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ABSTRACT 

One of the two approaches to the design of digital interpolators uses 

averaged second-order statistics to minimize the mean square interpolation error. 

This approach has been considered only when the number of samples employed to 

compute a final interpolated value is even. In the present paper, we generalize 

systematically this method to.consider even or odd numbers of samples in that 

computation· and values of s~mpling period ratio, with lineal phase non-recursive· 

interpolating filters. 

INTRODUCTION 

To interpolate between samples of a sequence constitutes a useful technique 

in many signal processing applications: speech processing, modulation systems, 

filter banks, narrowband filters, etc. Basically, the interpolation process can 

be considered as a filtering {1} that.obtains a sequence with a sampling period 

T'.::: T/L .from other sequence with a sampling period T > T 1 • L .is the sampling 

frequency increase. 

The design of interpolating filters has been fundamentally-considered from 

two points of view.·. The first poses the problem as the design of a lowpass filter 

having specifications ~ndependent of the properties of the sequence to be 

interpolated {1} {2} {3} {4} • This method has ·its main goal in reducing the 
J • • 

number of operations. The second point of view minimizes the interpolation error 

using the spectrum or the autocorrelation of the· final sequence {5} {6} • The 

present work follows the last approach. 

I. INTERPOLATOR DESIGN 
-1 Associating z with the sampl~ng period of the interpolated sequence 

L (T' ::: T/L), the z-transform of the original sequence can be expressed as X(z) .. 
. ' 

and the transfer function of the interpolating filter can be written 
L-1 

H{z) 
-PL. l: z -j.H. (zL) = z + t1J 

where j=1 J 

' ' . . L Q-1 
--Li H. (z ) = i~O hj (~) z j =: 1 , ••• ,L-1 (2) 

J 
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assuming that L is an integer and a non-recursive interpolating filter. The 

z-transform of the final sequence is 

L L PL L-1. • L L 
Y(z} = H(z) X(z) = X(z) z- + ~ z-JH.(z )'X(z) 

j=1 J 
Introducing 

formula (3) becomes 
L-1 

Y{z) = E 
j=O 

-j L 
z Yj (z ) 

(3) 

{4a) 

(4b) 

(5) 

This result admits the following interpretation: the output sequence y(n) 

is obtained as a time multiplexing of 

and 

y
0

(rL) = x(rL- PL), r = o, :1,l:2, ••• 

Q-1 
yj(rL) = E hj(r- i) x(iL)~ j =-1, ••• , L-1: r~ 0, 

i=O 

(6a) 

1, 2 •.• (6b) 

y
0

CrL) is the origi~al sequence delayed P sampling periods (PT). The_ 

{y,(rL)} are obtained by filtering the original sequen~e through the {H,(zL)} 
J . . . ' ) 

they represent the resulting values at distances jT' from the original samples. 

Fig. 1 illustrates this interpretation. 

X(rL) 

l l 1 ~ 1 I I l I It I L::3 .,.,.,. 
.. i 

T 

. Fig I 1 

Then, the final samples between x(rL) 
Q-1 

~(rL + j) = y. ((P+r)L] = L X ((P 

~~· 

-'Yo{rL} o 'JJ (rL) • Yz(rL) 

and x{rL + L) are given by 

J i=O 
Anappropriate criterion to determine 

+ r - i) L] h . ( i) , j = 1 , ••• , L-1 
) (7) 

the {h. (i)} is to select. those values 
J . . . 

that minimize the mean square 

2 
e 1 = -----..,.. 

L - 1 

error 
L-1 

E E{ (x {rL + j) 
j=1 

2 
~(rL+ jl] } (8) 

where {x(rL + j)} are the samples of x(n) to be estimated. since each h.(i) 
) 

·appears only in a term of the sum in (8), e 2 can be minimized by minimizing each 

term separately. Using (7), it can be easily obtained 
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2 
e. = 

J 
E{(x(rL+ j}- ~(rL+ j)) 

2 }= R (0} 
XX 

Q-1 Q-1 
+ 1: 1: R [Ci-k)L] h.(i) h.(k} 

i=O k=O XX J J 

Q -1 
2 E R [ (i- P) L+ j J h. {i) 

i =<Q XX J 
+ 

(9) 

where R (m) is the autocorrelation of x(n}. The minimum of e~ appears when {7} 
XX J 

-1 
h. = R b. 

