DIRECT DETERMINATION OF THE LOWPASS COMPONENTS OF A BANDPASS SIGNAL FROM SAMPLES OF IT AND DELAYED VERSIONS OF IT

```
Aníbal R. Figueiras-Vidal* Ramón Garcia-Gómez**, Miguei A. Lagunas-Hernández**,
josé B. Mariño-Acebal* and José R. Casar-Corredera*.
* ETSI Telecomunicación, Cdad. Universitaria, Madrid 3, Spain.
**ETSI Telecomunicación, Jorge Girona Salgado s/n, Barcelona 34, Spain.
```


ABSTRACT

Grace-Pitt-Brown's method \{1\} \{2\} \{3\} to sample a band-1imited bandpass signal $x(t)$ at the minimum average sampling rate obtaining separate interpolations forits in-phase and quadrature components is based on sampling $x(t)$ and $x\left(t-\pi / 2 \omega_{0}\right)$ (where ω_{0} is the center angular frequency of the signal) at a rate $\sigma / 2 \pi$ (where σ is the angular bandwidth of the signal) assuming that $\omega_{0}=$ $=k \sigma / 2$. This method is particularly useful because it is easy to obtain $x\left(t-\pi / 2 \omega_{0}\right)$.

In this paper we discuss the possibility of generalizing the above method obtaining a separate interpolation for the lowpass components of $x(t)$ by sampling $x(t)$ and $2 N-1$ deàlayed versions of it at a rate $\sigma / 2 \pi N$.

INTRODUCTION

A deterministic, real, finite-energy, σ-band-limited bandpass signal $x(t)$ can be written in the form
$x(t)=i_{x}(t) \cos \omega_{0} t-q_{x}(t) \sin \omega_{0} t$
where ω_{0} is its center (angular) frequency and $i_{x}(t), q_{x}(t)$ are its in-phase and quadrature components, respectively: two real, finite-energy, $\sigma_{1}^{\prime 2}$-band-limited lowpass signals, related one-to-one with $x(t)$ when ω_{0} is given. It is well known that we can interpolate $i_{x}(t)$ and $q_{x}(t)$ separately from samples of * $i_{x}(t), q_{x}(t)$, or

* $x(t), \hat{x}(t)$ (the Hilbert transform of the signal) when $\omega_{0}=k_{\sigma} / 2$ (k an integer), or
* $x(t), x\left(t-\pi / 2 \omega_{0}\right)$ when $\omega_{0}=k \sigma / 2$ (Grace-Pitt-Brown's theorem),
taken at a rate $T=\sigma / 2 \pi$ (that corresponds to the minimum average sampling rate σ / π) \{1\} \{2\} \{3\} \{4\} \{5\}. The last possibility is advantageous because the obtention of $x\left(t-\pi / 2 \omega_{0}\right)$ is easier than the obtention of $i_{x}(t), q_{x}(t)$, or $\hat{x}(t)$.

In $\{4\}\{5\}$ we have demostrated that Grace-Pitt-Brown's theorem can be viewed as a particular case of a more general possibility that consists in reconstructing $i_{x}(t), q_{x}(t)$, from the samples of the outputs of two linear timeinvariant systems driven by $x(t)$, under the following conditions: the impulse response of the first system must have a zero quadrature component, and that of the second system must have a zero in-phase component. This corresponds to hermitian and anti-hermitian spectra of the corresponding complex envelopes, $\mathrm{b}_{\mathrm{h}_{\mathrm{i}}}(\mathrm{t}), \mathrm{i}=1,2 ;$ i.e.;
$B_{h_{1}}(\omega)=2 H_{1}\left(\omega+\omega_{0}\right) u\left(\omega+\omega_{0}\right)=B_{h_{1}}^{*}(-\omega)$
$B_{h_{2}}(\omega)=2 H_{2}\left(\omega+\omega_{0}\right) u\left(\omega+\omega_{0}\right)=-B_{h_{2}}^{*}(-\omega)$
where $H_{i}(\omega), 1=1,2$, are the transfer functions, and u is the unit step function.

