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Abstract

Various fundamental studies based on a turbulent duct flow have gained pop-

ularity including heat transfer, magnetohydrodynamics as well as particle-laden

transportation. An accurate prediction on the turbulent flow field is critical for

these researches. However, the database of the mean flow and turbulence sta-

tistics is fairly insufficient due to the enormous cost of numerical simulation at

high Reynolds number. This paper aims at providing available information by

conducting several Direct Numerical Simulations (DNS) on turbulent duct flows

at Reτ = 300, 600, 900 and 1200. A quantitative comparison between current

and previous DNS results was performed where a good agreement was achieved

at Reτ = 300. However, further comparisons of the present results with the pre-

vious DNS results at Reτ = 600 obtained with much coarser meshes revealed

some discrepancies which can be explained by the insufficient mesh resolution.

At last, the mean flow and turbulent statistics at higher Reτ was presented and

the effect of Reτ on the mean flow and flow dynamics was discussed.
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1. Introduction

Turbulent flow transportation through a straight square duct emerges a

unique feature due to the existence of the so-called secondary flow of Prandtl’s

second kind which consists of four pairs of counter-rotating vortexes normal to

the stream-wise direction. Statistically, these eight vortexes distribute sym-5

metrically about the bisectors of the walls and the diagonals of the square

cross-sections. The first experimental work observing this phenomenon was

conducted by Nikuradse [1]. However, the instantaneous flow fields could show

fairly stronger vortexes and more complex patterns due to the chaotic changes

in the turbulent structure. The problems involved are often too complex to be10

analyzed analytically or observed by physical experiments. Therefore, they have

to be investigated by means of numerical simulations.

Among the most commonly used numerical methodologies are the Direct Nu-

merical Simulation (DNS), the Large Eddy Simulation (LES) and the solution

of the Reynolds-Averaged Navier-Stokes equations (RANS). A brief summary15

of these works relevant to turbulent duct flows are listed in Table 1 classified

according to the Reτ of interest. As shown, various fundamental studies based

on a turbulent duct flow have gained popularity including heat transfer, magne-

tohydrodynamics as well as the particle-laden turbulent flows, etc. An accurate

prediction on the turbulent flow field is critical for these researches. DNS is an20

essential tool to give insights into the physics of turbulence and to provide indis-

pensable data for future progresses on turbulence modeling. However, the DNS

database of the turbulent duct flows is fairly insufficient due to the enormous

cost at high Reτ . The first available DNS work was conducted by Gavrilakis [2]

at Reτ = 300 in which a detailed description of the mean flow in the transverse25

plane and turbulent statistics along the wall bisectors were presented. There-

after, this database has been adopted as a benchmark purpose either to tune

one’s turbulent model or verify the code. Joung et al. [3] and Pinelli et al. [4]

performed a series of DNS at Reτ = 300 to pursuit the basic physical mecha-

nisms responsible for the Prandtl’s secondary motion of the second kind. Xu [5]30
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Reτ DNS LES RANS

≈ 300 Gavrilakis [2], Joung

et al. [3], Pinelli et

al. [4], Xu [5].

Madabhushi et

al. [6], Xu [7].

Heat transfer by

Piller and Nobile [8],

Ma et al. [9].

Heat transfer by

Pallares et al. [10],

Vázquez et al. [11].

Rotating duct by

Yang et al. [12].

Rotating duct by

Pallares et al. [13].

With particles

by Sharma et

al. [14], Zhang et

al. [15, 16, 17].

With particles

by Winkler and

Rani [18, 19].

≈ 600 Huser and Birin-

gen [20, 21], Zhu et

al. [22].

Lo et al. [23], Hsu et

al. [24, 25], Kim and

You [26].

≥ 900 Raiesi et al. [27].

Heat transfer by Zhu

et al. [28].

Heat transfer by

Rokni et al. [29].

With particles by

Fairweather and

Yao [30].

With particles by

Adams et al. [31].