J J 
where 

n. =[h.(O), h.(1), ••• , 
J J J 

o.=[R (-PL+j)-, ••• , 
J XX 

and 

R = 11 Rxx r (i - k) L] 11 

h. <Q - n) T 
J 

R ((Q - 1 - P) L + j >] T 
XX 

is the autocorrelation matrix. 

( 11a) 

( 11b) 

( 11c) 

This criterion to determine the interpolating filter coeffi~ients has been 

proposed independently in {5} and {6} , but only in {5} the representation (1), 

that allows an easy design, is used, and only for an even Q. 

Although {1) and (2) are valid in any case, the resulting design satisfies 

the usual restrictions for non-recursive interpolators only when Q is an even 

number. This seems to be the reason to consider only this case in· {5} and {6} 

In the following, we will indicate how to use (1} to verify the above 

mentioned restrictions for even or odd Q and L. 

II. USUAL RESTRICTIONS ON A NON-RECURSIVE INTERPOLATOR 

Although not all restrictions have-been explicitly expressed, they are 

usually the following: 

1.- The same number Q of original samples has to be used to obtain each 

final sample. 

2.- If dA and dp are the distances from a final sample to the rurthest 

previous and later original samples needed to compute it, respectively, (12} 

will be verified 

( 12} 

Fig. 2 illustrates the meaning of this condition. 
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(3) 
(a) 

{2) 
9 {:) (4) I 
I I 

(5) 

I 
(i) I 

--- t 
I 
I 
I 

X )( IC 

0 c a a 

Fig. 2: x indicates a correct selection of original samples 
c indicates an incorrect selection 
Q == 4 

3.- The same coefficient has to correspond to equal distances between final 

and original samples.For example, in Fig. 2, to compute the sample (a), the 

coefficients for the samples (2), (3), (4) and (5) have to be equal to the 

corresponding to the samples (5), (4), (3) and (2), respectively, in computing 

(b) • 

We will see that these conditions force a linear.phase for H(z). 

Ill. COMPUTING THE IMPULSE RESPONSE OF A NON-RECURSIVE INTERPOLATOR 

Let us consider the fulfilment of the indicated three restrictions. 

To write H(z) in the fqrm of {1) with 
L Q-,+m -Li 

H.(z) = 1: h.(i)z j = 1, ... ,L- 1 (13) 
J i==m J 

obviously fulfils the first restriction. Though the use of {1) and (2) verifies 

this condition, (13) allows to verify the second restriction for any Q and L. 

and 

According with (13), expression (7) has to be rewritten in the form 
Q-1+m 

~(rL + j)::: y. [(P+ r)L] = I: x [CP+ r-ilL] h.(i), j= 1, ••• ,L-1 (14) 
J i=m ] 

Applying the definitions of dA and dp and using (14), we obtain 

dA = rL + j - (P+ r - Q+ 1- m) L = j- (P- Q+ 1- m) L 

d == (P+ r- m) L - (rL+ j) ;:; (P - m) L - j 
p . . .. . 

jdp- dAI = I (2P- 2m- Q + 1) L- 2j! 

( 15a) 

. ( tSb) 

( 16) 

To consider the verification of the second restriction, expressed by (12), 

we will distinguish two cases. 

First case: even Q. 

(12) imposes 

p = Q/2 + tn ( 17) 

then, selecting m= 0, we arrive to (2). Since 
N-1 

H(z) = 1: h(i) 
i=O 

-i 
z 
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it is easy to see that (2) forces h(O) = 0. To avoid this, we introduce a 

translation to the left, obtaining finally 

N = QL - 1 

h [ (N + 1 ) /2 - 1] = h ( (N- 1 ) /2] = 1 

h (rL - 1) == 0, r = 1 , 2, ••• 

h UL+ j- 1)::::h,(i), i = 0,1, ••. ,Q-1: j=1,2, ••• ,L-1 
J 

(19a) 

(19b) 

(19c) 

(19d) 

Thus, we can find the impulse response of the interpolating filte~ from the 

solution of (10) with P Q/2. 

Second case: odd Q. 

(12) requires 

p = (Q + 1) /2 

being 

m = 1 when 1 ~ j ~I_ L/2 J. 
m = 0 when I_ L/2 J < j ~ L - 1 

(20) 

(21a) 

(21b) 

where L J indicates truncated greatest integer function. We 'can observe that, for 

even L, the interpolated sample cannot verify (12), because jdp- dAj = L. 

This case presents other anomalies, as we will see later. 