These conditions are also verified by the sets of functions ($\omega_{0}-\sigma / 2<$ $\left.<|\omega|<\omega_{0}+\sigma / 2\right)$
$H_{1 i}(\omega)=\exp \left(-j \omega i \pi / \omega_{0}\right), \quad i=0, \ldots, N-1$
$H_{2 j}(\omega)=\exp \left[-j \omega(2 i+1) \pi / 2 \omega_{0}\right], \quad i=0, \ldots, N-1$
that correspond to delays $\mathfrak{i} \pi / \omega_{0}$ and $(2 i+1) \pi / 2 \omega_{0}, \mathfrak{i}=0, \ldots, N-1$,
respectively, since their complex envelope spectra are ($-\sigma / 2<|\omega|<\sigma / 2$)

$$
\begin{align*}
& B_{h_{1 i}}(\omega)=2 \exp \left[-j\left(\omega+\omega_{0}\right) i \pi / \omega_{0}\right]=2(-1)^{i} \exp \left(-j \omega i \pi / \omega_{n}\right)= B_{n_{1 i}}^{*}(-(1), \tag{4a}\\
& i=0, \ldots N-1 \quad \text { (4a) } \\
& B_{h_{2 j}}(\omega)=2 \exp [-j(\omega+\cdots z)(2 i-+1) \cdots / 2 \ldots]=2(-j)^{2 i+1} \exp \left[-j \omega(2 i+1) \pi / 2 \omega_{0}\right]=-B_{h_{2 i}^{*}}(-\omega) \\
& i=0, \ldots N-1 \quad \text { (4b) } \tag{4b}
\end{align*}
$$

Then, it is interesting to study the possibility of generalizing Grace-Pitt-Brown's theorem to these sets of transforms.

I. EXTENDING PAPOULIS: GENERALIZED SAMPLING EXPANSION

In \{5\}, we have extended Papoulis' Generalized Sampling Expansion $\{6\}\{7\}\{8\}$ to prove the generalization of Grace-Pitt-Brown's theorem. We will maodify this extension to apply it to the case considered here.

Let us form the system of $2 N$ equations in $-\omega_{0}-\sigma / 2<\omega<-\omega_{0}-\sigma / 2+c$ $\mathrm{N}-1$

$$
\begin{aligned}
\sum_{i=0}\left\{\exp \left[-j(\omega+r c) i \pi / \omega_{0}\right] Y_{1 i}(\omega, t)+\exp \left[-j(\omega+r c)(2 i+1) \pi / 2 \omega_{0}\right] Y_{2 i}(\omega, t)\right. & =\exp (j r c t) \\
r & =0, \ldots, N-1
\end{aligned}
$$

$$
\begin{align*}
& \sum_{i=0}^{N-1}\left\{\exp \left[-j\left(\omega+2 \omega_{0}+r c\right) i \pi / \omega_{0}\right] \gamma_{1 i}(\omega, t)+\exp \left[-j\left(\omega+2 \omega_{0}+r c\right)(2 i+1) \pi / 2 \omega_{0}\right] \gamma_{2 i}(\omega, t)=\right. \tag{5}\\
&=\exp \left[j\left(2 \omega_{0}+r c\right) t\right], r=0, \ldots, N-1
\end{align*}
$$

where $c=\sigma / N$. Assuming $\omega_{0}=k \sigma / 2 N=k c / 2$, we have $\exp \left[j\left(2 \omega_{0}+r c\right) t\right]=\exp [j(k+r) c t]$, and, since exp $[j k(k+r) c 2 \pi / c]=1$, it is obvious that $\left\{Y_{1 j}(\omega, t)\right\},\left\{Y_{2 j}(\omega, t)\right\}$, $i=0, \ldots, N-1$, are periodic in t with a period $T_{N}=2 \pi / c=2 \pi N / \sigma$. Then, we can prove easily that, in $-\omega_{0}-\sigma / 2<\omega<\omega_{0}-\sigma / 2+c$:
$Y_{m i}(\omega, t) \exp (j \omega t)=\sum_{n=-\infty}^{\infty} y_{m i}, 0\left(t-n T_{M}\right) \exp \left(j n T_{N} \omega\right), \quad m=1,2 ; i=0, \ldots N-1$
where
$y_{m i, 0}(t)=\frac{1}{c} \int_{-\omega_{0}-\sigma / 2}^{-\omega_{0}-\sigma / 2+c} Y_{m i}(\omega, t) \exp (j \omega t) d \omega, \quad m=1,2 ; i=0, \ldots, N-1$
From (6) and the $(r+1)$ th and $(N+r+1)$ th equations of (5) multiplied by $\exp (j \omega t)$, we obtain

