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Whittaker's {1} (or Shannon's {2} ) Sampling Theorem is a well-known interpolation
formula that has been extended in many directions. In this paper, we introduce two new

formulations:

- The first follows Papoulis' {3}{4}{5} Generalized Sampling Expansion for recons-—
tructing a signal from regular samples of N(linear, time-invariant) functionals of it,
taking the samples at 1/N the Nyquist rate; but generalizing it for including linear
T-periodically time-varying systems {6}{7}. This way is in close relation with works
that extend sampling in other directions {8}{9} .

- The second generalizes Linden's {10} proof of Kohlenberg's {11} sampling for a
bandpass signal, in order to maintain the minimum sampling rate (in the average) and
to obtain a separate interpolation of the in-phase and quadrature components of the
signal. This follows Grace-Pitt-Brown's {12}{13} theory of bandpass sampling.

1. LINEAR T-PERIODICALLY TIME-VARYING SYSTEMS

A linear time-varying system is a correspondernce
between two signalsof the form
o

g(t) = L{£(t)] =f_mh(t,r)f(‘r)d‘r (0

where h(t,T)évL[é(t—-T)] isthe impulse response
of the system. A linear T-periodically time-
varying system shows the property

ety = h(t~ T,z = T) (2)
The t-marginal transfer function of a linear
time-varying system is

" 00

H(l)(t,w)A f_mh(t,T)eXP(ij)dT (3)
It is easy to show that
g(®) = - 280 (L, F@a )

where F(w) is the Fourier transform of f(t).

2. A NEW GENERALIZED SAMPLING EXPANSION

We will work with a deterministic, finite energy,
o-band limited function f(t); then, F(w) = 0
for |w| 2 0.

Let us consider N linear T-periodically (T=mN/0)
time-varying systems having t-marginal transfer
functions (H(1) (w,t)} , i = 1,...,N, and let us
fﬁrm the system

(1) _ .
i§1 Hi (0,w+ rc)Yi(w,t)— exp(jrct) (5)
(r=0,...,N- 1), where c= 20/N and w varies

between -0 and- 0+ c. We assume that {Hgl)(tpﬂ}
are selected verifying the classical
restrictions in order that the system (5)
defines N functions {Y.(w,t)}, periodic in t
with a period T. The Fourier series correspon-
ding to Yi(w,t)exp(jwt) (varying between -0
and -0 + ¢) 1is

oo

Yi(w,t)exp(jwt) = n; _wyi(t—-nT)exp(jnTw) (6)
where =0tce
yi(t)= EJ e Yi(w,t)exp(jwt)dw (7
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then, multiplying both sides of the first
equation of (5) by exp(jwt) and using the
indicated Fourier series, we obtain

¥ 40

;20 (O,w)nzﬁimyi(t— nT)exp(jnTw) =

(8)
= exp(jut)

where w varies between -0 and -0 + c. By using:
exp(jnTre) = exp(j2mnr)=1, and substituting w for
w + rc, we also obtain (8) from the rth equation
of (5) with w varying between -0 + rc and
-0 +(r+ 1)c; then, (8) is valid for -0 <w < O
Inserting exp(jwt) from (8) in the inverse
Fourier transform expression of f(t), we have
f(t) = i i [—L>] wF(w)H(l) (0,w)exp(jnTw)*
i1 n==0" 27T 7 - 3 2
. duJy.(t = LY S
but 1/27 times the integral equals

o 22 E@h (0,0 exp(i (r+nTw] dodr =

o Fioa
=] Th, (0, (D) dr =f_mhi(nT,T+nT)' (10)
e £(T+ nT)dT = gi(nT)
where g.(t) is the output of the ith linear

T-periodically time-varying system; then, we
can writ%,the interpolation formula
©

£(e) = ;2 L _,e;(@Dy,(t-nT)

(11)

We note that the case of linear time-invariant
systems is a particular situation of the
theorem, because (2) holds for any T, since
h(t,T) depends only of t - T.

3. COMMENTS

We must remark a particular conclusion from(11),
for which we need only N = 1:
oo

f(t) = n§ _2@D)y(t-nT)

indicates that the (linear) distortion
introduced on a 0-band limited signalby a linear

(12)
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T-periodically (T=7/0) time-varying system can
be equalized by sampling and filtering with a
linear time-invariant circuit having an impulse
response y(t).

It is also possible to show the validity of the
previous theorem in a different way, considering
the T-inverse Fourier transforms of Zadeh's
"system functions",zj(t,T)= hj(t, t-T), that are
(in this case) periodic in t with period T, and
expand them in Fourier series (maintainingT as
a parameter); then, we can write

o

h,(e,1) =z, (t,t-D) = k=Z_oozik(t—-r)exp(jZTrkt/T)

(13)
(i -1,...,N), having an obvious interpretation:
the sum of an infinite number of systemscomposed
by a linear time-invariant circuit with impulse
response z;; (+) followed by a complex exponential
multiplier. The multipliers do not alter the
values of the outputs taken at times nT; hence,
it is enough to apply(gapoulis' theorem with
transfer functions {, % coZ.k(w)} W 1 PR,
But the drawback of %ﬁig procedure is in
manipulating functions that have infinite-sum
expressions, while the previous analysis gives
directly the interpolating functions.