Table 1: Numerical simulation work relevant to turbulent duct flows.

performed DNS at Reτ = 200 to investigate the fully developed turbulence in

a straight square annular duct with the turbulence-driven secondary-flow gen-

eration mechanisms investigated by analyzing the anisotropy of the Reynolds

stresses. Huser and Biringen [20] expanded the DNS database by simulating

turbulent square duct flow at Reτ = 600 in which the corner influence on tur-35

bulent statistics and on the origin of the secondary flows were explained. Then,
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Figure 1: Schema of the square duct.

Huser et al. [21] assessed all the terms in the Reynolds stress transport equa-

tion. Zhu et al. [22] examined the turbulent statistics along the wall bisectors

at Reτ = 600. The DNS studies above Reτ = 600 are quite rare due to the

requirement of costly computational resources. For the problems at high Reτ ,40

an alternative option is to enlarge the range of length scales of the solution

by filtering turbulent motions in small scales. LES was particularly popular

when special attention was not paid on the slight turbulent flow movement but

velocity-coupled heat conduction [28] or behaviors of the floated grain materi-

als [30, 17] where the macro relative velocities between the solid and fluid phases45

played a key role. Simulations at even higher Reτ can be achieved using RANS

as a cheaper approach whereas inaccuracies of RANS have been reported [31].

As shown in Table 1, a blank exists in the lower left corner. The main

object of this study is to partially fill this gap by conducting DNS on a fully

developed turbulent duct flow up to Reτ = 1200. The DNS results in this paper50

are publicly available in http://www.cttc.upc.edu/downloads/DuctFlow/.

The remainder of this paper is arranged as follows: In Section 2, the gov-

erning equations and the numerical procedures are presented. Verification is

carried out in Section 3. Numerical simulations are conducted in Section 4 with

detailed discussions on the mean flow and turbulence statistics at different Reτ .55

Finally, some conclusions are made in Section 5.
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2. Governing equations and numerical methods

The incompressible Navier-Stokes (NS) equations in primitive variables are

considered

∂u

∂t
+ (u · ∇)u = ν∇2u−∇p; ∇ · u = 0, (1)

where u = (u, v, w) is the velocity field, p represents the kinematic pressure

and ν is the kinematic viscosity. A schema of the problem under consideration

is displayed in Figure 1. The dimensions of the computational domain are60

Lx×h×h in the stream-wise and wall-normal directions. The Reynolds number

based on the friction velocity, uτ , and the hydraulic diameter, h, is given by

Reτ = uτh/ν. Periodic boundary conditions are applied in the stream-wise

direction. The flow is driven by means of a constant pressure gradient in the

stream-wise direction, dP/dx = 4hu2
τ . Finally, no-slip boundary conditions are65

imposed at the walls. Therefore, the configuration depends only on the Reτ and

the length aspect ratio, Lx/h. A detailed discussion about the determination of

the domain size and grid spacing is given in the next section.

The incompressible Navier-Stokes (NS) equations (1) are discretized on a

staggered Cartesian grid using a fourth-order symmetry-preserving discretiza-

tion [32]. Shortly, the temporal evolution of the spatially discrete staggered

velocity vector, uh, is governed by the following operator-based finite-volume

discretization of Eqs.(1)

Ω
duh

dt
+ C (uh)uh + Duh − Mtph = 0h, (2)

where the discrete incompressibility constraint is given by Muh = 0h and the

subscript h refers to discrete vectors. The diffusive matrix, D, is symmetric and

positive semi-definite; it represents the integral of the diffusive flux, −ν∇u · n,

through the faces. The diagonal matrix, Ω, describes the sizes of the control

volumes and the approximate, convective flux is discretized as in [32]. The re-

sulting convective matrix, C (uh), is skew-symmetric, i.e. C (uh) = −Ct (uh).

Then, for the temporal discretization, a second-order explicit one-leg scheme is
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Figure 2: Two-point correlations of the stream-wise velocity, u, at nine monitoring locations.