$$
\begin{align*}
\exp (j \omega t)= & \sum_{i=0}^{N-1}\left\{\exp \left(-j \omega i \pi / \omega_{0}\right) \sum_{n=-\infty}^{\infty} y_{1 i, 0}\left(t-n T_{N}\right) \exp \left(j n T_{N} \omega\right)+\exp \left[-j \omega(2 i+1) \pi / 2 \omega_{0}\right]\right. \\
& \left.\sum_{n=-\infty}^{\infty} y_{2 i, 0}\left(t-n T_{N}\right) \exp \left(j n T_{N} \omega\right)\right\} \tag{8}
\end{align*}
$$

valid in $-\omega_{0}-\sigma / 2+r c<\omega<\omega_{0}-\sigma / 2+(r+1) c$ and $\omega_{0}-\sigma / 2+r c<\omega<\omega_{0}-\sigma / 2+(r+1) c$, respectively; then (8) is valid in $\omega_{0}-\sigma / 2<\omega<\omega_{0}-\sigma / 2$, and we can write

$$
x(t)=\frac{1}{2 \pi} \int_{\omega_{0}-\sigma / 2<|\omega|<\omega_{0}+\sigma / 2} x(\omega) \exp (j \omega t) d \omega \quad \sum_{i=0}^{N-1}\left\{\sum_{n=-\infty}^{\infty} y_{1 i, 0}\left(t-n T_{N}\right) \frac{1}{2 \pi} \int_{\omega_{0}-\sigma / 2<|\omega|<\omega_{0}+\sigma / 2}^{x(\omega) \exp \left(-j \omega i \pi / \omega_{0}\right)} \underset{ }{x}\right.
$$

$\exp \left(j n T_{N} \omega\right) d \omega+\sum_{n=-\infty}^{\infty} y_{2 i, 0}\left(t-n T_{N}\right) \frac{1}{2 \pi} \int_{\omega_{0}-\sigma / 2<|\omega|<\omega_{0}+\sigma / 2}^{\left.x(\omega) \exp \left[-j \omega(2 i+1) \pi / 2 \omega_{0}\right] \exp \left(j n T_{N} \omega\right) d \omega\right\}=}$

$$
\begin{equation*}
=\sum_{i=1}^{N-1}\left\{\sum_{n=-\infty}^{\infty} x\left(n T_{N}-i \pi / \omega_{0}\right) y_{1 i, 0}\left(t-n T_{N}\right)+\sum_{n=-\infty}^{\infty} x\left[n T_{N}(2 i+1) \pi / 2 \omega_{0}\right] y_{2 i, 0}\left(t-n T_{N}\right)\right\} \tag{9}
\end{equation*}
$$

that is a general interpolation formula. Obviously, (9) can be generalized to cover the case of arbitrary delays $\left\{t_{0 i}\right\}, i=0, \ldots, 2 N-1$; but the particular case considered allows us to obtain a separate interpolation.

II. THE SEPARATE INTERPOLATION

Introducing the change of variable $\omega^{\prime}=\omega+\omega_{0}$ in (5), we obtain in $-\sigma / 2<\omega^{\prime}<-\sigma / 2+c$

```
\(\mathrm{N}-1\)
\(\sum_{i=0}\left\{\exp \left[-j\left(\omega^{\prime}-\omega_{0}+r c\right) i \pi / \omega_{0}\right] \gamma_{1 i}\left(\omega^{\prime}-\omega_{0}, t\right)+\exp \left[-j\left(\omega^{\prime}-\omega_{0}+r c\right)(2 i+1) \pi / 2 \omega_{0}\right] \gamma_{2 i}\left(\omega^{\prime}-\omega_{0}, t\right)=\right.\)
    \(=\exp (j r c t), \quad r=0, \ldots, N-1\)
```

$\sum_{i=0}^{N-1}\left\{\exp \left[-j\left(\omega^{\prime}+\omega_{0}+r c\right) i \pi / \omega_{0}\right] \gamma_{1 i}\left(\omega^{\prime}-\omega_{0}, t\right)+\exp \left[-j\left(\omega^{\prime}+\omega_{0}+r c\right)(2 i+1) \pi / 2 \omega_{0}\right] \gamma_{2 i}\left(\omega^{\prime}-\omega_{0}, t\right)=\right.$
$=\exp \left[j\left(2 \omega_{0}+r c\right) t\right], r=0, \ldots, N-1$