4. SAMPLING BANDPASS SIGNALS

We will consider initially here a deterministic,
real, finite energy, o-band limited bandpass
signal x(t). We must remark that band-limitation
is a theoretical approximation for any physical
signal (see {14} , for example).

Let w, be the "central" (angular) frequency of
x(t). We can write {15}

x(t) = ix(t) coswyt = qx(t) senu )t (14)
where ix(t), qx(t), are the in-phase and
quadrature components of x(t) (with respect to
w.); these two functions will be one-to-one
related with x(t) if w, is fixed, and they are
real, finite-energy, lowpass signals having an
(angular) bandwidth o/2.

It is easy to show that, if we sample ideally
x(t) at a rate o/m, the obtained values will
define uniquely x(t) only when w, = mo/2, m an
odd (positive) integer (m an odd or even
(positive) integer if q,(t) = 0). This fact and
the possibility of equivalent lowpass processing
{15} with ix(t) and gy, (t) have originated some
research for sampling signals associated with
x(t) which allow a separate interpolation for
iy (t) and qy(t) maintaining simultaneously the
minimum theoretical sampling rate (in the
average) ,0/T. A separate interpolation allows

- a reconstruction of x(t) by means of two
lowpass interpolations and two (in quadrature)
DSB modulations;

— to obtain the envelope and the instantaneous
phase of x(t)

ex (£) B Va2 (1) + 8% (t) = Vi2(t) + ¢2(t) (15)
¢X(t) = u)o(t) +A¢X(t) é 0)0(t)+ tan'l[qx(t)/ix(t)l
(16)

respectively {15} (© indicates Hilbert trans-
form) in a simple way.

A first possibility consists on sampling i, (t)
and q (t) at a rate o/2m= 1/T each; the
(obvious) corresponding interpolation formula
shows the separate interpolation property. Note
that if we want, for example, as in Radar
nroblems {16} , to determine a maximum of eX(t)
bv digital processing, we will use directly

iy (nT) and qx(nT), an additional advantage of
this possibility.

Another alternative is to sample at o/2m the
signal and its Hilbert transform {17} ; the
interpolation formula results

x(t) = n:Zc_wx(nT) —*—Sér(lgcftr:Tl;T}/g] cody (= nT)] -

LR@D) -————Sigl(i(_thr)‘T)//é—] sinfy (£~ n1)]
(17)

Note that there is not a strictly separate
interpolation (except when w, = ko/2, k a
positive integer; this equality will be indicated
as Brown's condition {13} ). Nevertheless,
advantages of the previous case are basically
maintained; for example, ey(t) can be obtained
as easily as previously (see (15)).

©
=
ne=

The drawback of these alternatives is in
obtaining the associated functions to be sampled:
iy (t) and qx(t) (with the classical difficulties
of the in quadrature synchronous demodulation)
and %(t) (a constant phase shift can be only
approximated for signals having a nonzero band-
width). We will discuss in the following
Sections the possibility of

introducing different pairs of associatedsignals
preserving the above basic advantages. We will
restrict the possible associated signals to
those resulting of x(t) through linear, time-
invariant systems, which represent the simplest
family of manipulations on x(t). A previously
known result (Grace-Pitt-Brown's method {12}
{13} ) results included as a particular case in
our formulation.

5. GENERALIZING LINDEN'S EQUATIONS

The first investigation in a line similar to
that proposed here corresponds to Kohlenberg
{11} ; his method can be reduced to consider
x(t) and x(t- tg) as associated signals.
Linden's {10} proof of Kohlenberg's interpola-
tion formula can be easily generalized for a
pair of linear time-invariant systems with
transfer functions Hj(w), Hy (w) . We will work
with w, - 0/2< w< w,+ 0/2 because signals and
filters have hermitic spectra and transfer
functions.

From a graphical representation of the spectra
resulting of sampling at o/2m the signals

gy )= F_I[X(M)Hi(w)] (i=1,2), it is easy to
determine as necessary for recuperating x(t)
the equations
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Hy @)F @)+ Hy )T, W) = 2n /o
{Hl(w-mo)FlQu)+-H2(w —mU)FZ(w) =0
Hl[m - (m+ 1)0] Fl(u>)+ Hz[w - (m+1)o} FZ (w)=20

(18)

Quo— 0/2<w<w+ /2, wy-0/2 <w <A and o <w <wgt

0 0
+ G/2, respectively), where m = E [ 2w /0], El-]
indicates the integer part function, o= mo -

- wsy +0/2, and F. (w), F,(w), are the spectra
of the interpolating functions; i.e., the func-
tions £;(t), fo(t), necessary for writting

x(0)=_F [g, 1) £ (t=nD)+ g, (), (¢~ nrg)l]%

(We will assume an unique solution pair for the
system; this imposes classical indirect
restrictions on H. (w), Hz(w)).f () fZ(t> will
be,clearly, real %andpass signals confiIned to
wo~ 0/2<]m| <w.+0g/2; thus, we can write them in
the in-phase/quadrature form, and, developping
the cosinus and sinus functions, we will obtain
a direct interpolation formula, but showing four
lowpass interpolations for obtaining iy(t) and
another four (though basically indentical) for
Qo CEDs:

