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ABSTRACT 

An alternative procedure to decompose a recursive interpolation in a 
polyphase network that avoids numerical problems of previous methods is introduced. 
Symmetrization of the obtained polyphase network to further reduce the number of 
multiplications per second is also considered. 

The design of an interpolator filter for a 60-channel transmultiplexer 
is considered as an illustrative example. 
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INTRODUCTION 

Te use to interpolate and decimQte {1} of recursive filters was 
considered for the first time by Bellanger et alia {2} , introducing the polyphase 
network·. This scheme allows a saving of about 50% in the number of necessary 
multiplications to change the sampling rate with respect to the direct application 
of a recursive filter. 

If the ratio between the original and final sampling frequencies is an 
integer number P and we associate z-1 with the highest frequency, it will be 
possible to write the filter transfer function H(z) in the form 

where 

H(z) = 
P-1 

L 
i=O 

-i z 

p p p 
Hi(z) = Ni(z )ID(z ), i = O, ... ,P- 1 

(1) 

(2) 

This is the polyphase representation for the recursive filter H(z). 
Combining (1) and (2), we obtain 

where 

H(z) = N(z) I D(zp) (3) 

P-1 . 
-1 N(z) = L z 

i=O 

Then, if N ( z) , 

( 4) 

nonrecursive part of H(z), has a symmetrical impulse 
response, we will obtain an additional 50% saving in the number of multiplications 
{1} {3} 

We introduce in this paper an alternative approach to the polyphase 
design of a recursive filter forcing a symmetrical N(z). 

I. OBTAINING THE POLYPHASE NETWORK 

The following identity 

P-1 . . p p 
11(1 - p. z-

1
) = L p~ z- 1 I (1 - p. z- ) 

J i =0 J J 
(5) 

is used to derive the polyphase network from the recursive H(z); applying it to 
the expression of H(z) in function of its poles and corresponding residues, 

K 
H ( z) A A I( z "'" 1 

) ( 6) = 0 \~1 j 1- pj 
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where K is the order of H(z), we can write 

K [ P-1 _ ·j ; J p -P 
H(z)=Ao+L:A. L: z p. 1(1-p.z )= 

· j=l J i=O J J 

· P-1 . r K 0 p p J. 
= Ao + L: z- 1 l L: A.p~ I (1 - p. z- ) = 

i=O j=l J J J. 

K p p P-1 . [ K . 
= Ao + L: A.l(l- p.z- )+ L: z- 1 L: A.p~l(l 

j=l J J i=l j=l J J 
(7) 

Identifying (7) and (1), 

p K p -P p p 
H0 (z) = Ao + L: A.l(l- p.z ) = No(z )ID(z) 

j=l J J -
(Sa) 

K 
Hi(/) =j:lAj I (1- p~ z-P) = Ni(/) I D(l) (8b) 

Bell anger 
(8a, b) are an intersting alternative to the formulas proposed by 
et alia {2} 

K 
D(/) = IT 

j=l 

N( z) = 
P-1 

L: 
i=O 

(1 p -P) - p. z 
J 

-i z p K [ N.(z)=A IT 
1 . 1 J= 

(9a) 

P-1 1 
( 

-1 i - i 1- z.z ) L: p. z 
J i =0 J 

(9b) 

where zj are the zeros of H(z). From a computational point of view, the relative 
advantages of (8a, b) are that the number of operations to calculate each H.(zp) is 

1 
independent of P, and that each H;{zp) can be obtained independently of the rest. 
These properties imply for the proposed method a lower sensitivity to computational 
errors in obtaining each H;(zP). 

II. OBTAINING THE SYMMETRY 

The output of the interpolating polyphase network can be obtained 
according to the following operations 

X1(zp) =X(zp) I D(zp) 
P-1 · p p 

Y (z) = L: z- 1 N.(z) X1(z ) = N(z) X1(z ) 
. 0 1 1= 

(lOa) 

(lOb) 

We can see in (9a) that the order of D(zp) in zp is identical to the 
order of H(z) in z, K; and (9b) says us that the order of N(z) is KP. Therefore 

Nms = Kfm + (KP + 1) fm = [K(P + 1) + 1] fm (11) 
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where fm is the sampling frequency of the sequence to be interpolated, is the 

number of multiplications per second required to interpolate. 
OnrA "''t:l hA\ICl nh+::l ; narl o~,..h "' t~p\ '·'·'i.t .. ~. (\R~, h,', ',',! ~ r: n r,., ~ .. v-,~,·· ·, ··,•, r,,;f._.,',•, 
....,.,....,..._ H'- 11"-A'f'- V"-' .... Uill\ .... \..4 \....U\,:1 i'C ; \ ~ j - -..- - - -- '\ 

that, in a general case, has not a symmetrical impulse response; but, when P is 

great enough, we can force this symmetry introducing an approximation. 

When there are only amplitude specifications for H(ejw), we can think in 

substituting the numerator of H(z) for another numerator, N'(z), that approximates 
the amplitude of the frequency response of N(z) but having a linear phase. This 

possibility can be used when the corresponding approximation maintains the 

interpolation filter under sepecifications and this do not require an order for 
N'(z) that compensates the reduction in the multiplications per second offered by 
the symmetry of N'(z). 

The above possibility can be illustrated by means of the following 

practical example: the design of an interpolator to include in a 60-channel 

T D M- F D M transmultiplexer (proposed by Bonnerot et alia {4} ). Fig. 1 
shows the attenuation constraints for this filter. The final sampling rate is 

512KHz; the sampling frequency ratio is P = 128 . 

An elliptic filte r having an order 7 verifies this constraint; this 

filter attenuates the input by 70 dB on the stopband. We can obtain O(zp) and 

N(z) by means of formulas (9a, b) ; the corresponding N(z) has an impulsional 
response with 897 = 7 · 128 + 1 nonzero samples. We select a length 796 for the 
impulse response of N'(z), to obtain a common order for each Ni(z) in 

N'(z) = 
P-1 

L: 
i=O 

-i z (12) 

a condition that has been incorporated i n the design of {4} . To introduce N'(z), 

*we discard the last (negligible) sample in the impulse response of 

N ( z) ; 

*by means of a OFT, we compute the amplitude of the frequency response 

of the truncated sequence; 

*we associate a linear phase to this amplitude response; 

*we derive N'(z) by means of an inverse OFT. 

The resulting polyphase network maintains a ripple of 0.5 dB on the 

passband and a maximum attenuation of 66 dB. on the stopband, when we quantize its 

coefficients with 20 bits. 

The previous method is, in fact, a frequency sampling design. Applyin9 

optimum procedures {5} will allow better results. But the result offered by the 
very simple frequency sampling is good enough to illustrate the potential 

advantages of substituting N(zJ for a N'(z) having the same frequency response 

amplitude and a linear phase. 
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CONCLUSIONS 

To start from poles and residues of a transfer function to design a 

polyphase repres~ntation of a recursive filter seems to be computationally more 

efficient than to start from poles and zeros. 
To obtain a symmetrical polyphase network, a substitution of the numerator 

of the obtained polyphase representation by a new numerator with identical 

frequency response amplitude but having a linear phase can be an interesting 

possibility. 
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