By adding the n-th and $(N+n)$ - th equations and substacting the first from the last, $n=1, \ldots, N$, considering that
$\exp \left(j \omega_{0} i \pi / \omega_{0}\right)=\exp \left(-j \omega_{0} i \pi / \omega_{0}\right)=(-1)^{i}$
$-\exp \left[j \omega_{0}(2 i+1) \pi / 2 \omega_{0}\right]=\exp \left[-j \omega_{0}(2 i+1) \pi / 2 \omega_{0}\right]=(-j)^{2 i+1}=-j(-1)^{i}$
we obtain the equivalent system in $-\sigma / 2<\omega^{\prime}<-\sigma / 2+C$

$$
\begin{gather*}
\begin{array}{c}
\sum_{i=0}^{N-1}(-1)^{i} \exp \left[-j\left(\omega^{\prime}+r c\right) i \pi / \omega_{0}\right] Y_{1 i}\left(\omega^{\prime}-\omega_{0}, t\right)= \\
\\
\quad \exp (j r c t)\left[\exp \left(j 2 \omega_{0} t\right)+1\right] / 2 \\
-j-1 \\
\sum_{i=0}^{N-1}(-1)^{i} \exp \left[-j\left(\omega^{\prime}+r c\right)(2 i+1) \pi / 2 \omega_{0}\right] \gamma_{2 i}\left(\omega^{\prime}-\omega_{0}, t\right) \\
r
\end{array} \quad \exp (j r c t)\left[\exp \left(j 2 \omega_{0} t\right)-1\right] / 2 \\
r=0, \ldots, N-1
\end{gather*}
$$

and since we can rewrite (7) in the form
$y_{m i, 0}(t)=\exp \left(-j \omega_{0} t\right) \frac{1}{c} \int_{-\sigma / 2}^{-\sigma / 2+c} Y_{m i}\left(\omega^{\prime}-\omega_{0}, t\right) \exp \left(j \omega^{\prime} t\right) d \omega^{\prime}, m=1,2 ; i=0, \ldots, N-1$
it is possible to write
$y_{1 i, 0}(t)=\left[\frac{1}{c} \int_{-\sigma / 2}^{-\sigma / 2+c} Z_{1 i, 0}(\omega, t) \exp (j \omega t) d \omega\right] \cos \omega_{0} t, i=0, \ldots, N-1$
$y_{2 i, 0}(t)=-\left[\frac{1}{c} \int_{-\sigma / 2}^{-\sigma / 2+c} z_{2 i, 0}(\omega, t) \exp (j \omega t) d \omega\right] \sin \omega_{0} t, i=0, \ldots, N-1$
where $\left\{Z_{m i, 0}(\omega, t)\right\}, m=1,2, i=0, \ldots, N-1$, are the solutions of
$\sum_{i=0}^{N-1}(-1)^{i} \exp \left[-j(\omega+r c) i \pi / \omega_{0}\right] Z_{1 i, 0}(\omega, t)=\exp (j r c t), \quad r=0, \ldots, N-1$
$\sum_{j=0}^{N-1}(-1)^{i} \exp \left[-j(\omega+r c)(2 i+1) \pi / 2 \omega_{0}\right] Z_{2 i, 0}(\omega, t)=\exp (j r c t), r=0, \ldots, N-1$
in $-\sigma / 2<\omega<-\sigma / 2+c$. Note that, since
$\sin \left[\omega_{0}\left(t-n T_{N}\right)\right]=(-1)^{n k} \quad \begin{aligned} & \cos \\ & \sin \omega_{0} t\end{aligned}$
we obtain the separate interpolation formulas
$\mathrm{i}_{\mathrm{x}}(\mathrm{t})=\sum_{\sum_{i=0}^{N-1} \sum_{n=-\infty}^{\infty}(-1)^{n k} x\left(n T_{N}-i \pi / \omega_{0}\right) z_{1 i, 0}\left(t-n T_{N}\right)}^{\mathrm{q}_{\mathrm{N}}(\mathrm{t})=\sum_{i=0}^{\infty} \sum_{n=-\infty}^{\infty}(-1)^{n k} x\left[n T_{N}-(2 i+1) \pi / 2 \omega_{0}\right] z_{2 i, 0}\left(t-n T_{N}\right)}$
where
$z_{m i, 0}(t)=\frac{1}{c} \int_{-\sigma / 2}^{\sigma / 2+c} Z_{m i, 0}(\omega, t) \exp (j \omega t) d \omega, m=1,2 ; n=0, \ldots, N-1$
It is possible to simplify the obtention fo $\left\{z_{m i, 0}(t)\right\}, m=1,2$,
$\mathrm{i}=0, \ldots, \mathrm{~N}-1$, introducing the functions
$A_{1 i, 0}(t)=(-1)^{i} \exp \left(-j \omega i \pi / \omega_{0}\right) Z_{1 i, 0}(\omega, t)$
$A_{2 i, 0}(t)=(-1)^{i} \exp \left[-j \omega(2 i+1) \pi / 2 \omega_{0}\right] Z_{2 i, 0}(\omega, t)$
the systems (15a, b) become
$\sum_{i=0}^{N-1} w_{k}^{r i} A_{1 i, 0}(t)=\exp (j r c t), \quad r=0, \ldots, N-1$
$\sum_{i=0}^{N-1} w_{k}^{r(i+1 / 2)} A_{2 i, 0}(t)=\exp (j r c t), \quad r=0, \ldots, N-1$
where $w_{k}=\exp (-j 2 \pi / k)$ is the $k-t h$ root of the unity. In accordance to this, we will have

