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ABSTRACT

Grace-Pitt-Brown's method {1} {2} {3} to sample a band-Timited
bandpass signal x(t) at the minimum average sampling rate obtaining separate
interpolations forits in-phase and quadrature components is based on sampling
x(t) and x(t -~ n/2w,) (where wo is the center angular frequency of the signal) at
a rate a/2m (where o is the angular bandwidth of the signal) assuming that w, =
= ko/2. This method is particularly useful because it is easy to obtain
x(t - m/2w,).

In this paper we discuss the possibility of generalizing the above
method obtaining a separate interpolation for the lowpass components of x(t) by
sampling x(t) and 2N - 1 dealayed versions of it at a rate o/2nN.
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INTRODUCTION

A deterministic, real, finite-energy, o-band-limited bandpass signal x(t)
can be written in the form

x(t) = }X(t) coswgt - qx(t) sinw,t (1)

where w, is its center (angular) frequency and 1X(t), qx(t) are its in-phase and
quadrature components, respectively: two real, finite-energy, o/2-band-1limited
lowpass signals, related one-to-one with x(t) when y, is given. It is well known
that we can interpolate 1x(t) and qx(t) separately from samples of

* 1 (t), q(t), or

* x(t), X(t) (the Hilbert transform of the signal) when w, = ko/2 (k an integer),
or |
* x{t), x(t - m/2w,) when w, = ko/2 (Grace-Pitt-Brown's theorem),

taken at a rate T = o/27 (that corresponds to the minimum average sampling rate
o/m) {1} {2} {3} {4} {5} . The last possibility is advantageous because the

X(t), or x(t).
In {4} {5} we have demostrated that Grace-Pitt-Brown's theorem can be

obtention of x(t - n/2w,) is easier than the obtention of 1X(t), q

viewed as a particular case of a more general possibility that consists in
reconstructing ix(t), qx(t), from the samples of the outputs of two linear time-
invariant systems driven by x(t), under the following conditions: the impulse
response of the first system must have a zero quadrature component, and that of
the second system must have a zero in-phase component. This corresponds to
hermitian and anti-hermitian spectra of the corresponding complex envelopes,
bhi(t), i=1, 2; i.e.;

By, () = 2y ( +w0) ulo +w) = B () (2a)

B (0) = 2plo + we) ule +uo) =-BF () (2b)

where Hi(“)’ 1 =1, 2, are the transfer functions, and u 1is the unit step
function.
These conditions are also verified by the sets of functions (w, -0/2 <

< IU)I < wq + 0'/2)

exp(-juim/we), 1 =0,...,N -1 (3a)
expl-du(2i + 1) w/2w} 5 1= 0,...,N -1 (3b)

Hy 5 ()
Hy; (w)

that correspond to delays i m/w, and (21 + 1)n/2w, , i = 0,..., N - 1,
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respectively, since their complex envelope spectra are (-0/2 <|w|<o/2)

Bh (u)) = 2 exp ['J((» + wo)iﬂ/wol = 2(-1)1 exp(~iwit/un) = R; (=n),
11 I (4a)
i=0,...N-1
3, (u) = 2 exp {-3(e ¢ b2+ 1) v20 )= 20-9) " Pexpl -ju(2i + 1)1/2u00] =-Bf_ (-0
Y21 21
1=0,...N-1 (4b)

Then, it is interesting to study the possibility of generalizing
Grace-Pitt-Brown's theorem to these sets of transforms.

I. EXTENDING PAPQULIS® GENERALIZED SAMPLING-EXPANSION

In {5} , we have extended Papoulis' Generalized Sampling Expansion
{6} {7} {8} to prove the generalization of Grace-Pitt-Brown's theorem. We will
maodify this extension to apply it to the case considered here.

Let us form the system of 2N equations in - wg -0/2< w< - wy-0/2 +C

N-1
5 {exp-3wrre)in/uwo] Yo {w,t)+exp|-3(wtre) (2i+1)n/2uw,) ¥, (0, t)=exp(jret),
i=0 |

r=0,...,N-1
N-1

B {exp[—j(w+2w0+rc)iﬂ/wo]Yli(mgt)+exp[—j(m+2wo+rc)(21+1)ﬂ/2w0]YZi(w,t) =
i=0 .
= exp|j(2w, + rc)t} 4 r=0,...,N-1

