the transportiveness property at high peclet number 

because central scheme does not recognize the direction of the flow or the strength 

of the convection relative to diffusion. Also the boundedness property is not 

guaranteed at high peclet number which might cause non-physical oscillation in the 

solution. 

 QUICK scheme 

QUICK stands for Quadratic Upwind Interpolation for Convective Kinetics, which is 

a quadratic curve fitting using two nodes upstream (U,C) and one node 

downstream (D) in order to calculate the transported quantity (∅) at face center  as 

shown in Figure 3.8.The formula of quick scheme is shown below using the 

notation of Darwish [6] 

 
∅𝑓 = 𝑥𝑓 +

𝑥𝑓(𝑥𝑓 − 1)

𝑥𝑐(𝑥𝑐 − 1)
(∅𝑓 − 𝑥𝑐) (3.16) 

Where, x and ∅ are the normalized distance and transported property respectively 

given by equation (2.15) & (3.18) 

 𝑥 =
𝑥 − 𝑥𝑈
𝑥𝐷 − 𝑥𝑈

 (3.17) 
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∅ =

∅ − ∅𝑈
∅𝐷 − ∅𝑈

 (3.18) 

 

 

Figure 3.8: quick scheme 

This scheme is third order accuracy, but it may leads to stability problems in 

regions with strong gradients, overshoot and undershoot. 

 Smart scheme 

Smart stands for Sharp and Monotonic Algorithm for Realistic Transport, this 

scheme employ a composite approach as it combined a high resolution schemes 

with low order scheme. This scheme is bounded and prevents the spatial 

oscillation while maintain a high order of accuracy [7],but its disadvantage is that 

it requires more computational time compared to other conventional schemes. 

The accuracy of smart scheme is between second and fourth order. The formula 

is shown below  
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∅𝑓 =

{
 
 
 

 
 
  

𝑥𝑓(1 − 3𝑥𝑐 + 2𝑥𝑓)

𝑥𝑐(1 − 𝑥𝑐)
 ∅𝑐            𝑖𝑓      0 <  ∅𝑐 ≤

𝑥𝑐
3
                    

𝑥𝑓(𝑥𝑓 − 𝑥𝑐)

1 − 𝑥𝑐
+
𝑥𝑓(𝑥𝑓 − 1)

𝑥𝑐(𝑥𝑐 − 1)
 ∅𝑐      𝑖𝑓      

𝑥𝑐
3
<  ∅𝑐  ≤

(1 + 𝑥𝑓 − 𝑥𝑐)𝑥𝑐

𝑥𝑓

            1                                          𝑖𝑓      
(1 + 𝑥𝑓 − 𝑥𝑐)𝑥𝑐

𝑥𝑓
<  ∅𝑐 ≤ 1 

 ∅𝑐                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 
(3.19) 

 

3.2.3 Diffusion Term Spatial Discretization 

The diffusion term in equation (3.1) is discretised using equation (3.4) 

 
∫ ∇. (𝛤 ∇∅)𝑑𝑉 =
𝑣

∑n.(𝛤 ∇∅)f Sf
f

  

                                  = ∑ 𝛤𝑓 n.(∇∅)f  Sf
f

 (3.20) 

 

The diffusion coefficient at the control volume faces (𝛤𝑓 ) is calculated by taking harmonic 

mean for diffusion coefficient values at control volume centre. The diffusion coefficient at 

the east face is calculated in equation (3.21). (∇∅)𝑓 is calculated at the face centre using 

central differencing scheme. (∇∅)𝑒 at the east face is calculated as shown in equation 

(3.22) 

 
𝛤𝑒 =

𝑑𝑃𝐸
𝛤𝐸 
𝑑𝑒𝐸

+
𝛤𝑝 
𝑑𝑃𝑒

 
(3.21) 

 

 
 (∇∅)𝑒 =

∅𝐸 − ∅𝑝 
𝑋𝐸 − 𝑋𝑝

 (3.22) 
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Figure 3.9: calculating diffusion term 

 

3.2.4 Source Term Spatial Discretization 

For discretizing the source term in momentum equation in x-direction shown in 

Table 2.1.The source term is shown in integral form in equation (3.23) 

 
∫ S∅ dV
𝑣

= ∫ [−
∂p

∂x
+
∂

∂x
(λ divU + μ

∂u

∂x
) +

∂

∂y
(μ
∂v

∂x
)] 𝑑𝑉

𝑣

 (3.23) 

By using Gauss theorem, equation (3.23) is modified to the following form 

 
∫ 𝑆∅ dV
𝑣

= −∫ 𝑝 𝑛𝑥𝑑𝑠 +∫ (𝜆 𝑑𝑖𝑣𝑈 + 𝜇
𝜕𝑢

𝜕𝑥
)

𝑠𝑠

𝑛𝑥  𝑑𝑠 + ∫ 𝜇
𝜕𝑣

𝜕𝑥
 

𝑠

𝑛𝑦 𝑑𝑠 (3.24) 

   

The term 
𝛛𝐮

𝛛𝐱
  at east and west surface and term 

𝝏𝒗

𝝏𝒙
  at north and south surface are 

discretised using central differencing scheme 

 𝜕𝑢

𝜕𝑥
|
𝑠𝑒

=
𝑢𝐸 − 𝑢𝑃
∆𝑥

 (3.25) 

 𝜕𝑢

𝜕𝑥
|
𝑠𝑤

=
𝑢𝑝 − 𝑢𝑤
∆𝑥

 (3.26) 
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 𝜕𝑣

𝜕𝑥
|
𝑠𝑛

=
𝑣𝐵 − 𝑣𝐴
∆𝑥𝑢

 (3.27) 

 𝜕𝑣

𝜕𝑥
|
𝑠𝑠

=
𝑣𝐷 − 𝑣𝐶
∆𝑥𝑢

 (3.28) 

Where, 

∆x: Distance between two consecutive control volume centres 

∆xu: Distance between control volume faces 

Se, Sw , Sn , Ss : East, west, north and south faces of control volume 

 

Figure 3.10: u control volume 

The source terms of momentum equation in y-direction is discretised by the same 

method described above.  

3.2.5 Temporal Discretization 

The fractional step method will be used for solving the momentum and energy equations 

and this method will be explained in detail in the following chapter. For carrying out the 

time integration for these equations, a fully explicit time scheme is proposed. In order to 

simplify the notation, momentum in x-direction, momentum in y-direction and thermal 

energy equations can be rewritten in the following forms: 
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𝜌
𝜕𝑢

𝜕𝑡
= 𝑅(𝑢) −

∂P

∂x
 (3.29) 

 
𝜌
𝜕𝑣

𝜕𝑡
= 𝑅(𝑣) −

∂P

∂y
 (3.30) 

 
𝜌
𝜕𝑇

𝜕𝑡
= 𝑅(𝑇) (3.31) 

 

Where, R(u) ,R(v) and R(T) stands for convection, diffusion and source terms in 

momentum in x-direction, momentum in y-direction and thermal energy equations 

respectively. These terms are listed in Table 2.1. 

 𝑅(𝑢) = −∇. (𝜌𝑈𝑢) − ∇. (𝜇∇𝑢) + 𝑆𝑢 (3.32) 

 𝑅(𝑣) = −∇. (𝜌𝑈𝑣) − ∇. (𝜇∇𝑣) + 𝑆𝑣 (3.33) 

 
𝑅(𝑇) = −∇. (𝜌𝑈𝑇) − ∇. (

𝑘

𝑐𝑝
∇𝑇) + 𝑆𝑇 +

1

𝑐𝑝

𝑑𝑝𝑜
𝑑𝑡

 (3.34) 

For the time derivative term, a central difference scheme is used. The time derivative 

term of momentum equation in x-direction is shown in the following equation 

 

𝜌
𝜕𝑢

𝜕𝑡
|
𝑡=𝑛+

1
2
≈
𝜌𝑛+1𝑢𝑛+1 − 𝜌𝑛𝑢𝑛

∆𝑡
 (3.35) 

A fully explicit second order Adams-Bashforth scheme is used for R(u) 

 
𝑅(𝑢)𝑡=𝑛+

1
2 ≈

3

2
 𝑅(𝑢𝑛) −

1

2
 𝑅(𝑢𝑛−1) (3.36) 

For the pressure gradient term, a first order backward Euler scheme is used, so the 

momentum equation in x-direction can be written in the following form 

 𝜌𝑛+1𝑢𝑛+1 − 𝜌𝑛𝑢𝑛

∆𝑡
=
3

2
 𝑅(𝑢𝑛) −

1

2
 𝑅(𝑢𝑛−1) −

∂P

∂x

𝑛+1

 (3.37) 

The same step can be done for temporal discretization of momentum equation in y-

direction and thermal energy equations as they can be written as shown in equation 

(3.38) & (3.39) respectively. 

 𝜌𝑛+1𝑣𝑛+1 − 𝜌𝑛𝑣𝑛

∆𝑡
=
3

2
 𝑅(𝑣𝑛) −

1

2
 𝑅(𝑣𝑛−1) −

∂P

∂y

𝑛+1

 (3.38) 



Ch. 4 | Fractional step method algorithm

 

 25 

     

 𝜌𝑛+1𝑇𝑛+1 − 𝜌𝑛𝑇𝑛

∆𝑡
=
3

2
 𝑅(𝑇𝑛) −

1

2
 𝑅(𝑇𝑛−1) (3.39) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ch. 4 | Fractional step method algorithm

 

 26 

     

4 Fractional step method algorithm 

 

4.1 Fractional step method for incompressible flow 

The time integration of Navier-Stokes equation is carried out by the fractional step 

method which is a projection method. The solution of Navier-stokes equation is carried 

out in two steps. In the first step, an incomplete form of momentum equation that does 

not include the pressure gradients term is integrated at each time step to yield an 

approximate velocity field that is called predictor velocity. This predictor velocity is not 

divergence free, then Poisson equation is solved using the predictor velocity and the 

yield pressure field is used to correct the predictor velocity to produce divergence free 

velocity field that satisfies the incompressibility constraint[8]. 

As mentioned before in the previous chapter in section (2.5) that a fully explicit time 

integration scheme is used for the momentum equation. 

 
𝜌
𝜕𝑈

𝜕𝑡
= 𝑅(𝑢) − ∇P (4.1) 

After using a central differencing scheme for time derivative term (
𝜕𝑈

𝜕𝑡
) and fully explicit 

second order Adams-Bashforth scheme for R (u) and first order backward Euler scheme 

for pressure gradient term, the momentum equation can be modified to the following 

form: 

 𝜌𝑛+1𝑈𝑛+1 − 𝜌𝑛𝑈𝑛

∆𝑡
=
3

2
 𝑅(𝑈𝑛) −

1

2
 𝑅(𝑈𝑛−1) − ∇P𝑛+1 (4.2) 

As the density is constant for incompressible flow, so equation (4.2) can be written in the 

following form 

 
𝑈𝑛+1 = 𝑈𝑛 +

∆𝑡

𝜌
(
3

2
 𝑅(𝑈𝑛) −

1

2
 𝑅(𝑈𝑛−1)) − ∇P𝑛+1 (4.3) 

Equation (4.3) can be modified to the following form using the predictor velocity vector 

(𝑈𝑝).From this equation it can be seen that velocity field (𝑈𝑃) can be decomposed into 

divergence free part (𝑈𝑛+1) and scalar part (p).This decomposition sometimes called 

Helmholtz-Hodge theorem. 