This case corresponds to a simulation with Lx/h = 4π, i.e. double length that the simulation

parameters shown in Table 2.

used for both the convective and the diffusive terms [33]. Finally, the pressure-

velocity coupling is solved by means of a classical fractional step projection

method [34]: a predictor velocity, up
h, is explicitly evaluated without considering

the contribution of the pressure gradient. Then, by imposing the incompress-

ibility constraint, Mun+1
h = 0h, it leads to a Poisson equation for pn+1

h to be

solved once each time-step,

Lpn+1
h = Mu

p
h with L = −MΩ−1Mt, (3)

where the discrete Laplacian operator, L, is represented by a symmetric negative

semi-definite matrix. For details about the numerical algorithms and the parallel70

Poisson solver the reader is referred to [35]. The code was verified using the

method of manufactured solutions, and tested for several benchmark reference

results. Moreover, since a symmetry-preserving discretization is being used, the

exact fulfilment of the global kinetic energy balance was used as an additional

verification. For more details about the code verification the reader is referred to75

our previous work [36]. In addition, rigorous comparison with accurate previous

numerical studies [2] of the flow in a straight square duct have been used to verify

the code for this configuration. The verification process of the DNS simulations

carried out in this work is addressed in the next section.
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Reτ Lx/h Nx × Ny × Nz L+
x L+

y ∆x+ ∆y+
min γ CPUs

300 2π 160 × 128 × 128 1885 300 11.78 0.224 1.85 32

600 2π 320 × 256 × 256 3770 600 11.78 0.216 1.85 64

900 2π 480 × 384 × 384 4050 900 11.78 0.215 1.85 196

1200 2π 640 × 512 × 512 7540 1200 11.78 0.214 1.85 392

Table 2: Physical and numerical simulation parameters.

3. Verification of the simulation80

Since no subgrid-scale model is used, the grid resolution and the time step

must be fine enough to capture well all the relevant turbulent scales. Moreover,

the domain in the periodic direction, Lx, must be long enough, keeping an

adequate mesh resolution, ∆x, to ensure that numerical solution is not affected.

Finally, the starting time for averaging and the time integration period must85

also be long enough to evaluate the flow statistics properly.

As mentioned above, the results by Gavrilakis [2] have been used to verify the

code for this configuration at Reτ = 300. In a preliminary simulation, we have

used a 320 × 128 × 128 Cartesian staggered grid to cover the computational

domain with length aspect ratio Lx/h = 4π, i.e. double length (also double90

number of grid points in the stream-wise direction, Nx) that the simulation

parameters shown in Table 2 for Reτ = 300. This length must be long enough

to ensure that turbulent fluctuations are uncorrelated at a separation of one

half-period, Lx/2. This issue has been discussed in [2], however, a long length

(Lx/h = 10π) was employed by the author for safety. Based on the research of95

Uhlmann et al. [37], the minimum value for the stream-wise length is around 190

wall-units and roughly independently of the Reynolds number. In this study,

stream-wise two-point correlations have been carried out to check the domain

size in the x-direction. Figure 2 displays results for the stream-wise velocity

component, Ruu, at nine different (y, z)-locations. For all cases, the correlation100

values fall to zero for separations lower than one half-period. Similar results are

obtained for other (y, z)-locations and variables. Actually, results show that a
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Figure 3: Time-averaged wall-shear stress (left) and location of the first grid point in wall-units

(right).

shorter stream-wise length suffices. Hence, in the view of lower cost and better

grid resolution in that direction, Lx/h = 2π has been used (see Table 2).

Once the physical parameters are controlled, the grid resolution and the

time step need to be determined. Grid spacing in the period x-direction is uni-

form whereas the wall-normal points are distributed using a hyperbolic-tangent

function. Namely,

yj =
Ly

2

(

1 +
tanh {γ (2 (j − 1) /Ny − 1)}

tanhγ

)

, j = 1, . . . , Ny + 1. (4)

The grid points in the z-direction are distributed in the same way. Then, the105

concentration factor, γ, have been chosen equal to the value proposed by Gavri-

lakis [2]. This and other relevant simulation parameters can be found in Table 2.