$$
\begin{align*}
& z_{1 i, 0}(t)=(-1)^{i} A_{1 i, 0}(t) \frac{1}{c} \int_{-\sigma / 2}^{-\sigma / 2+c} \exp \left[j \omega\left(t+i \pi / \omega_{0}\right)\right] d \omega= \\
& \quad=(-1)^{i} A_{1 i, 0}(t){\omega_{k}}_{i(N-1) / 2} \frac{\sin \left[\sigma\left(t+i \pi / \omega_{0}\right) / 2 N\right]}{\sigma\left(t+i \pi / \omega_{0}\right) / 2 N} \exp \left(-j \frac{N-1}{? N} \sigma t\right), \quad i=\underset{(21 a)}{0, \ldots, N-1} \\
& z_{2 i, 0}(t)=(-1)^{i} A_{2 i, 0}(t) \frac{1}{c} \int_{-\sigma / 2}^{-\sigma / 2+c} \exp \{j \omega[t+(2 i+1) \pi / 2 \omega]\} d \omega= \\
& =(-1)^{i} A_{2 i, 0}(t) \omega_{k}^{(i+4(N-1) / 2} \frac{\sin \left\{\sigma\left[t+(2 i+1) \pi / 2 \omega_{0}\right] / 2 N\right\}}{\sigma\left[t+(2 i+1) \sigma / 2 \omega_{0}\right] / 2 N} \exp \left(-j \frac{N-1}{2 N} \sigma t\right), i=0, \ldots, N-1
\end{align*}
$$

(17a, b) (with (20a, b) and (21a, b)) constitute the generalization of Grace-Pitt-Brown's bandpass sampling technique.
III. AN ILLUSTRATIVE EXAMPLE

If $N=2$, systems (20a, b) will become
$\left\{\begin{array}{l}A_{10,0}(t)+A_{11,0}(t)=1 \\ A_{10,0}(t)+w_{k} A_{11,0}(t)=\exp (j \sigma t / 2)\end{array}\right.$

$$
\left\{\begin{array}{l}
A_{20,0}(t)+A_{21,0}(t)=1 \tag{22b}\\
w_{k}^{1 / 2} A_{20,0}(t)+w_{k}^{3 / 2} A_{21,0}(t)=\exp (j \sigma t / 2)
\end{array}\right.
$$

from which

$$
\begin{align*}
& A_{10,0}(t)=\left[\exp (j \sigma t / 2)-w_{k}\right] /\left(1-w_{k}\right) \tag{23a}\\
& A_{11,0}(t)=[1-\exp (j \sigma t / 2)] /\left(1-w_{k}\right) \tag{23b}\\
& A_{20,0}(t)=\left[\exp (j \sigma t / 2)-w_{k}^{3 / 2}\right] / w_{k}^{1 / 2}\left(1-w_{k}\right) \tag{23c}\\
& A_{21,0}(t)=\left[w_{k}^{1 / 2}-\exp (j \sigma t / 2)\right] / w_{k}^{1 / 2}\left(1-w_{k}\right) \tag{23d}
\end{align*}
$$