 
𝑈𝑃 = 𝑈𝑛+1 +

∆𝑡

𝜌
∇P𝑛+1 (4.4) 
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The Predictor velocity (𝑈𝑃) is that is given by the following equation 

 
𝑈𝑃 = 𝑈𝑛 +

∆𝑡

𝜌
(
3

2
 𝑅(𝑈𝑛) −

1

2
 𝑅(𝑈𝑛−1)) (4.5) 

Poisson equation for determining the pressure is derived from velocity decomposition 

equation (4.4) by applying divergence operator 

 
∇. 𝑈𝑃 = ∇.𝑈𝑛+1 + ∇. (

∆𝑡

𝜌
∇P𝑛+1) (4.6) 

 As ∇. 𝑈𝑛+1 = 0 , the final form of Poisson equation for the pressure is shown in 

equation(4.7)  

 ∆𝑃𝑛+1 =
𝜌

∆𝑡
∇.𝑈𝑃  (4.7) 

 

After solving Poisson equation, the pressure is used for correcting the predictor velocity 

to get velocity at new time step 

 
𝑈𝑛+1 = 𝑈𝑝 −

∆𝑡

𝜌
∇P𝑛+1 (4.8) 

 

4.1.1 Discretization of Poisson equation 

Poisson equation can be written in integral form as shown in equation (4.9) 

 
∫ ∆𝑃𝑛+1

𝑣

𝑑𝑉 = ∫
𝜌

∆𝑡
∇. 𝑈𝑃 𝑑𝑉

𝑣

 (4.9) 

By using Gauss divergence theorem, Poisson equation is modified to the following form 

 
∫ ∇𝑃𝑓

𝑛+1

𝑠

𝑑𝑠 = ∫
𝜌

∆𝑡
∇. 𝑈𝑃𝑓 𝑑𝑠

𝑠

 (4.10) 

Poisson equation is discretised as shown in equation (4.11) 

 𝑝𝐸
𝑛+1 − 𝑝𝑝

𝑛+1

𝑑𝐸𝑃
𝐴𝑒 −

𝑝𝑝
𝑛+1 − 𝑝𝑊

𝑛+1

𝑑𝑃𝑊
𝐴𝑤 +

𝑝𝑁
𝑛+1 − 𝑝𝑝

𝑛+1

𝑑𝑁𝑃
𝐴𝑁 −

𝑝𝑃
𝑛+1 − 𝑝𝑆

𝑛+1

𝑑𝑃𝑆
𝐴𝑠

=
1

∆𝑡
[(𝜌𝑢𝑝𝐴)𝑒 − (𝜌𝑢

𝑝𝐴)𝑤 + (𝜌𝑣
𝑝𝐴)𝑛 − (𝜌𝑢

𝑝𝐴)𝑠] 
(4.11) 
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Poisson equation can be written in the following form 

 𝑎𝑝𝑝𝑝
𝑛+1 = 𝑎𝐸𝑝𝐸

𝑛+1 + 𝑎𝑊𝑝𝑊
𝑛+1 + 𝑎𝑁𝑝𝑁

𝑛+1 + 𝑎𝑆𝑝𝑆
𝑛+1 + 𝑏𝑝 (4.12) 

   

Where, coefficients are determined from the following equations 

 
𝑎𝐸 =

𝐴𝑒
𝑑𝐸𝑃

 (4.13) 

 
𝑎𝑊 =

𝐴𝑤
𝑑𝑃𝑊

 (4.14) 

 
𝑎𝑁 =

𝐴𝑛
𝑑𝑁𝑃

 (4.15) 

 
𝑎𝑆 =

𝐴𝑠
𝑑𝑃𝑆

 (4.16) 

 𝑎𝑝 = 𝑎𝐸 + 𝑎𝑊 + 𝑎𝑁 + 𝑎𝑆 (4.17) 

 
𝑏𝑝 = −

1

∆𝑡
[(𝜌𝑢𝑝𝐴)𝑒 − (𝜌𝑢

𝑝𝐴)𝑤 + (𝜌𝑣
𝑝𝐴)𝑛 − (𝜌𝑢

𝑝𝐴)𝑠] (4.18) 

 

Figure 4.1: Poisson equation discretization 

After writing Poisson equation in the discretised form, a system of linear algebraic will 

need to be solved. The complexity and size of the set of equations depend on the 

problem dimensions and number of grid nodes and the way of discretising the equations. 
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4.1.2 Solver 

For solving set of algebraic equations two technique are used: direct and iterative 

methods. Iterative methods are based on repeated application of relatively simple 

algorithm after a number of repetitions convergences to exact solution is reached. The 

number of operations to solve a system of N equations with N unknowns is of the order 

of N per iteration. Iterative methods have the advantages of simplicity and easy to be 

implemented. Examples of iterative methods are Jacobi and Gauss–Seidel point .One 

other hand; in direct methods the number of operations is of N3. Examples of direct 

methods are Cramer’s rule matrix inversion and Gaussian elimination. 

 Gauss-Seidel algorithm  

Gauss-Seidel method is applied to any matrix with non-zero elements on the 

diagonals. Convergence is guaranteed if one of these criteria is achieved[9], the 

first one is that the matrix should be diagonally dominant. Diagonally dominant 

means that coefficient on the diagonal for every row in the matrix must be equal to 

or larger than the sum of the other coefficient in the row and at least one row with a 

diagonal coefficient greater than the sum of other coefficients. The second criteria 

is that the matrix must be symmetric and positive definite. The solution procedures 

start by assuming initial guess solution, then the new values for ∅ are calculated 

from equation (4.19) using values calculated at current iteration and values stored 

form previous iteration. After that the approximate relative error is calculated using 

equation (4.20) and checked with the pre-specified tolerance. If the error is less 

than pre-specified tolerance, iterative process is stopped if not the solution at the 

current iteration is used as initial guess for the next iteration and iterative process is 

continued until convergence is reached. 

 aP∅P = aE∅E + aW∅W + aN∅N + aS∅S + bp (4.19) 

 

∈=
√∑(∅p

k − ∅p
k−1)2

√∑(∅p
k−1)2

 (4.20) 

Where, 

K: current iteration 

K-1: previous iteration 
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 Tri-diagonal matrix algorithm 

It is also known as Thomas algorithm as it was developed by Thomas (1949)[4].It is 

a simplified form of Gaussian elimination that can be used for solving tri-diagonal 

system of equation. The TDMA is considered direct method for one dimensional 

matrix, but applied iteratively in a line by line for solving multi-dimensional matrix. 

Its advantages are computationally inexpensive and a minimum amount of storage 

is required. 

Consider a system of equations has a tri-diagonal form as shown below 

 

[
 
 
 
 
 
 
1 −𝛼1 0 0 0 0 0
−𝛽2 𝐷2 −𝛼2 0 0 0 0
0 −𝛽3 𝐷3 −𝛼3 0 0 0
0 0 −𝛽4 𝐷4 −𝛼4 0 0
. . . . . . .
0 0 0 0 −𝛽𝑛 𝐷𝑛 −𝛼𝑛
0 0 0 0 0 −𝛽𝑛+1 𝐷𝑛+1]

 
 
 
 
 
 

[
 
 
 
 
 
 
∅1
∅2
∅3
∅4
.
∅𝑛
∅𝑛+1]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑐1
𝑐1
𝑐1
𝑐1
.
𝑐𝑛
𝑐𝑛+1]

 
 
 
 
 
 

 (4.21) 

 

In the above set of equations ∅1 and ∅n+1 are known boundary values, so 

equations can be written in general form 

 −βj∅j−1 + Dj∅j−αj∅j+1 = cj (4.22) 

Using forward elimination, equation (4.22) can be modified to the following form 

 ∅𝒋 = 𝐴𝑗∅𝒋+𝟏 + 𝑐𝑗
′ (4.23) 

Where, 

 𝐴𝑗 =
𝛼𝒋

𝐷𝑗 − 𝛽𝒋𝐴𝑗−1
 (4.24) 

 
𝑐𝑗
′ =

𝛽𝒋𝑐𝑗−1
′ + cj

𝐷𝑗 − 𝛽𝒋𝐴𝑗−1
 (4.25) 

 

 

After getting the values of Aj and cj
′ for all unknown ∅ using forward elimination 

from j=2 to j=n-1, backward substitution is used. As the value of ∅   
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is known at boundary location (n + 1), so the value of  ∅𝒋 can be obtained in 

reverse order (∅𝒏, ∅𝒏−𝟏, ∅𝒏−𝟐,……., ∅𝟐) using equation (4.23). 

TDMA can be applied iteratively to solve system of equations for two-dimensional 

problems. The general form of system of equation in 2-dimensional system is 

shown in equation  

 aP∅P = aE∅E + aW∅W + aN∅N + aS∅S + bp (4.26) 

If TDMA is used for solving (n-s) lines as shown in Figure 3.1 , equation (4.26) 

can be written in the following form: 

 −𝑎𝑆∅𝑆 + 𝑎𝑃∅𝑃 − 𝑎𝑁∅𝑁 = 𝑎𝐸∅𝐸 + 𝑎𝑊∅𝑊 + 𝑏𝑝 (4.27) 

Comparing equation (4.27) to equation (4.22), we can deduce the following 

relations 

 βj = 𝑎𝑆 (4.28) 

 Dj = 𝑎𝑝 (4.29) 

 αj = 𝑎𝑁 (4.30) 

 cj = 𝑎𝐸∅𝐸 + 𝑎𝑊∅𝑊 + 𝑏𝑝 (4.31) 

 

The right hand side of equation (4.27) is assumed to be temporary known, so that 

equation along n-s line can be solved for j =2, 3… n as shown in Figure 4.2.After 

that calculation is moved to the next n-s line. The sequence in which n-s lines are 

calculated is called swept direction. If the swept direction is from west to east the 

values of  ∅𝑊 are known from previous line calculations, while the values of ∅𝐸 

are unknown so they are assumed equal to their values at previous iteration. This 

makes solution process iterative and this process is repeated until convergence is 

reached. 
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Figure 4.2: using TDMA for solving n-s lines (line by line) 

 

4.1.3 Boundary Conditions and Initial Conditions 

Each control volume provides one algebraic equation. Volume integrals are calculated in 

the same manner for all interior control volumes, but fluxes through control volume face 

coincident with problem domain boundary need special treatment. These fluxes must be 

known or expressed as function of interior control volume values. Since these nodes are 

located on the domain boundary and no nodes located outside the boundary, their values 

can be only calculated based on one-side differences (forward or backward differences) 

or extrapolations. 

Common types of boundary conditions are constant gradient, fixed value and symmetry 

boundary condition. 

 Constant gradient boundary conditions, this condition is also known as 

Neumann boundary condition, where the gradient of the variable in direction 

normal to domain boundary is equal constant. 

 𝜕∅

𝜕𝜂
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.32) 

Where, 
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 𝜂: Normal direction 

This condition is implemented for Poisson equation by setting the equation 

coefficient as shown below for north boundary condition with zero pressure 

gradient as an example. 

 𝑎𝐸 = 0 

(4.33) 

 𝑎𝑊 = 0 

 𝑎𝑃 = 1 

 𝑎𝑁 = 0 

 𝑎𝑠 = 1 

 𝑏𝑝 = 0 

 

For velocity boundary condition, zero gradient boundary condition is implemented 

as shown below for north boundary as an example 

 𝑢𝑃 = 𝑢𝑆 (4.34) 

 Fixed value boundary condition, that is also known as Dirichlet, which is 

implemented by setting the value of variable of the nodes at domain boundary to 

fixed value. 

 ∅ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.35) 

This condition is implemented for Poisson equation by setting all equation as 

shown below 

 𝑎𝐸 = 0 

(4.36) 

 𝑎𝑊 = 0 

 𝑎𝑃 = 1 

 𝑎𝑁 = 0 

 𝑎𝑠 = 1 

 𝑏𝑝 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

While, for velocity equation, it is implement by setting velocity value to fixed value 
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 𝑢 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.37) 

Symmetry boundary condition, which treats the variables as if the boundary is 

a mirror plane. This condition sets the component of the variables normal to 

symmetry plane to zero; while parallel components and scalar quantity are 

calculated by setting their gradient in direction normal to the plane to zero. An 

example of symmetry boundary condition if it is applied on the west boundary is 

shown below 

 𝑢 = 0 (4.38) 

 𝜕𝑣

𝜕𝑥
= 0 (4.39) 

 𝜕∅

𝜕𝑥
= 0 (4.40) 

 

4.1.4 Determination of Δt 

As explicit temporal scheme is used in the fractional step method, so some time 

restrictions on the time step will be introduce to guarantee solution stability and obtain 

converged solution. Courant-Friedrichs-Lewy Condition for the numerical stability of 

difference schemes is used for determining the time step which states that for given a 

space discretization, a time step bigger than some computable quantity should not be 

taken, so that time step must be kept small to allow information to have sufficient time to 

travel through space discretization[10] and it is mathematically expressed as shown: 

 
∆𝑡 (

|𝑢𝑖|

∆𝑥𝑖
)
𝑚𝑎𝑥

≤ 𝐶𝑐𝑜𝑛𝑣 (4.41) 

 

∆𝑡(

𝛤
𝜌

∆𝑥𝑖
2)

𝑚𝑎𝑥

≤ 𝐶𝑣𝑖𝑠𝑐 (4.42) 

 

 Where, the bounding values 𝐶𝑐𝑜𝑛𝑣 and 𝐶𝑣𝑖𝑠𝑐 must be smaller than unity. In our case, we 

use values recommended by [11] using values of 𝐶𝑐𝑜𝑛𝑣 = 0.35 and 𝐶𝑣𝑖𝑠𝑐 = 0.2 . 
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4.1.5 Algorithm flow chart 

In the previous sections, we have discussed different procedures of fractional step 

method for incompressible flow. Now we will show how they work together as one unit as 

shown below. 