All the simulations were carried out on the IBM MareNostrum supercomputer

which contains 2880 nodes with 2x Intel Xeon E5 − 26708 − core2.6GHz, 32

GB DDR3 − 1600 DIMMS (2GB/core) and Infiniband FDR10. The longest110

simulation at Reτ = 1200 took around 800, 000 CPU hours.

The region most sensitive to the grid resolution is near the wall. Figure 3

displays the location of the first grid point in wall-units. Note that in this case

the friction velocity, uτ , is computed with the local wall-shear stress. This value

falls down to values smaller than unity for the four Reτ studied here, indicating115

that the grid is fine enough. In turbulent regions, the smallest resolved length

scale is required to be O(η) where η = (ν3/ 〈ǫ〉)1/4 is the Kolmogorov length
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scale and 〈ǫ〉 is the time-averaged local dissipation of turbulent kinetic energy.

Figure 4 displays the ratio between the wall-normal grid spacings, ∆y, and η

at two different locations. As expected, higher values are observed at z/h =120

0.05 where values of 〈ǫ〉 are higher than in the centerline. The highest values

measured are similar to the resolution requirements suggested in [38, 39] to

obtain accurate first- and second-order statistics. They follow from the criterion

that most of the dissipation is being captured. Therefore, grid spacings equal or

smaller than η are considered too stringent because the Kolmogorov length scale125

is at the far end of the dissipative range. In this regard, a very recent work [40]

has shown that most of the dissipation in a turbulent channel flow occurs at

scales greater than 30η. In any case, the highest values for the ratio ∆y/η

are obtained at Reτ = 300 for which at excellent agreement has been obtained

with the results by Gavrilakis [2]; therefore, meshes at higher Reτ are also fine130

enough to resolve all relevant spatial turbulent scales. Regarding the time-step,

∆t, it follows from the CFL-like stability criterion proposed in [33]; therefore,

it is sufficiently lower than the smallest relevant temporal scale. Starting from

an initial velocity field interpolated from a coarser mesh, simulation have been

carried out until a statistically steady state is reached. Then, flow statistics135

have been computed over a period of approximately 20 turnovers (1 turnover

≡ 0.5h/uτ). In this regard, the time correlation, R(τ) = 〈u′(t)u′(t + τ)〉 /urms,

of the stream-wise velocity at (y+ = 10, z/h = 0.50) and (y+ = 10, z/h = 0.60)
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for Reτ = 900 is displayed in Figure 5. These locations correspond to high-

correlation regions, and their integral time scales (expressed in viscous units, τ+)140

are ≈ 28.5 and ≈ 17, respectively. Similar values were obtained in the near-wall

region of a turbulent channel flow [41]. In this case, one turnover corresponds

to τ+ = 450; therefore, the above-mentioned averaging period corresponds to,

at least, ≈ 315 integral time scales.
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Figure 5: Time correlation of the stream-wise velocity, u, at two locations at y+ = 10 for

Reτ = 900.

4. Results and discussions145

In this section, we directly present the numerical results for all Reτ . Mean-

while, the reliabilities are proved through quantitative comparisons with Gavri-

lakis [2] at Reτ = 300 and Huser and Biringen [20] at Reτ = 600. Averages

over the five statistically invariant transformations (time, x-direction, two cen-

tral planes and diagonal symmetries) are carried out for all the fields. Hence,150

apart from averaging on time and along the stream-wise direction, this implies

an averaging over the 8 quadrant bisectors as well. The standard notation 〈·〉

is used to denote this averaging procedure. Hence, hereafter we consider that

average results depend on y and z but not on x, i.e. < φ(y, z) >.