introducing these values in (21a, b) and operating, the interpolation functions result

$$
\begin{align*}
& z_{10,0}(t)=\frac{\sin (\sigma t / 4+\pi / k)}{\sin (\pi / k)} \frac{\sin (\sigma t / 4)}{\sigma t / 4} \tag{24a}\\
& z_{11,0}(t)=\frac{\sin (\sigma t / 4)}{\sin (\pi / k)} \frac{\sin \left[\sigma\left(t+\pi / \omega_{0}\right) / 4\right]}{\sigma\left(t+\pi / \omega_{0}\right) / 4} \tag{24b}
\end{align*}
$$

$$
\begin{equation*}
z_{20,0}(t)=\frac{\sin (\sigma t / 4+3 \pi / 2 k)}{\sin (\pi / k)} \frac{\sin \left[\sigma\left(t+\pi / 2 \omega_{0}\right) / 4\right]}{\sigma\left(t+\pi / 2 \omega_{0}\right) / 4} \tag{24c}
\end{equation*}
$$

$z_{21,0}(t)=\frac{\sin (\sigma t / 4+\pi / 2 k)}{\sin (\pi / k)} \quad \frac{\sin \left[\sigma\left(t+3 \pi / 2 \omega_{0}\right) / 4\right]}{\sigma\left(t+3 \pi / 2 \omega_{0}\right) / 4}$
and inserting them in $(17 a, b)$ with $N=2, T_{N}=T_{2}=\pi / 2 \sigma$, we obtain the corresponding separate interpolation formulas.

CONCLUSIONS

We have generalized Grace-Pitt-Brown's quadrature bandpass sampling method, introducing the following procedure: it is possible to recover separately the lowpass components of a band-1imited bandpass signal $x(t)$ from the samples of $\left\{x\left(t-i \pi / \omega_{0}\right)\right\},\left\{x\left[t-(2 i+1) \pi / 2 \omega_{0}\right]\right\}, \mathfrak{i}=0, \ldots, N-1$, (where ω_{0} is the center angular frequency of the signal) taken at a rate $1 / T_{N}=\sigma / 2 \pi N$ (where σ is the angular bandwidth of the signal) when $\omega_{0}=k \sigma / 2 N$.

Generalizations of this result to transforms that correspond to zero quadrature and zero in-phase component impulse response systems are also possible.

ACKNOWLEDGEMENT

The authors wish to thank Prof. Athanasios Papoulis for introducing them to his Generalized Sampling Expansion.

REFERENCES

\{1\} 0.D. Grace, S.P. Pitt, Quadrature Sampling of High-Frequency Wareforms, J. Acoust. Soc. Am., vol. 44, pp. 1453-1454, 1968.
\{2\} J.L. Brown, Jr., On Quadrature Sampling of Bandpass Signals, IEEE Trans. Aerosp. Elect. Sys., vol. AES-15, pp. 366-371, 1979.
\{3\} J.L. Brown, Jr., A Simplified Approach to Optimum Quadrature Sampling, J. Acoust. Soc. Am., vol. 67, pp. 1659-1662, 1980.
\{4\} A.R. Figueiras-Vidal, J.B. Mariño-Acebal, M.A. Lagunas-Hernández, R. GarciaGốmez, Some New Results in Sampling Deterministic Signals, Proc. First European Conf. Signal Proc., pp. 197-200, Lausanne, Switzerland, 1980.
\{5\} A.R. Figueiras-Vidal, On Sampling Bandpass Signals, to appear , IEEE Trans. Aerosp. Elect. Sys.
\{6\} A. Papoulis, New Results in Sampling Theory, Hawaii Intl. Conf. Sys. Sci., 1968.
\{7\} A. Papoulis: Systems and Transforms with Applications in Optics. New York: McGraw-Hill; 1968.
\{8\} A. Papoulis, Generalized Sampling Expansion, IEEE Trans. Circuits Sys., vo1. CAS-24, pp. 652-654, 1977.