 

 

Input numerical data 

 Domain dimensions (L ,W) 

 Number of control volumes 

(N*M) 

 Acceptable error (𝜖)         

Input physical data 

 Density , viscosity, specific heat  

 Simulation time 

 

Mesh creation 

 

Initial conditions 

 set initial values for u0,v0  

 set initial value for p0 

  

Calculate initial time step Δt 

 

Calculate R (u), R (v), and R (T) at t n-1 

using convective and diffusive terms 

 

𝑢𝑛−1 = 𝑢𝑛 

Save R (u), R (v), and R (T) at t n-1 

               𝑣𝑛−1 = 𝑣𝑛  
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Calculate Poisson equation 

coefficient 

aE,aW,aN, aS, bP 

Solve Poisson equation using 

TDMA iterative solver 

𝑎𝑝𝑝𝑝
𝑛+1 = 𝑎𝐸𝑝𝐸

𝑛+1 + 𝑎𝑊𝑝𝑊
𝑛+1 + 𝑎𝑁𝑝𝑁

𝑛+1 + 𝑎𝑆𝑝𝑆
𝑛+1 + 𝑏𝑝 

Calculate velocity at t n+1 

𝑢𝑛+1 = 𝑢𝑝 +
∆𝑡

𝜌
  
𝜕𝑝𝑛+1

𝜕𝑥
 

𝑣𝑛+1 = 𝑣𝑝 +
∆𝑡

𝜌

𝜕𝑝𝑛+1

𝜕𝑦
 

Calculate Temperature at t 
n+1 

𝑇𝑛+1 = 𝑇𝑛 +
∆𝑡

𝜌
(
3

2
 𝑅(𝑇𝑛) −

1

2
 𝑅(𝑇𝑛−1)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculate R (u), R (v), and R (T) at t n 

using convective and diffusive terms 

𝑢𝑃 = 𝑢 𝑛 +
∆𝑡

𝜌
( 
3

2
 𝑅(𝑢𝑛) −

1

2
 𝑅(𝑢𝑛−1)) 

𝑣𝑃 = 𝑣  𝑛 +
∆𝑡

𝜌
( 
3

2
 𝑅(𝑣𝑛) −

1

2
 𝑅(𝑣𝑛−1)) 

Calculate predictor velocity 
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Check for steady state 

𝑑𝑖𝑓𝑓 1 =
 ∑(𝑢𝑛+1 − 𝑢𝑛)2

 ∑(𝑢𝑛)2
 

𝑑𝑖𝑓𝑓 2 =
 ∑(𝑣𝑛+1 − 𝑣𝑛)2

 ∑(𝑣𝑛)2
 

𝑑𝑖𝑓𝑓 3 =
 ∑(𝑇𝑛+1 − 𝑇𝑛)2

 ∑(𝑇𝑛)2
 

Calculate Δt 

 

𝑡 = 𝑡 + 𝛥𝑡 

𝑢𝑛 = 𝑢𝑛+1 

𝑣𝑛 = 𝑣𝑛+1 

𝑇𝑛 = 𝑇𝑛+1 

Steady state loop break 

Max (diff 1, diff 2, diff 3) < 𝜖 

Final calculations
 

Calculate streamlines, nusselt number, etc.
 

Save result
 

Exit
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4.2 Fractional step method for compressible flow with low Mach number 

Fractional step for incompressible flow can be extended using Adams-Bashforth and 

Crank-Nicolson time integration schemes to simulate compressible flow with low Mach 

number and high density variations[12, 13].In this case Bossinesq approximation that 

neglect density variation cannot be  used in describing fluxes with high density variation. 

In low Mach number Navier-stokes equation the velocity divergence is not zero and 

acoustic waves are neglected and high order terms that depend on Mach number are 

removed.The pressure is split into dynamic pressure and thermodynamic pressure. The 

thermodynamic pressure is used to calculate the density using ideal gas state law. 

4.2.1 Numerical algorithm  

The fractional step method for compressible flow with low Mach number is done in 

predictor-corrector sub-steps. In the predictor step a second order Adams-Bashforth time 

integration scheme is used to calculate the predicted scalar fields and predictor velocity 

is calculated after correcting the pseudo velocity in the pressure correction step to satisfy 

the continuity equation. While in the corrector step a Crank-Nicolson time integration 

scheme is used to calculate scalar field at the new time step and velocity is calculated 

after the pressure correction step. In both steps pressure correction requires solving 

Poisson equation using TDMA solver. 

The algorithm scheme will be discussed in the following sub sections and it will be 

divided into two parts: predictor step and corrector step. Before discussing the algorithm, 

we will summarize flow equations which are continuity, Navier-Stokes and energy 

equation shown in equation (4.43) , (4.44) & (4.45). 

 𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑗

𝜕𝑥𝑗
= 0 (4.43) 

 𝜕𝜌𝑢𝑖
𝜕𝑡

= −
𝜕𝜌𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
−
𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 (4.44) 

 
𝜌
𝜕ℎ

𝜕𝑡
= −𝜌𝑢𝑗

𝜕ℎ

𝜕𝑥𝑗
+
𝑑𝑝0
𝑑𝑡

−
𝜕𝑞𝑗

𝜕𝑥𝑗
 (4.45) 
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4.2.1.1 Predictor  

1. Predicted scalar fields are calculated using second order Adams-Bashforth time 

integration scheme, so that Predicted enthalpy is calculated by applying Adams-

Bashforth time integration scheme on energy transport equation as shown in 

equation (4.46) .This scheme is fully explicit time scheme that depend on scalar 

fields and density at current time step (t n) and previous time step (t n-1). 

 
𝜌𝑛
ℎ∗ − ℎ𝑛

∆𝑡
=
3

2
 (𝜌𝑛

𝜕ℎ

𝜕𝑡
|
𝑛

) −
1

2
(𝜌𝑛−1  

𝜕ℎ

𝜕𝑡
|
𝑛−1

) (4.46) 

2. The temperature at each control volume can be calculated using equation of the 

enthalpy of non-reacting flows which is equal to the sensible enthalpy. 

 
ℎ = ∫ 𝐶𝑃 𝑑𝑇

𝑇

𝑇0

 (4.47) 

3. Evaluate thermodynamic pressure which is constant and equal to ambient 

pressure for open system but for closed system, the pressure at given time is 

calculated using the total mass in the enclosure and temperature field. 

 
𝑀0 =

𝑝0
𝑅𝑖
∫

1

𝑇𝑉

𝑑𝑉 (4.48) 

 
𝑝0 =

𝑀0 𝑅𝑖

∫
1
𝑇𝑉
𝑑𝑉

 (4.49) 

Where, 

                  𝑝0: Thermodynamic pressure 

𝑀0: Total mass in the closure 

𝑅𝑖 : Universal gas constant 

4. Calculate predicted density from equation of state as shown in equation 

 𝜌∗ =
𝑝0
𝑅𝑖𝑇

 (4.50) 

5. The intermediate velocity field �̂�𝑖 that is calculated by integrating pressure-split 

momentum equation. 
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 𝜌∗�̂�𝑖 − 𝜌
𝑛𝑢𝑖

𝑛

∆𝑡
=
3

2
𝑅𝑖
𝑛 −

1

2
𝑅𝑖
𝑛−1 (4.51) 

Where, 

 
𝑅𝑖 = −

𝜕𝜌𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
−
𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 (4.52) 

6. The predicted hydrodynamic pressure 𝑝∗ is determined by solving Poisson 

equation  

 
∇2𝑝∗ =

1

∆𝑡
[∇. (𝜌∗ �̂�𝑖) − ∇. (𝜌

∗𝑢𝑖
∗)] (4.53) 

Where, ∇. ( 𝜌∗𝑢𝑖
∗) can be replaced by −

∂ρ

∂t
|
∗
 from continuity equation 

 ∇. ( 𝜌∗𝑢𝑖
∗) = −

𝜕𝜌

𝜕𝑡
|
∗
  (4.54) 

and   
∂ρ

∂t
|
∗
  is given by second order discretization 

 ∂ρ

∂t
|
∗

= 
1

2 ∆𝑡
(3𝜌∗ − 4𝜌𝑛 + 𝜌𝑛−1) (4.55) 

7. Finally , the predicted velocity field 𝑢𝑖
∗ is determined using the projection step 

  𝜌∗𝑢𝑖
∗ −  𝜌∗ �̂�𝑖
∆𝑡

= −
𝜕𝑝∗

𝜕𝑥𝑖
 (4.56) 

4.2.1.2 Corrector 

1. The temporal derivative of scalar fields at new time step are calculated based on 

predicted values and values at old time step (t n). Enthalpy at the new time step 

is calculated using second order Crank-Nicolson time integration scheme. 

 
𝜌𝑛
ℎ𝑛+1 − ℎ𝑛

∆𝑡
=
1

2
(𝜌𝑛

𝜕ℎ

𝜕𝑡
|
𝑛

+ 𝜌∗
𝜕ℎ

𝜕𝑡
|
∗∗

) (4.57) 

Where, time derivative of predicted enthalpy 
𝜕ℎ

𝜕𝑡
|
∗∗

 is calculated from equation 

(4.45) using predicted values. 

2. Calculate thermodynamic pressure po if it is not constant from equation (4.49). 
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3. evaluate gas density at the new tine step using ideal gas law  

 𝜌 =
𝑝0
𝑅𝑖𝑇

 (4.58) 

4. Determine second intermediate velocity 𝑢𝑖
′ from pressure split momentum 

equation. 

 𝜌𝑛+1𝑢𝑖
′ − 𝜌𝑛𝑢𝑖

𝑛

∆𝑡
=
3

2
𝑅𝑖
𝑛 −

1

2
𝑅𝑖
𝑛−1 (4.59) 

5. the pressure at the new time step is calculated from Poisson equation 

 
∇2𝑝𝑛+1 =

1

∆𝑡
[∇. (𝜌𝑛+1𝑢𝑖

′) − ∇. (𝜌𝑛+1𝑢𝑖
𝑛+1)] (4.60) 

Where, ∇. (𝜌𝑛+1𝑢𝑖
𝑛+1) can be replaced by −

∂ρ

∂t
|
n+1

 from continuity equation 

 
∇. (𝜌𝑛+1𝑢𝑖

𝑛+1) = −
𝜕𝜌

𝜕𝑡
|
𝑛+1

  (4.61) 

and   
∂ρ

∂t
|
n+1

  is given by second order discretization 

 ∂ρ

∂t
|
n+1

= 
1

2 ∆𝑡
(3𝜌𝑛+1 − 4𝜌𝑛 + 𝜌𝑛−1) (4.62) 

6. finally , calculate the velocity at the new time step 

  𝜌𝑛+1𝑢𝑖
𝑛+1 −  𝜌𝑛+1𝑢𝑖

′

∆𝑡
= −

𝜕𝑝𝑛+1

𝜕𝑥𝑖
 (4.63) 

 

 

4.2.2 Algorithm flow chart 
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Input numerical data 

 Domain dimensions (L ,W) 

 Number of control volumes 

(N*M) 

 Acceptable error (𝜖)         

Input physical data 

 Density , viscosity, specific heat  

 Simulation time 

 

Mesh creation 

 

Initial conditions 

 set initial values for u0,v0  

 set initial value for p0,μ,ρ 

  

Calculate initial time step Δt 

 

Calculate R (u), R (v), and 
𝝏𝒉

𝝏𝒕
 at t n-1 

using convective and diffusive terms 

Save R (u), R (v), and 
𝝏𝒉

𝝏𝒕
 at t n-1 

  

Calculate R (u), R (v), and 
𝝏𝒉

𝝏𝒕
  at t n 

using convective and diffusive terms 

 

Save R (u), R (v), and 
𝝏𝒉

𝝏𝒕
  at t n 
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Calculate predicted enthalpy h* 

𝜌𝑛
ℎ∗ − ℎ𝑛

∆𝑡
=
3

2
 (𝜌𝑛

𝜕ℎ

𝜕𝑡
|
𝑛

) −
1

2
(𝜌𝑛−1  

𝜕ℎ

𝜕𝑡
|
𝑛−1

) 

Calculate predicted temperature T* 

 

ℎ = ∫ 𝐶𝑃 𝑑𝑇
𝑇

𝑇0

 

Calculate predicted thermodynamic 

pressure po
* 

Calculate predicted density ρ* , 

predicted viscosity μ* and predicted 

thermal conductivity K*  

 

Calculate intermediate velocity �̂�𝒊 
 

 

𝜌∗�̂�𝑖 − 𝜌𝑛𝑢𝑖
𝑛

∆𝑡
=
3

2
𝑅𝑖

𝑛 −
1

2
𝑅𝑖

𝑛−1 

Calculate Poisson equation coefficient 

aE,aW,aN, aS, bP 

Solve Poisson equation using 

TDMA iterative solver to get predicted dynamics 

pressure p* 

𝑎𝑝𝑝𝑝
∗ = 𝑎𝐸𝑝𝐸

∗ + 𝑎𝑊𝑝𝑊
∗ + 𝑎𝑁𝑝𝑁

∗ + 𝑎𝑆𝑝𝑆
∗ + 𝑏𝑝

∗ 

Calculate predicted velocity 𝒖𝒊
∗ 

 𝜌∗𝑢𝑖
∗ −  𝜌∗ �̂�𝑖
∆𝑡

= −
𝜕𝑝∗

𝜕𝑥𝑖
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Calculate 
𝝏𝒉

𝝏𝒕
|
∗∗

using predicted values 

 

𝜌𝑛
ℎ𝑛+1 − ℎ𝑛

∆𝑡
=
1

2
(𝜌𝑛

𝜕ℎ

𝜕𝑡
|
𝑛

+ 𝜌∗
𝜕ℎ

𝜕𝑡
|
∗∗

) 

Calculate enthalpy hn+1 at new time step 

𝜌𝑛+1𝑢𝑖
′ − 𝜌𝑛𝑢𝑖

𝑛

∆𝑡
=
3

2
𝑅𝑖

𝑛 −
1

2
𝑅𝑖

𝑛−1 

Calculate second intermediate velocity 𝒖𝒊
′  

Calculate temperature at new time step T n+1  

Calculate thermodynamic pressure po  

Calculate density, viscosity and thermal 

conductivity at new time step  

Calculate Poisson equation coefficient 

aE,aW,aN, aS, bP 

𝑎𝑝𝑝𝑝
𝑛+1 = 𝑎𝐸𝑝𝐸

𝑛+1 + 𝑎𝑊𝑝𝑊
𝑛+1 + 𝑎𝑁𝑝𝑁

𝑛+1 + 𝑎𝑆𝑝𝑆
𝑛+1 + 𝑏𝑝

𝑛+1 

Solve Poisson equation using 

TDMA iterative solver to get dynamics pressure p n+1 
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 𝜌𝑛+1𝑢𝑖
𝑛+1 −  𝜌𝑛+1𝑢𝑖

′

∆𝑡
= −

𝜕𝑝𝑛+1

𝜕𝑥𝑖
 

Calculate velocity at new time step 𝒖𝒊
𝒏+𝟏 

𝑑𝑖𝑓𝑓 1 =
 ∑(𝑢𝑛+1 − 𝑢𝑛)2

 ∑(𝑢𝑛)2
 

𝑑𝑖𝑓𝑓 2 =
 ∑(𝑣𝑛+1 − 𝑣𝑛)2

 ∑(𝑣𝑛)2
 

𝑑𝑖𝑓𝑓 3 =
 ∑(𝑇𝑛+1 − 𝑇𝑛)2

 ∑(𝑇𝑛)2
 

Check for steady state 

𝑡 = 𝑡 + 𝛥𝑡 

𝑢𝑛−1 = 𝑢𝑛 

𝑣𝑛−1 = 𝑣𝑛 

∅𝑛−1 = ∅𝑛 

𝑢𝑛 = 𝑢𝑛−1 

𝑣𝑛 = 𝑣𝑛−1 

∅𝑛 = ∅𝑛−1 

Calculate Δt 

Save older values 

Save old values 

 

Steady state loop break 

Max (diff 1, diff 2, diff 3) < 𝜖 

Final calculations
 

Calculate streamlines, nusselt number, etc.
 