At first, expression (13) and conditions (21a, b) implicate that the first 

I_ L/2 J + 1 samples of the impulse response of the interpolating filter are zero. 

Translating the same number of samples to the left, we obtain 

N = LQ 

h [ L (N - 1 )/2 J 1 = 1 

h[ I_(L- 1)/2j+ rL] = 0, r = 1, 2, •••• 

h [ iL+ j- I (L + 1 ) /2 I ] = h . ( i) , { ~ : 1 , ••• , Q: j ==. 1 ~ ••• , L/2 
- ::.J J l.-O, ••• ,Q-1; J -IJL+l)/~, ••• ,L-1 

(22a) 

(22b) 

(22c) 

. (22d) 

Then, we can find the impulse response of the interpolating filter by means 

of (22 a, b, c, d) from the solution of (10), where, in this case, 

n. = [h. (m) , ••• I h. (Q - + m>l T 
J J . J 

n. = [R ((- Q+l +m) L + j), .•• , R ((Q-
2

3 +m.) L + j)J T 
· J XX 2 XX 

and m is given by (21 a, b). 

(23a) 

(23b) 

Finally, let us consider the third restriction. According with (14), the 

distance between the interpolated sample and the sample that is being used is 

given by I (P + r- i)L- rL- jl = I (P i)L- jl 
The same distance will be obtained.for i' and j' such that 

j' + (i' - P)L = (P - i)L- j 
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i.e., 

i' = 2P- i- (j + j')/L 

Then, since i' is an integer less than Q, 

j' = L - j 

i' = 2P - 1 - i 

Thus, the third restriction imposes 

hj (i) :::: hL- j (2P - 1 - i) 

(26) 

(27a) 

(27b) 

(28) 

We remark that restriction (28) is compatible with (13) when P = Q/2 and 

m:::: 0 (first case) and when P = (Q + 1)/2 and m ·is given by (21a, b) (sencod 

case). 

On the other hand, it can be easily checked that the solution of design 
-1 

equation (10) verifies (28} 1 since R is a symmetric matrix, and, if we express 

by b.(i) the components of b., we will have 
J J 

b. (i) = bL , (2P - 1 - i) 
J - J 

(29) 

since R (n) is an even function. Then, equation (10) has to be solved for 
XX 

j == 1 1 2 ,·... l<L +. 1) /2j 1 only; obtaining the remaining components using (28) • 

IV. THE LINEAR PHASE PROPERTY 

Expressions(19) and (22) and restriction (28) allow to establish that the 

obtained designs verify the linear phase property, except in a case that we 

will·see later. Let us consider the two previously studied cases separately. 

First case: even Q. 

According with (19a 1 d) and (28), we can write 

h ( iL + j - 1 ) = h , ( i) = hL , ( 2f - 1 - i) = h ( ( 2P - 1 - i) L + L - j - 1 ) = 
J - J 

= h ( N - 1 - ( iL + j - 1 ) ) 

(30) proves the linear phase property. 

Second case: ·odd Q. 

From. (22a, d) and . (28),. we obtain 

. (30) 

h(iL+ j- IlL+ 1)/2 I)= h. (i) = h . (2P- 1- i) = h( (2P- 1- i)L+ L-j-I(L+1}/2 ']== 
~ :..l J L-J - . :J 

=-h( N- 1 -(iL+ j- liL + 2)/2j >] (Jl) · 

According with the equality 

I_ CL_ +
1 

2) I:J = ~L + 1) /2 J . , odd L . (32a) 
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relation (31) establish the linear phase property when L is odd. 

When L is even, we have 

UL + 2) /~ = UL + 1 ) /~ + 1 , even L (32b) 

and in (31) we can verify that there is not linear phase. Nevertheless, taking 

h1N) ~ h(QL) = hL/2 (Q) = 0 (33) 

that implicates a total number of samples 

N' = N - 1 = QL - 1 (34) 

it can be checked the verification of the linear phase property in (31) with 

the help of (32b). Condition (33) is compatible with (28), and it leads to the 

fulfilment of (12) when Q is odd and L is even. 

CONCLUSION 

A design method to obtain non-recursive interpolators using the autocorrel

ation or the spectrum of the original sequence has been introduced. This method 

allows to obtain the impulse response of the interpolating filter by means of 

solving systems of linear equations having an immediate formulation for even or 

odd values of the number of samples Q used to compute a final sample and of the 

ratio L between the original and final sampling periods. The obtained filters 

verify the linear phase property. 
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