4.1. The mean velocity field155

The mean secondary velocity vectors and stream-wise flow contours in the

left lower quadrant are shown in Figure 6 where the mean stream-wise flows are
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Figure 6: Mean secondary velocity vectors with mean stream-wise flow contours at: (a)

Reτ = 300, (b) Reτ = 600, (c) Reτ = 900, (d) Reτ = 1200.

normalized by the average central velocity, uc =< u(h/2, h/2) >. As expected,

there exists a pair of counter-rotating vortexes in each quadrant and it can be

seen that the patterns of the secondary vortexes are obviously influenced by160

Reτ . The vortex center of the secondary flow moves from the corner to the wall

bisector as Reτ increases. The locations of the lower vortex center (y/h, z/h) are

(0.26, 0.11) at Reτ = 300, (0.31, 0.13) at Reτ = 600, (0.33, 0.14) at Reτ = 900

and (0.33, 0.13) at Reτ = 1200. This finding is in line with the trend reported

in [2] and [20]. The effect of Reτ on the distribution of the mean stream-wise165

velocity is also obvious. The secondary flows are capable of transferring energy
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from the center to the corners and thus pushing the high velocity zone toward

the corner. As shown, the degree of the influence increases with Reτ . However,

it is worthwhile mentioning that the marginal Reynolds number to show this

phenomenon is around Reτ = 160 below which the flow exhibits totally different170

secondary flow structures alternating with time [37].

The discrepancy of the secondary vortexes leads to the difference on the

distribution of the averaged wall shear stress. They are displayed in Figure 7

together with the results from Gavrilakis (Reτ = 300) [2] and Huser and Birin-

gen (Reτ = 600) [20] for comparative purposes. It is shown that the current175

line at Reτ = 300 agrees very well with that reported by Gavrilakis [2]. As for

Reτ = 600, consistency between the current result and Huser and Biringen [20]

can be only observed near the corner. The two profiles crisscross at the region

far from the corner. The discrepancy can be due to the different numerical

scheme and grid resolution since the DNS results are quite sensitive to these180

factors. A stream-wise length of Lx/h = 2π has been adopted in both [20]

and here whereas the former study employed a much coarser grid resolution

(96 × 100 × 100) than in this study (320 × 256 × 256). A fine-enough mesh

is critical in DNS because the coarse one may also gives rise to an inaccurate

12



prediction on the bulk velocity, ub, or other flow quantities as shown in Table 3.185

Based on the current results, two wall stress peaks can be observed at all Reτ .

One is near the corner and the other is near the wall bisector. In the corner

region, the gradient of the averaged wall shear stress becomes sharper with the

increase of Reτ . As expected, the location of the first peak approaches to the

corner and the magnitude decreases as Reτ increases. It is interesting to find190

out that the profile at Reτ = 300 shows a clearly different trend with higher

ones. This low-Reynolds-number effect has been fully discussed in [2] from

several aspects. The second peak at low Reτ is closer to the middle point of

duct bottom than high Reτ . The magnitude of τw at the wall bisector drops

with the increase of Reτ .195

Reτ Reference uc/ub Ff uτ/ub

300 Present (DNS) 1.33 0.037 0.068

Gavrilakis (DNS) [2] 1.33 0.037 0.068

Sharma (DNS) [14] 1.32 0.035 0.066

600 Present (DNS) 1.30 0.031 0.062

Hartnett (Experiment) [42] − 0.030 0.061

Huser (DNS) [20] − 0.027 0.058

900 Present (DNS) 1.27 0.028 0.059

1200 Present (DNS) 1.26 0.025 0.056

Table 3: Comparison of flow quantities computed in present DNS and others.

Further comparison of flow quantities are presented in Table 3 where the

friction factor is defined by the averaged friction and bulk velocities: Ff =

8u2
τ/u2

b . It is seen that all the current results obey the trend of the correlation

which was proposed based on the experiments of Jones [43]

1/F
1/2

f = 2log(RejF
1/2

f ) − 0.8 (5)

where Rej = 1.125Reb stands for the modified Reynolds number for square duct.

As for the numerical results, the current result at Reτ = 300 shows a perfect

agreement with Gavrilakis [2] but a little higher than Sharma and Phares [14].
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The Reτ = 600 results are also closer to the experimental observations [42]

than Huser and Biringen [20]. All the flow quantities shown in Table 3 tend to200

decrease as a consequence of the reduction of the boundary layer thickness with

Reτ .
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Figure 8: Profiles of the mean stream-wise velocity near the (a) bottom and (b) wall bisector.