Save result
 

Exit
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5  Code verification 

In this chapter, we will verify and assesses our code to make sure that it is correctly 

implemented. In verification process the accuracy of the solution provided by our 

computational simulation code is compared with known solution or experimental data. 

Verification is defined as the process of testing how far the model implementation 

accurately represents the developer’s conceptual description of the model and the 

solution to the model. This process strategy is based on identification, quantification and 

reduction of error in the model and its solution. To measure numerical solution error, 

model solution should be compared to highly accurate analytical or numerical solution 

(benchmark solution),so that verification can provides an evidence that the conceptual 

model is correctly solved using discretized mathematical equations implemented in 

simulation code. 

 

Figure 5.1: Verification process[14] 

The five major sources of errors in CFD are[14]: 

1. insufficient spatial discretization convergence 

2. insufficient temporal discretization convergence 

3. insufficient convergence of an iterative procedure 

4. computer round-off 

5. computer programming errors 

The first three errors are considered to be within the realm of CFD as the first two errors 

depend mainly on the way of discretizing different terms in flow governing equations and 

the third one depend on convergence criteria set for the iterative process. The fourth 
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error source is of minor importance and rarely dealt within CFD. The fifth source of error 

belongs to computer science field as it dealt with programming errors. 

 

5.1  Incompressible flow 

The incompressible flow program code will be firstly checked by method of manufactured 

solutions (MMS) in the next subsection which is considered to be in the category of 

analytical solution and after that results of code will be compared with benchmark 

solution for driven cavity and thermal differential heated cavity. 

5.1.1 The Method of manufactured solutions (MMS) 

The MMS method provides a straight forward technique for verifying code accuracy by 

generating an analytical solution that can be compared with numerical solution. The idea 

of MMS method is to simply manufacture an exact solution for a system of equations 

without being concerned with physical realism as the verification is a purely mathematical 

exercise[15].Suppose we need to solve a differential equation for quantity ∅ in the 

following form: 

 𝜕∅

𝜕𝑡
= 𝐹(∅) (5.1) 

After that a source term S is added to the previous equation 

 𝜕∅

𝜕𝑡
= 𝐹(∅) + 𝑆 (5.2) 

And the source term is calculated for a manufactured solution ∅𝑀 as shown in equation 

(5.3) 

 
𝑆 =

𝜕∅𝑀

𝜕𝑡
− 𝐹(∅𝑀) (5.3) 

 

The source term is calculated analytically and added to equation need to be tested. After 

that modified equation is solved numerically and compared to analytical solution and the 

error is calculated for different mesh sizes. 

To make the verification process using the MMS easier, it will be divided into three steps: 
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1. The velocity component in x-direction u(x,y) is considered unknown while the rest 

of functions and  parameters are known and the numerical solution of u(x,y) is 

compared with known analytical solution. 

2. The velocity component in y-direction v(x,y) is considered unknown while the rest 

of functions and  parameters are known and the numerical solution of v(x,y) is 

compared with known analytical solution. 

3. The resolution of coupling of continuity and momentum equations is tested. In this 

step, both u(x,y) and v(x,y) are assumed unknown and their numerical solutions 

are compared to known analytical solutions. 

The analytical known velocity and pressure fields that will be used in our testing our code 

are listed below: 

 u(x, y) = x2y (5.4) 

 v(x, y) = −xy2 (5.5) 

 P(x, y) = x3 + y3 (5.6) 

The velocity field (u,v) satisfies the continuity equation and the divergence of the velocity  

vector is zero (div U=0) as the flow is incompressible. 

1. First step: 

The velocity component in x-direction is unknown and the other functions v(x,y) 

and p(x,y) are known. The analytical velocity field ua is compared with the 

numerical one un. A source term 𝐹𝑥 , 𝑢 𝑎  should be added to the momentum 

equation in x-direction as shown below and it is calculated using partial 

derivatives that are substituted in the momentum equation. The expression is 

shown in equation  

 
𝜌𝑢
𝜕𝑢

𝜕𝑥
+ 𝜌𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) + 𝐹𝑥 , 𝑢 𝑎 (5.7) 

 𝐹𝑥 , 𝑢𝑎 = 𝜌𝑥
3𝑦2 + 3𝑥2 − 2𝜇𝑦 (5.8) 

 

The equations are solved considering: 

 Density:𝜌 = 1 𝑘𝑔/𝑚3 

 viscosity:𝜇 = 0.5 𝑘𝑔/𝑚2𝑠 
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 domain:𝛺 = 𝑋 ∗ 𝑌 ,on Lx=1.5 , Ly=1 

 criteria to stop execution: |∅𝑛 − ∅𝑛−1| < 10−10  

The numerical solution of u is calculated for different number of control volumes 

and the results are compared to the analytical solution. The error is calculated as 

shown below: 

 
𝐸𝐷(𝑢) =

max (|𝑢𝑎 − 𝑢𝑛|)

max (|𝑢𝑎|)
 (5.9) 

The goal of this test is to check the coincidence between the order of the used 

numerical scheme and the order of the calculated error convergence obtained 

with our code. The results are shown in Table 2.1. 

 

Number of 
control volumes 

𝑬𝑫(𝒖) 𝒍𝒐𝒈𝟐 (
𝑬𝑫(𝒖)𝒏−𝟏
𝑬𝑫(𝒖)𝒏

) 

15,10 1.0306*10-2  

30,20 5.4349*10-3 0.924 

60,40 2.7487*10-3 0.982 

120,80 1.3865*10-3 0.984 

240,160 6.6385*10-4 1.062 

Table 5.1: Error convergence for u variable 

2. second step 

a similar procedures carried in the first step will be applied, but in this case 

velocity component in y-direction v will be unknown and other functions u(x,y) and 

p(x,y) will be known. The source term 𝐹𝑦 , 𝑣 𝑎   that will be added to momentum 

equation in y-direction is calculated: 

 
𝜌𝑢
𝜕𝑣

𝜕𝑥
+ 𝜌𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
) + 𝐹𝑦 ,𝑣 𝑎 (5.10) 

 

 𝐹𝑦 , 𝑣 𝑎 = 𝜌𝑥
2𝑦3 + 3𝑦2 + 2𝜇𝑥  (5.11) 
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The numerical solution of velocity in y direction vn is compared to analytical 

solution va and the convergence error are calculated as shown in Table 5.2 

 

Number of control 
volumes 

𝑬𝑫(𝒗) 𝒍𝒐𝒈𝟐 (
𝑬𝑫(𝒗)𝒏−𝟏
𝑬𝑫(𝒗)𝒏

) 

15,10 1.96*10-2  

30,20 8.62 *10-3 1.182234 

60,40 4.08 *10-3 1.07876 

120,80 1.99 *10-3 1.038502 

240,160 9.78 *10-4 1.023605 

Table 5.2: Error convergence for v variable 

 

3. Third step: 

Once momentum equations in both x and y directions are correctly checked, the 

resolution of the coupling needs to be verified. The same analytical velocity and 

pressure are used and the same source term in equation (5.8) and (5.11) are 

added to momentum equation in x and y direction respectively. 

The unknown variable will be u(x,y),v(x,y) and p(x,y).The numerical solutions for 

these variable un, vn and pn are compared to the analytical solution. 

The equations are solved considering: 

 Density:𝜌 = 2 𝑘𝑔/𝑚3 

 viscosity:𝜇 = 0.8 𝑘𝑔/𝑚2𝑠 

 domain:𝛺 = 𝑋 ∗ 𝑌 ,on Lx=1 , Ly=1.5 

 criteria to stop solver: ∈ < 10−10 where ∈ simulation result error 

 criteria to stop iterative loop of Poisson equation: |𝑝𝑖 − 𝑝𝑖−1|  < 10
−6  

The convergence error for u and v variable are listed in Table 5.3 and 

convergence error for p is listed in Table 5.4. 
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Number 
of 

control 
volumes 

𝑬𝑫(𝒖) 𝒍𝒐𝒈𝟐 (
𝑬𝑫(𝒖)𝒏−𝟏
𝑬𝑫(𝒖)𝒏

) 𝑬𝑫(𝒗) 𝒍𝒐𝒈𝟐 (
𝑬𝑫(𝒗)𝒏−𝟏
𝑬𝑫(𝒗)𝒏

) 

10,15 4.80*10-3  6.64*10-3  

20,30 2.41*10-3 0.9958 2.53*10-3 1.387863 

40,60 1.21*10-3 0.9953 1.11*10-3 1.183043 

80,120 6.02*10-4 1.0045 5.23*10-4 1.094013 

160,240 3.01*10-4 0.9983 2.53*10-4 1.046203 

Table 5.3: Error convergence for u and v variable 

 

Number of control volumes 𝑬𝑫(𝒑) 𝒍𝒐𝒈𝟐 (
𝑬𝑫(𝒑)𝒏−𝟏
𝑬𝑫(𝒑)𝒏

) 

10,15 6.954*10-2  

20,30 3.521*10-2 0.981896 

40,60 1.767*10-2 0.994408 

80,120 8.958*10-3 0.980314 

160,240 4.564*10-3 0.972842 

Table 5.4: Error convergence for p variable 

 

It can be concluded from the results of error convergence in Table 5.1, Table 5.2, 

Table 5.3 and Table 5.4 that the logarithms of the quotients of consecutive error  

𝑙𝑜𝑔2 (
𝐸𝐷(∆)𝑛−1

𝐸𝐷(∆)𝑛
) is nearly equal to 1.The momentum and Poisson equation are 

discretized using numerical schemes of different orders . The diffusive terms are 

discretized using second order central differencing scheme, while the convective 

terms are discretized according to the convective numerical scheme used. In this 

case upwind scheme is used for discretizing convective terms which are of order 

1.From the results, we can deduce that the error in the convective terms 

predominate over the others as the logarithms of the quotients of consecutive error 

is approaching 1 which is equal to the order of upwind scheme.  
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5.1.2 Lid Driven cavity 

The objective of comparing our results with the benchmark solution of the driven cavity 

case is to ensure that continuity and Navier-Stokes equations for incompressible flow 

have been modelled correctly in our code. 

5.1.2.1 Problem description 

The problem considers incompressible flow in square cavity with upper wall moving with 

velocity u while other walls have no-slip tangential and zero normal velocity boundary 

condition as shown in Figure 3.1. 

.  

Table 5.5: Driven cavity problem description [16] 

 

5.1.2.2 Boundary conditions 

The upper wall has a uniform velocity in x-direction (u =1 m/s) and zero velocity 

component in the normal direction (v =0 m/s), while the other walls has zero tangential 

and normal velocity components (u=0 m/s & v=0 m/s). 

For pressure boundary conditions, zero pressure gradients in the normal direction are 

assumed for all the walls (
𝜕𝑝

𝜕𝑛
= 0). As the Poisson equation is solved by TDMA solver, so 

it will have infinite number of solutions with the zero gradients boundary condition for all 
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the walls. In order to avoid this problem, the pressure is set to fixed value at one control 

volume in the problem domain. 

5.1.2.3 Results 

In this section, we will compare our numerical results with the benchmark solution [17] for 

different Reynold numbers (100,400,3200,5000,7200). The benchmark solution is 

presented by the values of horizontal velocity component (u) along vertical axis passing 

through geometric center of cavity and vertical velocity component (v) along horizontal 

axis passing through the geometric center of the cavity. 

First, we will compare our numerical result at Reynold number 400 using different 

numerical schemes for the convective terms to benchmark solution. The numerical 

schemes used for convective terms are upwind, hybrid, central and smart scheme. The 

results using different scheme are compared to the benchmark solution as shown in 

Figure 5.2 and Figure 5.3.The mesh size used in our simulation is 50*50 control volume. 

From the figures we can conclude that both central and smart schemes give quite 

identical results to benchmark solution. If we compare smart and central scheme results, 

we can deduce that smart is better and the reason is that its accuracy is between second 

and fourth order compared to central scheme which is of second order. 