(5)
where ¢ =g/N. Assuming w,= ko/2N = kc/2, we have expaJ(Zm e ) B ]— exp[ (k+r)ct] s
and, since expg < k+r)c mﬁ/rj = 1, it is obvious that Y ( )}, {Y21(w’ )},

i=20,..5N-1, are periodic in t with a period T 2 /c = 2nN/o . Then, we
can prove easily that, in -wo -0/2 < w <~we~-0/2 + C:
Ymi(m,t}exp(jwt) = I ymi?O(t» nTN}ex;(jnTﬁuﬂ, m=1,2;1=0,...N-1

i (6)
where

1 =g~ g/ 2+C
Y = & , 1 = e 3 0= =

Vi o(t) Cf Y (w,t)exp(dut)ds s m=1,2; 1 =0,...,N-1 (7)

~wg=0of2

From (6) and the (r+1)th and (N + r + 1)th equations of (5) multi-
plied by exp(jwt), we obtain

N-1 o -
exp(jut) = E {exp(-Juin/we) I ¥y; o{t-nTy) exp(inTyw) + exp[-Ju(21+ 1)m/2u,]
‘j: N=eco ~ °
I Ypq olt = n Ty) exp(i n Tyw)) (8)

N= =00
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valid in =we=0/2 + re<w< wy =0/2+ (r+ 1)c and wy=-0/2+ rc< w< wo - o/2+(r +1)c,

respectively; then (8) is valid in wp-o/2<w<wy; - c/2, and we can write
1 N-1 e 1!

x(t) ='§—f‘x ) exp(jwt)dw = T { T Yy, - nT §—J A{w)exp(-Jwin/w,)
o= 0/2<|w[<w0+0/2 i=0 n=-e *' 0-0/2<|w|<wo+o/2

exp(jnTNw)dw 3 Z“)y21’0(t- nTN) %;J— X(w)expl-jw(2i+ 1)ﬂ/2w¢]exp(jnTNw)dw }=

n=- MQ-O/2<IN|<MQ+O/2
N1 - v
=T LT x(n Ty in/ue)ygy ot nTy) + £ x0Ty (21 +1)m/200) v,; olt-nTy)
i=1 n=-e : n=-eo ’

(9)
that is a general interpolation formula. Obviously, (9) can be generalized to
cover the case of arbitrary delays {tﬂi} , 1 =0,...,2N- 15 but the particular
case considered allows ys to obtain a separate interpolation.

IT. THE SEPARATE INTERPOLATION

Introducing the change of variable w' = w+w, in (5), we obtain in
-g/2< w'< -o/2 + ¢
N-1

.Zo{exp[—j(w'—w0+rc)iﬂ/wo]Yli(w'—um,t)+exp[—j(w'—w0+rc)(21+1)ﬂ/2de21(w'—wo,t) =
1:

= exp(jrct), r=0,..., N -1

N-1
T {EXp[—j(w'+w0+rc)1ﬂ/wo]Y11(w'-wo, )+exp[ Jlw! +m0+rc)(21+1)ﬂ/2wo}Y
i=0

Zi(wl'MOat) =

= explj(2wo+rc)t] , r =0,...,N -1 (10)

By adding the n-th and (N + n)- th equations and substacting the
first from the last, n = 1,...,N, considering that

exp(juoim/wo) = exp(-juain/uo) = (-1)] (11a)

—expliwo (21 + 1)m/2w0) = expl-jwo(2i+ 1)m/20g) = (-5)27*1 =-j(-1)] (11b)

we obtain the equivalent system in -o/2<w'<-0/2 + ¢

N%l(—l)iexp[-j(w'+rc)iﬂ/wg]Yli(w'-wo,t) = exp(jret) [exp(j2wet) + 1] /2,

=0 r=0,...,N-1 (12a)

_JTZ;( 1) exp[ jlw +rc)(21+1)n/2w0]Y21(w -wg,t) = exp(jrct) [exp(ijot) - 1] /2
r=0,...,N-1 (12b)

and since we can rewrite (7) in the form

‘ 1 ~g/2+cC )

ymi’o(t)= eXp(—ont)Eg m1(w wo,t)exp(jw't)dw', m=1,2; i=0,....N-1
-0/2 : (13)
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uli,o(t) :lE}_g/Z L11,0(@,t) exp{jwt)dwfcoswet, 1 = 0,...,N-1 (14a)
‘ [, ~0/2+C
7% O(t) = —léj ) 221 O(w,t) exp(jwt)du4sinwot, i=0,...,N-1 (14b)
> ey ’ )
where {Z O(w,t)f ,m=1,2,i=20,...,N-1, are the solutions of
N"]. .' -
L (-1)" exp|-j(utre)in/ue] Zy;0w,t) = exp(jret), r=0,...,N-1 (15a)
‘i:O D)
N-1 : .