For the sake of clarifying the influence of Reτ on the mean velocities, Figure 8

and 9 display the distribution of the mean stream-wise and lateral velocities

normalized by the averaged central velocity, uc, respectively. Again, all the cur-205

rent profiles at Reτ = 300 agree well with those reported by Gavrilakis [2]. The

discrepancies close to the wall bisector are due to the different length adopted

in the stream-wise direction [2, 14] whereas do not give rise to further dif-

ferences on the prediction of the averaged qualities. Similar to the averaged

wall shear stress distribution, near-wall (z/h = 0.05) results at Reτ = 300 dis-210

play a significantly different behavior due to the low-Reynolds-number effect.

Namely, near the corner (y/h ≤ 0.1, z/h = 0.05), the gradient of the mean

stream-wise velocity is significantly lower than the rest of Reτ . Far from the

corner (y/h > 0.1, z/h = 0.05), results are also quite different: a second peak at

y/h = 0.5 is observed at Reτ = 300 whereas for the rest of Reτ the profiles are215

almost flat. This is because the center of the vortexes moves from the corner to

the wall bisector as Reτ increases. The change on the secondary flow patterns

makes further influence of the stream-wise velocities close to the duct bottom.

The height of the peak or valley may also increase with Reτ due to the fact that
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Figure 9: Profiles of the mean lateral velocity near the (a) bottom and (b) wall bisector.

the secondary vortexes are stronger as Reτ increases. Figure 8(b) displays the220

distribution of the stream-wise velocity along the wall bisector. Apart from the

obvious differences near the sidewall, results do not seem to be influenced by

Reτ very much because the secondary flow here is relatively weak.

Figure 9 displays the averaged parallel-to-wall velocity normalized by the

central velocity at two different locations. This is a good measure of the strength225

of the secondary flow. As seen in Figure 9 (a), the positive vertical velocity exits

close to the duct corner (y/h ≤ 0.05, z/h = 0.08) which belongs to the upper

clockwise-rotating secondary vortex. The upward strength increases with Reτ .

However, the vertical secondary strength seems to be independent of Reτ at

the region far from the sidewall (y/h > 0.05, z/h = 0.08). The profiles vary230

also because the center of the vortex moves from the corner to the wall bisector

as discussed above. In Figure 9 (b), < w > /uc at z/h = 0.4 is picked since

the vertical secondary strength along the wall bisector is extremely weak. The

discrepancy here due to the difference of Reτ has been expected and obvious.

The strength of the secondary flow is found to increase with Reτ . The trend235

can be also observed from the secondary flow vectors in Figure 6.

4.2. Turbulent statistics

Unlike the mean values, the instantaneous fields of a turbulent flow are much

more complex. For instance, the instantaneous distribution of the vorticity mag-
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(a) (b)

Figure 10: (a) 2D slice and (b) 3D instantaneous distribution of vorticity magnitude at Reτ =

1200. Animation is available at http://www.cttc.upc.edu/downloads/DuctFlow/.

nitude at Reτ = 1200 is displayed in Figure 10. As expected, the patterns ex-240

hibit significantly irregular, non-linear and asymmetrical behaviors especially in

the 3D snapshot. Such fluctuations around the mean values strongly increase the

transport and mixing effects compared with a laminar flow. Therefore, second-

order statistics (or turbulent statistics) of the velocity field are fundamental to

analyse a turbulent flow.245
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Figure 11: Distribution of (a) urms/uτ , (b) wrms/uτ along the wall bisector normalized by

the local friction velocity.