As smart scheme provides results with the smallest error compared to benchmark 

solution, so smart scheme will be used for comparing our results for different Reynold 

numbers .A mesh size of 150*150 control volume is used. The results are compared with 

reference solution from Figure 5.2  to Figure 5.13.The streamlines for different Reynold 

numbers are shown in Figure 5.14 to Figure 5.18. 
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Figure 5.2: Results of u-velocity along the vertical axis passing through geometric centre of cavity 
Re=400 (50*50 CV) 

 

Figure 5.3: Results of v-velocity along the horizontal axis passing through geometric centre of 
cavity Re=400 (50*50 CV) 
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Figure 5.4: Results of u-velocity along the horizontal axis passing through geometric centre of 
cavity Re=100 (150*150 CV) 

 

Figure 5.5: Results of v-velocity along the horizontal axis passing through geometric centre of 
cavity Re=100 (150*150 CV) 
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Figure 5.6: Results of u-velocity along the horizontal axis passing through geometric centre of 
cavity Re=400 (150*150 CV) 

 

Figure 5.7: Results of v-velocity along the horizontal axis passing through geometric centre of 
cavity Re=400 (150*150 CV) 
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Figure 5.8: Results of u-velocity along the horizontal axis passing through geometric centre of 
cavity Re=3200 (150*150 CV) 

 

Figure 5.9: Results of v-velocity along the horizontal axis passing through geometric centre of 
cavity Re=3200 (150*150 CV) 
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Figure 5.10: Results of u-velocity along the horizontal axis passing through geometric centre of 
cavity Re=5000 (150*150 CV) 

 

 Figure 5.11: Results of v-velocity along the horizontal axis passing through geometric 
centre of cavity Re=5000 (150*150 CV) 
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Figure 5.12: Results of u-velocity along the horizontal axis passing through geometric centre of 
cavity Re=7200 (150*150 CV) 

 

Figure 5.13 : Results of v-velocity along the horizontal axis passing through geometric centre of 
cavity Re=7200 (150*150 CV) 
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Figure 5.14: streamlines at Re=100 

 

Figure 5.15:  streamlines at Re=400 
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Figure 5.16: streamlines at Re=3200 

 

 Figure 5.17: streamlines at Re=5000 
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Figure 5.18: streamlines at Re=72000 

 

The steady-state u and v profiles along the vertical and horizontal center lines showed a 

good agreement with benchmark solutions at different Reynold numbers. As Reynold 

number increases, a new secondary vortex appear in the top left side of the corner as 

shown in the streamlines drawing at Re=3200, 5000 and 7200 Figure 5.16 , Figure 5.17 

& Figure 5.18. 
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5.1.3 Differentially heated cavity 

The objective of comparing our results with the benchmark solution of the differentially 

heated cavity case is to ensure that continuity, Navier-Stokes equations and energy 

equations for incompressible flow have been modelled correctly in our code. 

5.1.3.1 Problem description 

The flow being considered is two dimensional incompressible flow of Prandtl number 

0.71 in an upright square cavity of length L. Boussinesq approximation is describing 

continuity and momentum equations which assume that density variation is negligible in 

continuity equation and inertia terms in momentum equation, while density variation in 

buoyancy terms in momentum equation in the vertical direction cannot be neglected. 

Both velocity components are zero on the boundaries. The horizontal walls are insulated, 

and the vertical sides are at temperatures Th and Tc. The solutions of this problem-

velocities, temperature and rates of heat transfer-have been obtained at Rayleigh 

number of 103, 104, 105 and 106. 

 

Figure 5.19: Differentially heated cavity problem description 

 

5.1.3.2 Boundary conditions 

The velocity components in tangential and normal direction are equal to zero for all the 

walls (u=v=0 m/s). 
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For pressure boundary conditions, zero pressure gradients in the normal direction are 

assumed for all the walls (
𝜕𝑝

𝜕𝑛
= 0). As the Poisson equation is solved by TDMA solver, so 

it will have infinite number of solutions with the zero gradients boundary condition for all 

the walls. In order to avoid this problem, the pressure is set to fixed value at one control 

volume in the problem domain. 

For temperature boundary conditions, top and bottom walls are insulated, so the 

temperature gradient in direction normal to wall is equal to zero (
𝜕𝑇

𝜕𝑛
= 0).while the 

vertical walls temperatures are fixed to Th and Tc. 

5.1.3.3 Results 

The results at different Rayleigh number 103, 104
, 105 and 106 are calculated using 

different mesh sizes. For Rayleigh number 103 and104 uniform mesh of 50*50 is used as 

this mesh size was sufficient to get quite similar solution to benchmark solution [18, 19], 

while for higher Rayleigh 105 and 106 a finer concentrated mesh of 100*100 is utilized. 

To compare our results with the benchmark solution, the following quantities are showed 

in Table 5.6 to Table 5.9 

|ψmid| The stream function at the mid-point of the cavity 

|ψ|max 

 
The maximum absolute value of the stream function (together with its location): 
for Ra= 105 and 106, the maximum does not occur at the cavity mid-point 

Umax 

 

The maximum horizontal velocity on the vertical mid-plane of the cavity 
(together with its location) 

wmax The maximum vertical velocity on the horizontal mid-plane of the cavity 
(together with its location) 

NU 1/2 The average Nusselt number on the vertical mid-plane of the cavity 

NU0 The average Nusselt number on the vertical boundary of the cavity at x = 0 

NU1 The average Nusselt number on the vertical boundary of the cavity at x = 1 

NUmax 

 
The maximum value of the local Nusselt number on the boundary at x = 0 
(together with its location) 

NUmin 

 
The minimum value of the local Nusselt number on the boundary at x = 0 
(together with its location). 
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Ra=10
3
 

Mesh type 
Uniform mesh Concentrated mesh (k=2) 

No of control volumes 50*50 50*50 50*50 

Numerical scheme for 

convective terms 
Central scheme Central  scheme Smart scheme 

 Reference 

value 

Obtained 

value 

Error 

(%) 

Obtained 

value 

Error 

(%) 

Obtained 

value 

Error 

(%) 

|ψmid|  1.174 1.1815 0.621 1.177 0.256 1.1765 0.212 

|ψ|max   ---- ---- ---- ---- ---- ---- ---- 

X ----- ----- ----- ----- ----- ----- ----- 

Z ----- ----- ----- ----- ----- ----- ----- 

umax  3.649 3.663 0.685 3.677 0.767 3.676 0.739 

Z 0.813 0.8229 0.516 0.815 0.344 0.8158 0.344 

wmax  3.697 3.721 0.676 3.727 0.811 3.726 0.784 

X 0.178 0.1771 2.696 0.184 3.483 0.1842 3.483 

NU 1/2   1.117 1.119 0.242 1.118 0.132 1.11809 0.008 

NU0  1.118 1.119 0.172 1.122 0.424 1.12286 0.524 

NU1 ----- 1.119 ----- 1.115 ----- 1.11534 ----- 

NUmax 1.505 1.512 0.525 1.513 0.593 1.51391 0.592 

Z 0.092 0.093 9.597 0.0964 4.866 0.0964 4.867 

NUmin  0.692 0.689 0.394 6.931 0.171 0.693 0.194 

Z 1 1 0 1 0 1 0 

Table 5.6: Comparing results at Ra=10
3
 

 

Ra=10
4 

Mesh type Uniform mesh 

No of control volumes 50*50 

Numerical scheme for convective terms Central scheme 

 Reference value Obtained results 
 

Error (%) 

|ψmid|  5.071 5.064 0.138 

|ψ|max   ----- ----- ----- 

X, Z ------ ----- ----- 

Umax  16.178 16.14 0.234 

Z 0.823 0.8229 0.012 

wmax  19.617 19.6 0.086 

X 0.119 0.1146 3.697 

NU 1/2   2.243 2.25 0.312 

NU0  2.238 2.25 0.536 

NU1   ----- 2.25 ----- 
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NUmax  3.528 3.5571 0.824 

Z 0.143 0.135 5.594 

NUmin  0.586 0.5819 0.699 

Z 1 1 0 

Table 5.7: Comparing results at Ra=10
4
 

 

 

Ra=10
5
 

Mesh type Uniform mesh 
 

Uniform mesh 
 

Mesh size 50*50 
 

100*100 
 

Numerical scheme for convective 
terms 

Central scheme Central scheme 

 Reference 
values 

Obtained 
values 

Error (%) Obtained 
values 

Error (%) 

|ψmid| 9.111 9.111 0 9.1135 0.0274 

|ψ|max   9.612 9.617 0.052 9.617 0 

X 0.285 0.2917 2.35 0.285 0 

Z 0.601 0.5938 1.212 0.5969 0.6 

Umax  34.73 34.44 0.835 34.68 0.14 

z 0.855 0.8646 1.122 0.852 0.35 

wmax  68.59 67.72 1.2684 68.57 0.0291 

x 0.066 0.07292 10.484 0.066 0 

NU 1/2   4.519 4.538 0.420 4.52545 0.14 

NU0  4.519 4.538 0.420 4.52515 0.136 

NU1   ----- 4.539 ----- 4.52507 ----- 

NUmax  7.717 7.9795 3.401 7.7837 0.864 

Z 0.081 0.0729 10 0.0765 5.55 

NUmin  0.729 0.7124 2.277 0.724123 0.669 

Z 1 1 0 1 0 

Table 5.8: Comparing results at Ra=10
5
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Ra=10
6 

Mesh type Concentrated mesh (k=2) 

Mesh size 50*50 100*100 
 

Numerical scheme for convective 
terms 

Central scheme Central scheme 

 Referenc
e value 

Obtained 
values 

Error 
(%) 

Obtained 
values 

Error 
(%) 

|ψmid| 16.32 16.345 0.153186 16.38 0.368 

|ψ|max   16.750 16.81 0.358209 16.82 0.418 

X 0.151 0.1461 3.4437 0.1509 0.066 

Z 0.547 0.5216 4.64351 0.5317 2.797 

Umax  64.63 64.32 0.4796 64.78 0.232 

z 0.850 0.8648 1.741176 0.8547 0.553 

wmax  219.36 220.5 0.52 220.395 0.472 

x 0.0379 0.03475 8.311346 0.0355 6.095 

NU 1/2   8.799 8.82753 
 

0.324 8.8255 0.302 

NU0  8.817 8.82956 0.142452 
 

8.8345 0.199 

NU1    ----- 8.82583 ----- 8.8173 ----- 

NUmax  17.925 17.6515 1.525802 17.5791 1.930 

Z 0.0378 0.0347515 8.064815 0.03993 5.656 

NUmin  0.989 0.988328 0.067947 0.9833 0.572 

Z     1 1 0 0 0 

Table 5.9: Comparing results at Ra=10
6
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(a)                                                          (b) 

  

                                    (c)                                                                  (d) 

Figure 5.20: Contour maps of horizontal velocity u 
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                                     (a)                                                                 (b) 

 

 

   (c)                                                                  (d) 

Figure 5.21: Contour maps of horizontal velocity v 
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                                    (a)                                                                (b) 

 

 

                                          (c)                                                                     (d) 

 
Figure 5.22: contour maps of streamline function ψ 
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                                     (a)                                                              (b) 

 

 

                                          (c)                                                            (d) 

Figure 5.23: Contour maps of Temperature T 
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The result for Ra=103 and 104 showed that mesh of 50*50 gives a solutions with error 

percent less than 1% for all calculated quantities but error percent was higher for location 

of these quantities. Both uniform mesh and concentrated mesh are tested and results 

showed that both give good results for the calculated quantity while the concentrated 

mesh gives better results for the location of these quantities especially for that calculated 

at boundaries as more control volumes are concentrated in these regions. Comparing the 

results using smart scheme to central scheme for convective term, results do not show 

considerable improvement. 

For Ra=105 and 106, a finer mesh of 100*100 is used to get error percent less than 1% 

for the calculated quantities. At high Rayleigh number the velocity and temperature 

gradients near the walls are high so concentrated mesh near the walls gives more 

precise results compared to uniform mesh. 

5.2 Compressible flow with low Mach number 

Compressible flow program code will be checked by comparing its results with 

benchmark solution for differentially heated cavity with large temperature difference. 

5.2.1 Differentially heated cavity with high temperature difference 

The objective of comparing our results with the benchmark solution of the differentially 

heated cavity case is to ensure that continuity, Navier-Stokes equations and energy 

equations for compressible flow with low Mach number have been modelled correctly in 

our code. 

5.2.1.1 Problem description 

Flow of compressible fluid is considered in a differentially heated square cavity of length 

L in which a large temperature difference is applied to the vertical walls (ΔT=720 0C) 

while horizontal walls are thermally insulated. The left wall is at high temperature (Th) and 

the right is at low temperature (Tc).The temperatures difference can be represented by 

dimensionless parameter ∈ 

 
∈=

𝑇ℎ − 𝑇𝑐
𝑇0

 (5.12) 

Where, 

𝑇0: Reference temperature 
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The fluid filling the cavity is air of constant prandtl number of 0.71 and constant specific 

heat (Cp=1004.5 KJ/kg.k) neglecting temperature influence on Cp while the dynamic 

viscosity is calculated using Sutherland’s law equation (5.13) and thermal conductivity is 

calculated from equation (5.14) 

 
𝜇(𝑇)

𝜇∗
= (

𝑇

𝑇∗
)

3
2
  
𝑇∗ + 𝑆

𝑇 + 𝑆
 (5.13) 

 
𝑘(𝑇) =

𝜇(𝑇)𝐶𝑝
𝑃𝑟

 (5.14) 

Where,  

𝑇∗: Reference temperature  (𝑇∗ = 273 𝑘)  

𝜇∗: Reference viscosity (𝜇∗ = 1.68 ∗ 10−5𝑘𝑔/𝑚. 𝑠) 

S: Sutherland constant (S =  110.5 K) 

The case is defined by Rayleigh number, value of ∈ , fluid properties ,cavity dimensions , 

initial mass content in the cavity and reference state: p0=101.325 Kpa,T0= 600K and 

𝜌0 =
𝑝0

𝑅 𝑇0
. 