¥ (—1)1 expl—j(w+rc)(2i+1)n/2wo]221_O(w,t) = exp(jrct), r=0,...,N-1 (15b)
i=0 ;

in -o/2<w < -g/2 + c. Note that, since

cos nk cos

gin Loo(t = n T = ()™ o at (16)

we obtain the separate interpolation formulas

1x(t)’=T§; nzlm(—l)nk x(n TN - im/wg) Zli,O(t -n TN) (17a)
N-1 o il _
q,(t) - I niéw(—l) x[n Ty -(2i+ 1)ﬂ/2w01221’0(t - nTy) (17b)
where
1 -g/2+c '
Zmi,D(t) == " zm],O(w’t) exp(jwt)dw , m=1, 25 n=0,...,N-1 (18)

It is possible to simplify the obtention fo {Zmi O(t)}, m=1,
i=20,...,N -1, introducing the functions

Arg olt) = (-1)" exp(-jwin/w,) Z)4 olwst) (19a)
Roi o(t) = (-1)7 exp[-Ju(21 + 1)1/2ud] Zp; olwst) (19b)
the systems (15a, b) become
N-1

LW Al' 0(t) = exp(jrect), v = 0,...,N-1 (20a)
i=0 by

N1 h(i+1/2)

LW A2. 0(t) = exp(jret), r =0,...,N -1 (20b)
i=0 1s

where W, = exp{-j2r/k) is the k-th root of the unity. In accordance to this,
will have

we
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(1 (-0 Ay o0 L[ enpliud )
z.. (t)=(-1)" A, 4(t) = expijw(t + i1/wy){ dw =
11,0 1i,0 c -o/2 ‘
. . .. sinfo(t+ iﬁ/wo)/ZN]
= 1 1(N—1)/£ £ N-l \ s _ N I\ -
= (1) Ay ot SEF Tr7aay7an— SXPl-d Trot), 120,00 -1
(21a)
; 1 -g/2+c ,
Zy: o(t)= (-1} Ay o(t) E’J 2 expijult+ (2i+ 1)7/2uqldw =
H * -0
: (=12 STnfolt+ (294 1)7/2uw,] 72N}
= (-1)1A21. O(t)vslji( )/ exp(-j NZNI ot), i=0,...,N-1
’ oft+ (21+ 1)0/2wo] /2N
_ (21b)

(17a, b) (with (20a, b) and (2la, b)) constitute the generalization
of Grace-Pitt-Brown's bandpass sampling technique.

ITI. AN TLLUSTRATIVE EXAMPLE

If N =2, systems (20a, b) will become

Arg o(t) + A o(t) =1

{ 10,0 11,0 -
AIO,O(t) + Wy All,O(t) = exp(jot/2)

Aag,0(t) + Ry o(t) =1 (22b)
w;/z AZO,O(t) + wi/z A21,O(t) = exp(jot/2)

from which

Ao,0(t) = [exp(iot/2) - w ] /(1 - W) (232)
Mg o) = {1 - exp(sot/2)] /(1 - wy ) (23b)
Ao olt) = [exp(iot/2) - w)/?] m/?(1 - wp) (23¢)
Arq,0(t) = {W§/2 - exp(jot/2)] /wl/z(l - W) (23d)

introducing these values in (2la, b) and operating, the interpolation functions
result

_ sin(ot/4 + 1/k) sin(ot/4)
ZlO,O(t) sin (mn/k) ot/h (24a)

_ sin(ot/4) sinfo(t +ﬂ/w0)/4]
211,08) = ST G/AT  oEF 7 ws)/B (24b)
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sin(ot/4 + 3m/2k) sinlo(t + 7/2w,) /4]
sin(m/k) ot + m/2w,)/4

220,0(t) = (24¢)

sin(ot/4 + 1/2k)  sinlo(t + 31/2w,)/4)
sin(mn/k) o(t + 3w/2wy) /8

291,0(t) = (24d)

and inserting them in (17a, b) with N = 2, TN = T2,=n/20 , we obtain the correspond-
ing separate interpolation formulas.

CONCLUSIONS

We have generalized Grace-Pitt-Brown's quadrature bandpass sampling
method, introducing the following procedure: it is possible to recover separately
the lowpass components of a band-limited bandpass signal x(t) from the samples
of {x(t - im/wo)} , {x[t -(2i + 1)m/2wq} , i =0,...,N - 1, (where w, is the center
angular frequency of the signal) taken at a rate 1/TN = g/2mN (where ¢ is the
angular bandwidth of the signal) when w, =ko/2N.

Generalizations of this result to transforms that correspond to
zero quadrature and zero in-phase component impulse response systems are also
possible.
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