The turbulence intensities are presented in Figure 11 and 12 where special

attention was paid on the behavior near the sidewall (y+ ≤ 100). Figure 11 (a)
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Figure 12: Comparison of r.m.s. fluctuations near the duct bottom normalized by the local

friction velocity: (a) urms/uτ , (b) wrms/uτ .

shows urms/uτ distribution along the wall bisector. It can been seen that the

current results are in perfect line with previous references in the viscous sublayer

(y+ < 10). In the rest of region, the current results are quite comparable with250

Gavrilakis [2] and Kim et al. [44] whereas significantly lower than the other two

DNS works [20, 22] due to their coarse mesh. This finding has been noticed

before in [20] and [45] that urms/uτ decreases with increasing grid resolution

and the maximum value of which has a tendency to over-predicted when using

upwind-biased scheme. Further more, our results reveal that urms/uτ above255

Reτ = 600 is nearly independent of Reτ at the wall bisector. The lower value

at Reτ = 300 is due to the low-Reynolds-number effect. The magnitude of

wrms/uτ is obviously lower than urms/uτ but increases with Reτ as shown in

Figure 11 (b). The current results of wrms/uτ at the wall bisector are found

in line with Gavrilakis [2] and Huser and Biringen [20] at Reτ = 300 and 600,260

respectively. But the DNS results of Zhu et al. [22] at Reτ = 600 are lower than

others.

The turbulence intensities near the duct corner at different Reτ are shown in

Figure 12. The magnitude of urms/uτ here is comparable with that at the wall

bisector. Due to the typical feature of the secondary flow of Prandtl’s second265

kind, the distribution trend of urms/uτ switches at about y+ = 30 below which

urms/uτ increases with Reτ whereas emerges totally reversed distribution when
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Figure 13: Variation of the turbulent intensities scaled with the local mean stream-wise.

beyond it. This phenomenon due to the Reynolds-number difference has not

been reported before. wrms/uτ near the duct corner shares similar trends with

urms/uτ and the magnitude increases with Reτ as shown in Figure 12 (b).270

Finally, as illustrated by Gavrilakis [2], the values for urms/ < u > and

wrms/ < u > close to the sidewall can be regarded as the root-mean-square

of the span-wise, ωz, and stream-wise, ωx, vorticity scaled with wall variables,

respectively. Through a literal survey, suggested values of ωz are 0.36 by Kim

et al. [44] and Gavrilakis [2], 0.38 by Popovich and Hummel [46] and 0.40 by275

Alfredsson et al. [47]. Figure 13 (a) displays the urms/ < u > distribution

along the wall bisector at different Reτ . It can be seen that the predicted span-

wise components by current DNS range from 0.36 at Reτ = 300 to 0.41 at

Reτ = 1200 and the magnitude increases with Reτ . It can be seen in Figure 13

(b) that wrms/ < u > shares the same trend as urms/ < u > but exhibits a280

sharp drop at the region very close to the sidewall (y+ < 10) while much flatter

in the rest regions.

5. Concluding remarks

Direct numerical simulation of a straight turbulent duct flow has been car-

ried out at Reτ = 300, 600, 900 and 1200. Cartesian staggered meshes were285

employed with up to 167.8 millions of nodes. A fully-conservative fourth-order

18



spatial discretization has been used together with a second-order explicit time

integration scheme.

A quantitative comparison between current and previous DNS results was

performed at Reτ = 300 where a good agreement was achieved. However,290

further comparisons of the present results with the previous DNS results at

Reτ = 600 obtained with much coarser meshes revealed some discrepancies

which can be explained by the insufficient mesh resolution. The present DNS

and the code used for the simulations have been carefully verified in order to

provide sufficient mesh resolution and reliablility of the high-order numerical295

method. At last, the mean flow and turbulent statistics of the turbulent duct

flow at higher Reτ was presented with the effect of Reτ on the mean and in-

stantaneous velocity field discussed. Our results show that both the mean flow

and turbulent statistics can be affected by Reτ especially close to the duct

wall. The pattern and strength of the secondary vortexes vary with Reτ which300

leads to further influence on the distribution of the mean stream-wise flow and

wall stress. An interesting phenomenon is that Reτ = 600 stands like a critical

Reynolds number below which the fluid exhibits behavior with large discrepancy

due to the low-Reynolds-number effect. The turbulent fluctuation significantly

increases with Reτ . The mesh resolution is critical to predict the flow quantities305

correctly.
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