5.2.1.2 Boundary conditions 

The same boundary conditions are the same conditions mentioned in section (7.1.3.2) for 

differentially heated cavity for incompressible flow. 

5.2.1.3 Results 

We compare our results for Ra=105 and 106 and Ԑ=0.6 with the benchmark solution[20]. 

The benchmark solution was computed on 1024*1024 stretched mesh. In our result, 

different uniform mesh sized is used and error convergence of different dimensionless 

quantities is computed for every mesh size. Mesh sizes tested are 64*64, 128*128 and 

256*256. Table 5.10 and Table 5.11 show values for different dimensionless parameter 

at Ra=105 and 106 respectively and Ԑ=0.6.The parameters are: 

 

NU max Maximum local Nussult number at wall plane and its location 

NU min Minimum local Nussult number at wall plane and its location 

NU mid Local Nussult number at mid-point of wall plane (y=0.5) 
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NU̅̅ ̅̅  Average Nussult number over wall plane 

p/p0 Ratio between thermodynamic pressure (p) and its initial value (p0) 

V max (y=0.5) 
 
The maximum vertical velocity on the vertical mid-plane of the cavity 
(together with its location) 

V min (y=0.5) 
 
The minimum vertical velocity on the vertical mid-plane of the cavity 
(together with its location) 

U max (x=0.5) 
The maximum horizontal velocity on the horizontal mid-plane of the 
cavity (together with its location) 

U min (x=0.5) 

 
The minimum horizontal velocity on the horizontal mid-plane of the 
cavity (together with its location) 

𝜓𝑚𝑖𝑑 Streamline function at the centre of the cavity 

𝜓𝑚𝑎𝑥 
The maximum value for streamline function and its location  

 

Comparing the results for different mesh sizes with benchmark reference solution, we 

can conclude that error percentage decreases with increasing mesh size and results 

show a good agreement with reference solution. For the finest mesh with (256*256) 

nodes, error percentages for all variables are less than 1%, while error percentages of 

the locations for these variables have higher error but still less than 2.5%. 

The contour maps for Ra=105 and 106 with Ԑ=0.6 for horizontal velocity component (u), 

vertical velocity component (v), streamline function (ψ) and temperature (T) are shown in 

Figure 5.24 , Figure 5.25, Figure 5.26 & Figure 5.27 respectively 
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variable 64*64 Error (%) 128*128 Error (%) 256*256 Error 
(%) 

Reference 
values 

Left   

NU max 8.91611 3.183775 8.70537 0.74493 8.63057 -0.1207 8.641 

location 0.07258 -3.73926 0.075397 -0.00424 0.076772 1.81923 0.0754 

NU min 0.85281 0.567689 0.849215 0.14327 0.846921 -0.1272 0.848 

location 1 0 1 0 1 0 1 

NU mid 4.225 0.523436 4.20896 0.14180 4.19597 -0.1672 4.203 

NU̅̅ ̅̅  4.54612 1.475893 4.49597 0.35647 4.47346 -0.1459 4.48 

Right  

NU max 7.18226 3.595269 7.03298 1.44208 6.96903 0.51968 6.933 

location 0.94354 1.304273 0.940476 0.97444 0.935039 0.39070 0.9314 

NU min 0.49090 -4.67864 0.509007 -1.16369 0.515903 0.17534 0.515 

location 0 0 0 0 0 0 0 

NU mid 4.79075 1.070675 4.74754 0.15907 4.74921 0.19430 4.74 

NU̅̅ ̅̅  4.54743 1.505134 4.5 0.44642 4.49349 0.30111 4.48 

 

p/p0 0.919 -0.32106 0.9213 -0.07159 0.9229 0.10195 0.92196 

V max 

(y=0.5) 0.31804 0.454833 0.316932 0.10493 0.31624 -0.1136 0.3166 

location 0.08871 -6.42437 0.09127 -3.72384 0.096457 1.74757 0.0948 

V min 

(y=0.5) 
-

0.29285 -0.35726 -0.29317 -0.24995 -0.29393 0.01041 -0.2939 

location 0.95967 0.19597 0.956349 -0.15149 0.958661 0.08989 0.9578 

U max 

(x=0.5) 0.1953 0.359712 0.194884 0.146 0.194535 -0.0333 0.1946 

location 0.83064 -0.68807 0.837302 0.10784 0.836614 0.02558 0.8364 

U min 

(x=0.5) -0.1108 -0.22502 -0.11111 0.01214 -0.11152 0.38118 -0.1111 

location 0.13709 -1.65208 0.138889 -0.36657 0.139764 0.26111 0.1394 

𝜓𝑚𝑖𝑑 0.04104 0.30303 0.04094 0.04887 0.040931 0.02631 0.04092 

𝜓𝑚𝑎𝑥 0.04251 0.44896 0.042379 0.13837 0.042337 0.03948 0.04232 

X 0.34677 -0.38093 0.345238 -0.82218 0.348425 0.09336 0.3481 

Y 0.51612 0.199767 0.515873 0.15006 0.515748 0.12580 0.5151 

Table 5.10: comparing results at Ra=10
5
 and Ԑ=0.6 
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variable 64*64 Error (%) 128*128 Error 
(%) 

256*256 Error 
(%) 

Reference 
values 

Left   

NU max 22.7675 12.3211 20.9027 3.12136 20.4054 0.66798 20.27 

location 0.02419 -33.7164 0.035714 -2.1526 0.037402 2.47013 0.0365 

NU min 1.06608 -0.08622 1.07217 0.48453 1.06801 0.09465 1.067 

location 1 0 1 0 1 0 1 

NU mid 7.454 -0.06703 7.48895 0.40152 7.46485 0.07842 7.459 

NU̅̅ ̅̅  8.9472 2.99516 8.78024 1.07332 8.70621 0.22113 8.687 

Right 
 

NU max 15.3635 -1.002 16.0834 3.63683 15.7753 1.65152 15.519 

location 0.95967 -0.81883 0.972222 0.47767 0.970472 0.29681 0.9676 

NU min 0.67213 -11.3281 0.723573 -4.5418 0.749291 -1.1489 0.758 

location 0 0 0 0 0 0 0 

NU mid 9.02605 4.310302 8.6916 0.63216 8.645595 0.09951 8.637 

NU̅̅ ̅̅  8.9481 3.00575 8.78283 1.10314 8.71814 0.35846 8.687 

 
p/p0 0.91927 -0.56464 0.92138 -0.3364 0.9239 -0.0638 0.92449 

V max 

(y=0.5) 
0.32264 0.73185 0.3222 0.59319 0.320744 0.13863 0.3203 

location 0.0565 5.12402 0.05159 -3.9292 0.05315 -1.0249 0.0537 

V min 

(y=0.5) 
-0.2959 -1.38703 -0.29614 -1.3181 -0.29938 -0.2403 -0.3001 

location 0.97580 0.02115 0.9802 0.47150 0.974409 -0.1220 0.9756 

U max 

(x=0.5) 
0.11947 0.14501 0.12003 0.61190 0.119742 0.37034 0.1193 

location 0.8468 -0.8547 0.8532 -0.1053 0.852362 -0.2034 0.8541 

U min 

(x=0.5) 
-0.0779 -2.17097 -0.07948 -0.2985 -0.07998 0.3247 -0.07972 

location 0.08871 -1.9779 0.09127 0.85082 0.088583 -2.1185 0.0905 

𝜓𝑚𝑖𝑑 0.02223 0.63377 0.022189 0.44816 0.022139 0.22004 0.02209 

𝜓𝑚𝑎𝑥 0.02355 0.18502 0.02359 0.34028 0.023547 0.15614 0.02351 

X 0.8629 -0.6791 0.869 0.02302 0.86811 -0.0794 0.8688 

Y 0.4032 2.69994 0.3889 -0.9424 0.389764 -0.7223 0.3926 

Table 5.11: comparing results at Ra=10
6
 and Ԑ=0.6 
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Figure 5.24: Contour maps of horizontal velocity u 

(a) Re=10
5
, (b)  Re=10

6 
 

 

Figure 5.25 Contour maps of horizontal velocity v 

(a) Re=105, (b)  Re=106
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Figure 5.26: contour maps of streamline function ψ 

(a)Re=10
5
, (b) Re=10

6 

 

 

Figure 5.27: Contour maps of Temperature T 

(a) Re=10
5
, (b)  Re=10

6    
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The verification process for our code using analytical solution and comparing results to 

highly accurate solution showed that our code is reliable and gives accurate results as 

the verification process using Method of manufactured solutions (MMS) showed the the 

logarithms of the quotients of consecutive error is nearly equal to the order of the scheme 

used for discretizing convective terms that are dominant over other terms and for 

comparison of our results with benchmark solutions, a good agreement between our 

results and benchmark solution are shown. 
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6 Case study: Modeling laminar diffusion flame using SCRS 

Computational fluid dynamics (CFD) can be used for modelling combustion process. 

Combustion is defined as a chemical reaction of hydrocarbon fuels and oxidizer to form 

combustion products with the release of heat energy. It is one of the most important 

process in engineering include in various engineering applications: internal combustion 

engines, power station combustors, aero engines, gas turbine combustors, boilers, 

furnaces, and much other combustion equipment.  Modelling of combustion process is 

governed by basic transport equation for fluid flow and heat transfer with additional 

models for combustion chemistry. 

There are many types of combustion process that can be classified into: Gaseous fuel 

combustion, liquid fuel combustion, spray combustion, solid fuel combustion, and 

pulverized fuel combustion[4].The gaseous combustion is defined as a chemical reaction 

between fuel and oxidizer in the gas phase. The gaseous combustion is classified into: 

premixed combustion and non-premixed combustion. In premixed flame, the fuel is 

mixed with oxidizer before combustion process. The stoichiometry of the fuel and 

oxidizer mixture can be controlled by adjusting fuel to oxidizer ratio and flame 

temperature can be controlled by diluting the reactants by increasing inert gas (nitrogen) 

percent. Examples of premixed flames are spark ignition engines and Bunsen burner. 

While, in non-premixed flame gaseous fuel mixes with the oxidizer stream and at the 

same time combustion takes place at region with suitable conditions for combustion. It is 

also known as diffusion flame as fuel and oxidizer are introduced from separate streams, 

so they are mixed together by diffusion prior to combustion. 

 

Figure 6.1: Difference between premixed and diffusion flames[21] 

Different combustion models are used for simulating the gaseous combustion like Simple 

chemical reacting system model, Eddy break–up model, laminar flamelet model and 
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presumed probability distribution function model. For our case study, we will use simple 

chemical reacting model that will be explained in the following section. 

6.1 Simple chemical reacting system (SCRS) 

This model is concerned only with the global nature of the combustion process and the 

final major species concentrations as it assumes that the reaction infinitely fast and takes 

place in a single step process neglecting the detailed kinetics involved in the combustion 

process[4]. Combustion occurs where the fuel and oxidizer are mixed in stoichiometric 

proportions to form combustion products. This model is suitable to be applied to 

combustion process where diffusion effects are dominant and combustion takes place by 

non-premixed streams of fuel and oxidizer which are diffusing into each forming the 

flame structure. 

In SCRS, fuel and oxidizer combine together in fixed mass portions to form products, 

where s is stoichiometric oxygen/fuel ratio by mass. 

 1 𝑘𝑔 𝑜𝑓 𝑓𝑢𝑒𝑙 + 𝑠 𝑘𝑔 𝑜𝑓 𝑜𝑥𝑖𝑑𝑖𝑧𝑒𝑟 → (1 + 𝑠)𝑘𝑔 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠  (6.1) 

For methane combustion, when it burns with air, it is believed to proceed according to the 

following reactions shown in Figure 6.2. 

 

Figure 6.2: Detailed mechanism for methane oxidation 

While in SCRS model methane combustion is simplified to the following one step fast 

reaction  
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 𝐶𝐻4 + 2𝑂2 → 𝐶𝑂2 + 2𝐻2𝑂 (6.2) 

This simplification means that intermediate species (CH3, OH, HCHO, H, H2, O, HCO, 

CO) do not have concentrations of the same order of those of main reactants (CH4, O2) 

and the main products (CO2, H2O). 

Ordinary nitrogen gas that can be present with fuel or oxygen streams can in practice 

lead to additional chemical reactions as shown in Figure 6.3 reactions between nitrogen 

and oxygen. While in SCRS nitrogen is considered as a simple dilute that does not enter 

any chemical reactions. 

 

Figure 6.3: chemical reaction between nitrogen and oxygen 

 

The stoichiometric oxygen/fuel ratio by mass s is equal to 4 for pure methane 

combustion. From equation (6.1), it can be deduced that rate of fuel consumption is 1/s 

time consumption rate of oxygen. 

 
�̇�𝑓𝑢 =

1

𝑠
 �̇�𝑜𝑥 (6.3) 

As in SCRS intermediate reactions are ignored as the chemical reaction is infinitely fast, 

so the transport equations of fuel and oxygen mass fraction can be written as shown 

 ∂(ρ𝑌𝑓𝑢)

∂t
+ 𝑑𝑖𝑣(ρ𝑌𝑓𝑢𝑈) = 𝑑𝑖𝑣(𝛤𝑓𝑢 𝑔𝑟𝑎𝑑 𝑌𝑓𝑢) + �̇�𝑓𝑢  (6.4) 

 ∂(ρ𝑌𝑜𝑥)

∂t
+ 𝑑𝑖𝑣(ρ𝑌𝑜𝑥𝑈) = 𝑑𝑖𝑣(𝛤𝑜𝑥  𝑔𝑟𝑎𝑑 𝑌𝑜𝑥) + �̇�𝑜𝑥   (6.5) 

Where, 
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𝑌𝑓𝑢: Fuel mass fraction 

𝑌𝑜𝑥: Oxygen mass fraction 

𝛤𝑓𝑢: Fuel diffusion coefficient (𝛤𝑓𝑢 = 𝜌𝐷𝑓𝑢) 

𝛤𝑜𝑥: Oxygen diffusion coefficient (𝛤𝑜𝑥 = 𝜌𝐷𝑜𝑥) 

 

Nitrogen gas that can be present in fuel or oxidant streams does not participate in the 

chemical reaction so the mass fraction of inert gas (Yin) will remain constant before and 

after combustion and there is no need for writing transport equation for inert gas. Also the 

mass fraction of the product can be determined from mass fractions of fuel, oxygen and 

inert gas equation (6.6) , so that it is not necessary to solve separate equation for  𝑌𝑝𝑟 . 

 𝑌𝑝𝑟 = 1 − (𝑌𝑓𝑢 + 𝑌𝑜𝑥 + 𝑌𝑖𝑛) (6.6) 

It is possible to decrease the number of transport equations by introducing variable ∅ that 

is defined as follows: 

 ∅ = 𝑠𝑌𝑓𝑢 − 𝑌𝑜𝑥 (6.7) 

Single transport equation can be deduced by subtracting equation (6.5) from s times 

equation (6.4) after assuming single diffusion coefficient for fuel and oxygen (𝛤𝑓𝑢 = 𝛤𝑜𝑥 =

𝜌𝐷 = 𝛤∅) .The new transport equation can be written as follows: 

 ∂(ρ∅)

∂t
+ 𝑑𝑖𝑣(ρ∅𝑈) = 𝑑𝑖𝑣(𝛤∅ 𝑔𝑟𝑎𝑑 ∅) + (𝑠�̇�𝑓𝑢 − �̇�𝑜𝑥) (6.8) 

From equation (6.3), we can conclude that(𝑠�̇�𝑓𝑢 − �̇�𝑜𝑥) = 0, so the transport equation 

(6.8) can be reduced to the following form: 

 ∂(ρ∅)

∂t
+ 𝑑𝑖𝑣(ρ∅𝑈) = 𝑑𝑖𝑣(𝛤∅ 𝑔𝑟𝑎𝑑 ∅) (6.9) 

 

Since ∅ is a passive quantity, it obeys the scalar transport equation without source terms. 

A non-dimensional variable ξ called mixture fraction can be defined as function of  ∅. 

 
ξ =

∅ − ∅0
∅1 − ∅0

 (6.10) 
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Where, suffix 0 denotes stands for oxidant stream and 1 stands for fuel stream. The local 

value of ξ range is from 0 to 1.It is equal 0 when mixture at point contains only oxidant 

and equal 1 when mixture contains only fuel. 

Equation (6.10) for mixture fraction can be expanded as follows: 

 
ξ =

[𝑠𝑌𝑓𝑢 − 𝑌𝑜𝑥] − [𝑠𝑌𝑓𝑢 − 𝑌𝑜𝑥]0
[𝑠𝑌𝑓𝑢 − 𝑌𝑜𝑥]1

− [𝑠𝑌𝑓𝑢 − 𝑌𝑜𝑥]0

 (6.11) 

If the oxidant stream has no fuel we have 

 [Yfu]0 = 0   (6.12) 

If the fuel stream has no oxidant we have 

 [Yox]1 = 0   (6.13) 

Using the two previous conditions, equation (6.11) can be simplified as follows 

 
ξ =

[𝑠𝑌𝑓𝑢 − 𝑌𝑜𝑥] − [−𝑌𝑜𝑥]0

[𝑠𝑌𝑓𝑢]1 −
[−𝑌𝑜𝑥]0

=
𝑠𝑌𝑓𝑢 − 𝑌𝑜𝑥 + 𝑌𝑜𝑥,0

𝑠 𝑌𝑓𝑢,1 + 𝑌𝑜𝑥,0
 (6.14) 

In stoichiometric mixture where neither fuel nor oxygen is present in the product, the 

stoichiometric mixture fraction ξ𝑠𝑡  can be written as follows 

 
ξ𝑠𝑡 =

𝑌𝑜𝑥,0
𝑠 𝑌𝑓𝑢,1 + 𝑌𝑜𝑥,0

 (6.15) 

Fast chemistry reaction implies that at certain region the mixture is lean. In this region, 

there is excess of oxidant and no fuel is present in the product. The mixture fraction is 

calculated using equation  

 𝑌𝑓𝑢 = 0     𝑌𝑜𝑥 > 0   (6.16) 

 
𝑖𝑓   ξ < ξ𝑠𝑡      𝑡ℎ𝑒𝑛    ξ =

−𝑌𝑜𝑥 + 𝑌𝑜𝑥,0
𝑠 𝑌𝑓𝑢,1 + 𝑌𝑜𝑥,0

 (6.17) 

While in region with rich mixture, there is excess of fuel and there is no oxidant in the 

product. The mixture fraction is calculated as follows 

 𝑌𝑜𝑥 = 0     𝑌𝑓𝑢 > 0  (6.18) 

 
𝑖𝑓   ξ > ξ𝑠𝑡      𝑡ℎ𝑒𝑛    ξ =

𝑠𝑌𝑓𝑢 + 𝑌𝑜𝑥,0

𝑠 𝑌𝑓𝑢,1 + 𝑌𝑜𝑥,0
 (6.19) 
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From equation (6.10), ξ is linearly related to ∅ , so the mixture fraction is also a passive 

scalar and obeys the transport equation. 

 ∂(ρξ)

∂t
+ 𝑑𝑖𝑣(ρξ𝑈) = 𝑑𝑖𝑣(𝛤ξ 𝑔𝑟𝑎𝑑 ξ) (6.20) 

The previous can be also written using index notation as shown in the following equation 

 ∂(ρξ)

∂t
+
𝜕(ρ𝑢𝑖ξ)

𝜕𝑥𝑖
=
𝜕

𝜕𝑥𝑖
(𝛤ξ   

𝜕ξ

𝜕𝑥𝑖
) (6.21) 

To obtain the distribution of ξ , the transport equation of mixture fraction has to be solved. 

A suitable boundary conditions should be used, e.g. mixture fraction for fuel and oxidant 

inlet streams are known, zero normal flux of ξ across solid walls and zero gradient of ξ for 

outflow boundaries. 

From the previous equations (6.14) - (6.19) for the mixture fraction, we can calculate the 

mass fraction of oxygen (𝑌𝑜𝑥), fuel (𝑌𝑓𝑢), inert gas (𝑌𝑖𝑛) and product (𝑌𝑝𝑟) after combustion 

as shown below  

 
 

𝑌𝑜𝑥 = {
 
ξ𝑠𝑡 − ξ

ξ𝑠𝑡
  𝑌𝑜𝑥,0       , 0 ≤ ξ < ξ𝑠𝑡

 0              , ξ𝑠𝑡 ≤ ξ < 1

 (6.22) 

 

𝑌𝑓𝑢 = {

 0               , 0 ≤ ξ < ξ𝑠𝑡

 
ξ − ξ𝑠𝑡
1 − ξ𝑠𝑡

  𝑌𝑓𝑢,1       , ξ𝑠𝑡 ≤ ξ < 1
 (6.23) 

 

 𝑌𝑖𝑛 = 𝑌𝑖𝑛 ,0 (1 − ξ) + 𝑌𝑖𝑛 ,1 ξ (6.24) 

 𝑌𝑝𝑟 = 1 − (𝑌𝑓𝑢 + 𝑌𝑜𝑥 + 𝑌𝑖𝑛) (6.25) 

 

The above formulae show that mixture fraction of oxygen and fuel are linearly related to 

the mixture faction and these formulae can be illustrated graphically as shown in figure 

Figure 6.4 



Ch. 6 | Case study: Modeling laminar diffusion flame using SCRS

 

 86 

     

 

Figure 6.4: Mixing and fast reaction between fuel and oxidant streams (SCRC relationships)[4] 

When the reaction products contain many species, the ratio of the mass fraction of each 

component to the total product mass fraction is known from the chemical reaction 

equation and this ratio is used for deducing the mass fraction of different product 

components. For example, consider combustion of methane with oxygen: 

 𝐶𝐻4 + 2𝑂2 → 𝐶𝑂2 + 2𝐻2𝑂 (6.26) 

The ratios of H2O (𝑟𝐻2𝑂)and CO2 (𝑟𝐶𝑂2) to the total product by mass are equal to 44/80 

and 36/80 respectively. Using the product mass fraction calculated in equation (6.25) the 

CO2 mass fraction (𝑌𝐶𝑂2) in product is 𝑟𝐶𝑂2𝑌𝑝𝑟 and H2O mass fraction in product is 

𝑟𝐻2𝑂𝑌𝑝𝑟. 

  

6.2 Modelling of a laminar diffusion flame 

The SCRS combustion model can be applied in planer laminar diffusion flame to 

calculate temperature and chemical species distribution in the laminar diffusion flame. 

First we will discuss the governing equation for laminar compressible low Mach number 

flow in Cartesian coordinates. 

6.2.1 Governing equations 

 Continuity equation 

 𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢𝑖
𝜕𝑥𝑖

= 0 (6.27) 
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 Momentum equation 

 𝜕𝜌𝑢𝑖
𝜕𝑡

= −
𝜕𝜌𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
−
𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜌𝑔𝑖 (6.28) 

Where, 

 
𝜏𝑖𝑗 = 𝜇 (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
−
2

3
𝛿𝑖𝑗
𝜕𝑢𝑘
𝜕𝑥𝑘

) (6.29) 

 Mixture fraction  

 ∂(ρξ)

∂t
+
𝜕(ρ𝑢𝑖ξ)

𝜕𝑥𝑖
=
𝜕

𝜕𝑥𝑖
(𝛤ξ   

𝜕ξ

𝜕𝑥𝑖
) (6.30) 

 Energy equation 

The energy equation for open system with compressible flow at low Mach number 

with the following assumption: 

1. Neglecting radiation energy loss or gain  

2. Negligible pressure work 

3.  Assuming constant specific heat ,can be written as follows: 

 𝜕(𝜌ℎ)

𝜕𝑡
+
𝜕(ρ𝑢𝑖h)

𝜕𝑥𝑖
=
𝜕

𝜕𝑥𝑖
(𝑘
𝜕𝑇

𝜕𝑥𝑖
) (6.31) 

After simplifying the energy equation, it becomes another conserved scalar 

equation like mixture fraction equation. We can conclude that both enthalpy and 

mixture fraction are scalar quantities and linearly related. 

Since enthalpy (ℎ) is a passive quantity, it obeys the scalar transport equation 

without source terms. A non-dimensional variable (ℎ∗) called non-dimensional 

enthalpy can be defined. 

 
ℎ∗ =

ℎ − ℎ𝑎𝑖𝑟,𝑖𝑛
ℎ𝑓𝑢,𝑖𝑛 − ℎ𝑎𝑖𝑟,𝑖𝑛

 (6.32) 

Where, 

ℎ𝑎𝑖𝑟,𝑖𝑛: Enthalpy of air stream 

ℎ𝑓𝑢,𝑖𝑛: Enthalpy of fuel stream 
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Taking the reference temperature as ambient temperature (2980K), the enthalpy 

is defined as shown below for combustion of methane as example 

 ℎ = 𝑌𝑓𝑢ℎ𝑓𝑓𝑢
+ 𝑌𝐻20ℎ𝑓𝐻20

+ 𝑌𝐶𝑂2ℎ𝑓𝐶𝑂2
+ 𝐶𝑝̅̅ ̅(𝑇 − 298) (6.33) 

Where, 

ℎ𝑓: Enthalpy of formation at 2980K 

Enthalpy of the fuel stream where ξ = 1 is 

 
ℎ𝑓𝑢,𝑖𝑛 = 𝑌𝑓𝑢 (ℎ𝑓𝑓𝑢

+ 𝐶𝑝𝑓𝑢(𝑇𝑓𝑢,𝑖𝑛 − 298)) + 𝑌𝑖𝑛,1𝐶𝑝𝑖𝑛,1(𝑇𝑓𝑢,𝑖𝑛 − 298) 
(6.34) 

Enthalpy of the air stream where ξ = 0 is 

 ℎ𝑎𝑖𝑟,𝑖𝑛 = 𝐶𝑝𝑎𝑖𝑟(
𝑇𝑎𝑖𝑟,𝑖𝑛 − 298) (6.35) 

 

We can see that when ξ = 0 , 𝑌𝑓𝑢 = 0, ℎ∗ = 0 and when ξ = 1 , 𝑌𝑓𝑢 = 1, ℎ∗ = 1.By 

adding simplifying assumptions for mixture fraction and enthalpy transport 

equations which are single diffusion coefficient (𝛤𝑓𝑢 = 𝛤𝑜𝑥 = 𝜌𝐷 = 𝛤∅),unity Lewis 

number and negligible pressure work and radiation source. The distribution of 

non-dimensional enthalpy (ℎ∗) and mixture fraction (ξ) will be the same, so that 

there is no need to solve both equations only solving mixture fraction will be 

sufficient and enthalpy can be calculated using mixture fraction using the 

following equation 

 
ξ = ℎ∗ =

ℎ − ℎ𝑎𝑖𝑟,𝑖𝑛
ℎ𝑓𝑢,𝑖𝑛 − ℎ𝑎𝑖𝑟,𝑖𝑛

 

(6.36) 

 ℎ = ℎ𝑎𝑖𝑟,𝑖𝑛 + ξ(ℎ𝑓𝑢,𝑖𝑛 − ℎ𝑎𝑖𝑟,𝑖𝑛) 

 

After calculating enthalpy and mass fractions for different components from SCRS 

model relationships, the temperature can be obtained from equation  

 
𝑇 = 298 +

1

𝐶𝑝̅̅ ̅
[ℎ − (𝑌𝑓𝑢ℎ𝑓𝑓𝑢

+ 𝑌𝐻20ℎ𝑓𝐻20
+ 𝑌𝐶𝑂2ℎ𝑓𝐶𝑂2

)] (6.37) 
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6.2.2 Configuration of simulation 

The geometry considered is shown in Figure 6.5 in which a planar fuel jet is surrounded 

by two planar air jets. The width of fuel jet (d fuel) is 0.4 cm and the width of air jet (d air) 

is 2.25 cm. The thickness of the wall between fuel and air streams is 0.05 cm. We will 

consider burning diluted methane (5% CH4, 95% N2) jet with co-flowing air (23.3% O2, 

76.7% N2). Both fuel and air velocity are equal to 0.2 m/s and enter at ambient 

temperature 25 0C .The computational domain is rectangle of length L and width W. A 

staggered grid of 164*82 nodes is used.  

 

Figure 6.5: schematic diagram of the problem considered 

6.2.2.1 Boundary conditions 

For velocity boundary conditions, at inlet the normal velocity component is constant and 

equal to 0.2 m/s (v=0.2 m/s) for fuel and oxygen streams and the tangential component is 

equal to zero (u=0 m/s).At the axis of symmetry are applied, the horizontal velocity 

component is zero (u=0 m/s) and gradient of vertical component in normal direction is 

zero (
∂v

∂x
= 0 ).For top and right boundary conditions the velocity gradient for both velocity 

components in the normal direction are zero, so for the top boundary the conditions are 

(
∂u

∂y
=
∂v

∂y
= 0) and for right boundary the conditions are (

∂u

∂x
=
∂v

∂x
= 0). 
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For pressure boundary conditions, the pressure is set to zero at the top boundary (p=0), 

while the other boundaries, the pressure gradient in the normal direction is set to 

zero(
∂p

∂η
= 0). 

For mixture fraction boundary conditions, at the inlet of fuel stream, the mixture fraction is 

equal to 1 (ξ = 1) for fuel stream and for air stream mixture fraction is zero (ξ = 0).For 

other boundaries, the gradient of mixture fraction in normal direction is zero, for the top 

boundary the condition is (
∂ξ

∂y
= 0) and for the left and right boundary (

∂ξ

∂x
= 0). 

6.2.3 Results 

After solving fluid flow equations and mixture fraction equation, the pressure, velocity and 

mixture fraction distributions are obtained. Mixture fraction defines flame structure and 

different species distribution. Species mass fractions are obtained using equation (6.22)-

(6.25) and enthalpy and temperature fields are calculated from (6.36) and (6.37) 

respectively. The pressure contour map is shown in Figure 6.6 in which  pressure 

reaches its maximum values at the walls separating fuel and air stream as the velocity at 

the walls boundaries is zero.The horizontal and vertical velocity components contour 

maps and streamline function are shown in Figure 6.7 , Figure 6.8 and Figure 6.9 

respectively. Mixture fraction and temperature distribution shown in Figure 6.11 and 

Figure 6.10 respectively has the same pattern as temperature is linearly related to 

mixture fraction equation (6.36), so the stoichiometric contour (ξ =  ξ𝑠𝑡) is corresponding 

to contour of maximum flame temperature. In this case flame length is equal to 1.594 cm 

and maximum flame temperature is 1275 k .The flame length is defined as the height at 

flame axis of symmetry where temperature reaches its maximum value. 

To highlight the consequences of fast chemistry assumption in SCRS model, the 

temperature, mixture fraction and species mass fraction will be shown at three different 

horizontal levels shown in Figure 6.12. The first level is at y=0.781 cm. At this level from 

centreline to stoichiometric contour fuel is found without oxygen. Fuel concentration 

decreases gradually till it is consumed completely at stoichiometric contour where 

temperature peaks. The second level is at y=1.594 cm that is equal to flame length, at 

centreline where ξ =  ξ𝑠𝑡  neither oxygen nor fuel exist and temperature is at a maximum. 

In third level at y=3.281 cm that lies outside stoichiometric contour(ξ <  ξ𝑠𝑡), where no 

fuel exist and the temperature is lower. 
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Figure 6.6: contour map of dynamic pressure 

 

Figure 6.7: contour map of horizontal velocity components u 
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Figure 6.8: contour map of vertical velocity component v 

 

Figure 6.9: contour map of streamline function (ψ) 
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Figure 6.10: contour map of temperature 

 

Figure 6.11: contour map of mixture fraction 
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(a) 

 
(b) 

 

(c) 

Figure 6.12: species mass fraction, mixture fraction and temperature distribution at different 
horizontal planes (a) y=0.781 cm (b) y=1.594 cm (c) y=3.281 cm 
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6.2.3.1 Effect of changing fuel stream velocity 

The effect of changing fuel jet velocity is studied in this section, in which air jet velocity is 

kept constant (0.2 m/s) while fuel jet speed is changed. Different fuel jet velocities are 

tested and the results are at fuel jet velocity 0.1, 0.15, 0.2 and 0.25 m/s are shown in 

Figure 6.13. The results show that as fuel jet velocity increases, the flame height 

increases.  

 

(a)                                                                   (b) 

 

                                    (c)                                                                   (d) 

Figure 6.13: Effect of changing fuel jet velocity with constant air jet velocity (0.2 m/s)  

(a) V fuel=0.1 m/s, (b) V fuel=0.15 m/s, (c) V fuel=0.2 m/s, (d) V fuel=0.25 m/s 
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 Flame lengths are plotted versus fuel jet velocity in Figure 6.14 and from the figure it can 

be concluded that fuel flame length is linearly related to fuel jet velocity. 

 

Figure 6.14: flame length variation with increasing fuel stream velocity 

6.2.3.2 Effect of changing air stream velocity 

The effect of changing air jet velocity is studied in this section, in which fuel jet velocity is 

kept constant (0.2 m/s) while air jet speed is changed. Different air jet velocities are 

tested and the results are at air jet velocity 0.1, 0.3, 0.5 and 0.7 m/s are shown in 

Figure 6.16. The results show that as air jet velocity increases, the flame height 

decreases. As shown in following figure that flame length is linearly related to air stream 

velocity. 

 

Figure 6.15: flame length variation with increasing air stream velocity 
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(a)                                                                        (b) 

 

                                       (c)                                                                          (d) 

Figure 6.16: Effect of changing air stream velocity with constant fuel jet velocity (0.2 m/s) 

(a) V fuel=0.1 m/s, (b) V fuel=0.2 m/s, (c) V fuel=0.3 m/s, (d) V fuel=0.4 m/s 

6.2.3.3 Effect of increasing oxygen concentration in oxidant stream 

In this section, the effect of increasing oxygen concentration in oxidant stream is studied. 

The oxidant stream contains oxygen and nitrogen gas. From Figure 6.17, it can be 

observed that as oxygen mass fraction increases, flame length decreases. This is due to 

increasing available oxygen for fuel combustion, so there is no need for fuel to transverse 

farther distance from fuel nozzle. Also, maximum flame temperature increases by 
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increasing oxygen concentration in oxidant stream as shown in Figure 6.18 (a).This 

happen because nitrogen gas that does not enter any chemical reaction in SCRS model 

consumes a part of energy of released from combustion to raise its temperature from 

inlet temperature to combustion product final temperature, so as nitrogen gas mass 

fraction decrease, energy  consume by nitrogen gas decreases leading to higher 

maximum flame temperature. As shown in Table 6.1 stoichiometric mixture fraction 

increases as oxygen gas concentration increases. 

 

(a)                                                                  (b) 

 

  (c)                                                                   (d) 

Figure 6.17: Effect of increasing oxygen concentration in oxidant stream 

(a)Yox =23%, (b) Yox =50%,(c) Yox =80%,(d) Yox =100% 
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(a)                                                                       (b) 

Figure 6.18: Effect of increasing oxygen concentration on: (a) flame length and (b) max 
temperature at axis of symmetry 

 

Oxidant stream 
composition by mass 
fraction 

ξ𝑠𝑡 Flame length (cm) 
Max flame 

temperature (K) 

23% O2 ,77 %N2 0.5348 1.519 1279 

30% O2 ,70 %N2 0.6 1.213 1400 

40% O2 ,60 %N2 0.667 0.937 1519 

50% O2 ,50 %N2 0.7142 0.762 1612 

60% O2 ,40 %N2 0.75 0.6625 1670 

70% O2 ,30 %N2 0.778 0.5875 1717 

80% O2 ,20 %N2 0.8 0.5125 1762 

100% O2 ,0 %N2 0.833 0.4375 1824 

Table 6.1: Effect of increasing oxygen concentration in oxygen stream 
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6.2.3.4 Effect of diluting fuel stream with nitrogen 

In this section, the effect of diluting fuel stream with nitrogen is investigated. The fuel 

stream consists of methane and nitrogen gas. Temperature contour maps for flames with 

different fuel concentration are shown in Figure 6.19.It can be seen that as nitrogen gas 

concentration increases, the flame length and maximum flame temperature decreases. 

The decreasing in flame length is due to the formation of stoichiometric mixture between 

fuel and oxidant streams at lower height from fuel nozzle as fuel concentration in fuel 

stream deceases. The maximum flame temperature decreases due to decreasing fuel 

concentration and increasing nitrogen gas concentration in fuel stream. As shown in 

Table 6.2 stoichiometric mixture fraction increases as nitrogen. gas concentration 

increases. 

Fuel stream composition 
by mass fraction 

ξ𝑠𝑡 Flame length (cm) 
Max flame 

temperature (K) 

10% CH4 ,90 %N2 0.365 2.906 1640 

9% CH4 ,91 %N2 0.3898 2.656 1583 

8% CH4 ,92 %N2 0.418 2.344 1523 

7% CH4 ,93 %N2 0.4509 2.094 1455 

6% CH4 ,94 %N2 0.489 1.844 1374 

5% CH4 ,95 %N2 0.5348 1.519 1279 

Table 6.2: Effect of diluting fuel stream with nitrogen gas 

 

(a)                                                                       (b) 
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(c)                                                                         (d) 

Figure 6.19: Effect of diluting fuel stream with nitrogen gas 

(a)YCH4 =8%, (b) YCH4 =7%,(c) YCH4 =6%,(d) YCH4 =5% 
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7 Conclusion 

The goal our work is modelling laminar diffusion flame using simple chemical reacting 

system (SCRS) model which is simplified combustion model for modelling diffusion 

flames as it assumes that chemical reactions are infinitely fast and takes place in one 

step neglecting intermediate reactions as it is only concerted with final major species and 

it consider that combustion process occur when fuel and oxygen are mixed in 

stoichiometric proportions. For modelling diffusion flame, fractional step algorithm for 

compressible flow with low Mach number is used in which low Mach number 

approximation  are utilized in simplifying momentum and energy transport equation. The 

code is verified by comparing its results with analytical and highly accurate benchmark 

solutions. 

The verification process showed that the code is well implemented as the code results 

have good agreement with benchmark solution of driven cavity and differentially heated 

cavity for incompressible and compressible flow. 

The results show that mixture fraction and temperature contour maps have the same 

pattern as the stoichiometric mixture fraction contour line is corresponding to maximum 

temperature contour line as the mixture fraction and energy transport equations are 

linearly related. The region inside stoichiometric contour line (ξ > ξ𝑠𝑡) only fuel is present 

and oxygen is completely consumed and on stoichiometric contour line (ξ = ξ𝑠𝑡) neither 

oxygen nor fuel is present, while at region outside stoichiometric contour line (ξ < ξ𝑠𝑡) 

only oxygen is present. Increasing fuel stream velocity leads to increasing flame length, 

while increasing air stream velocity decreases flame height and the flame maximum 

temperature is almost constant in both cases. Increasing oxygen concentration in oxidant 

stream leads to decreasing flame length and increasing flame maximum temperature, 

while diluting fuel stream with nitrogen also decreases both flame length and flame 

maximum temperature. 

Future work  

One of possible modification that can be done in the future is implementing the 

simulation code in cylindrical coordinates which is more convenient for modelling 

diffusion. Also included the detailed kinetics involved in combustion process, so we can 

compute species with minor concentration like OH and CO that are neglected in SCRS 

model. 
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