Are there cases in which a simplified result
can appear? A first cause of the complexity of
this interpolation is the double expression for
the second equation of (18): this indicates a
frequency "jump'" that, in a general case,
originates a basic difference between if_(t)
and qfi(t), doing not allow more simplictty. But

= F Hl(w), H
W & 0), or
= 1f = Wy~

2(m), are constant for w> 0 (and
0/2 oraoa=w,t+ /2,
the jump dissapears. The second case corresponds

to Brown's condition, Wy = ko/2.

It is easy to show that the first possibility
(constant H, and Hz)leads us (except for
irrelevant constant factors) to signal/Hilbert
transform pair as the only possible pair of
linear time-invariant modifications of x(t) that
allows a "separate'" (with "carriers"

cos[w, (t - nT)] and sin [mo(t— nT)] ) interpola-
tion without forcing any relation between w

and g. We will examine in more detail the sécond
possibility. :

6. WHEN BROWN'S CONDITION IS VERIFIED

For an easier discussion, it is convenient to
introduce the spectra of the complex envelopes
(bfi(t) and bhi(t)) {15} of the interpolating
functions and of the impulse responses of the
filters. These spectra are

Be, W) = 2F, (wt wy) u+wg) (20)
Bhi(w) = ZHi(w+~wO) u(m+-w0) (21

(i=1,2); then, and considering that the system
functions are hermitic, we can rewrite (18) in
the form:

{Bh (w) Bfl(w)+'Bh2(w)Bf (w)

% 8m/o
Bﬁl(_w)Bfl(wH Bﬁz (~w) fZ(m 0

j ° (22)

|w |<o/2; from which

B, () = 8T8, (-0) /0 [By, (W)Bf (~w+Bf (-w) By (]
(23a)

Bg, @)= ETBS (~u)/o [th(w)Bﬁl(—m)+B§2(—m)Bh§w)J

(23b)
| w | < 0/2. We return to the general interpola-
tion formula obtained from (19) by writting the
interpolating functions in the in-phase/

quadrature form. It is clear that, if wy= ko/2,
coshuo(t- nTﬂ =(—1)kncos»0t (24a)
sinlwo(t~ nT)]=(—1)knsinw0t (24b)

then, for a separate interpolation, we need
only qfl(t) =0, ig (t) = 0 (indexes are un-
important). Since t%ese are the imaginary and
real parts of the corresponding complex
envelopes, we need a real bg (t) and an imagi-
nary bg (t); i.e., a hermitic Bfl(w) and an
antiherfiitic sz(w):

Bfl(w) = B§16@ $ sz(m) = —B§2(—w) (25a,b)

With the help of (23a) and (23b), we arrive to
the equivalent conditions for the systems

By, i) = —Br (-w) (antihermitic) (26a)
2 2
Bhl(w) = B;l(—ub (hermitic) (26b)

i.e., Re [Bh (w)] and Irn[Bh (w)] need to be
even functiéns, and Im [th(w)} and Re [By, (w)},
odd functions. These conditions apply to the
parts of Hy(w) u(w), Hy(w) u(w), with respect
to wy (strictly speaking, these conditions are
necessary only on the signal band). The
resulting interpolation formula is

(oe]

x(t) ={ I _wgl(nT)(—l)nkifl(t—-nT)}costt—

k
—f b gz(nT)(—l)n qu(t— nT)}senwot
neoe 27)
having the basic advantages of sampling i, (t),
q_(t), though requiring a previous interpola-
tion for obtaining ix(nT), qyu(nT).

A particular case in which the above condi-
tions are verified is the well-known Grace-
Pitt-Brown's method, in which Hj(w) = 1,

Hy () = exp(—jwﬂ/ZwO), in the signal band; the
interpolating formula results

» 2 nk sin[o(t-nT)/Z]
x(t)—{n=):_mx(n'r)(-l) TK\T)/—Z} coswyt =

~{ L xer-magp oy sinlotiwg- anal |,
c(t+ﬂ/2m0— nT)/2

(28)
Clearly, this is not the only possible solution:
x(t) and %(t) provide another known example;
and modifying Grace-Pitt-Brown's Hl(w) and
Hy (W) to Hy(w) = 11y ()i exp{ i ArglH W}
Hy () =|H, () |exp(Gun/2wg), Hi(w) u(w)
(i=1,2) "being symmetric and Arg[Hl(wﬂ u(w)
being antisymmetric with respecto to wp, a
separate interpolation is obtained. This is the
most general version of Grace-Pitt-Brown's
method.

LY
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7. WHEN BROWN'S CONDITION IS NOT VERIFIED

If w,# k0/2 and we want to maintain W, present
in tge final representation of x(t), the
alternative will be that indicated by Brown{13}:
to introduce a (fictitious) bandwidth 0' > O

as low as possible and such that ZwO/O' be an
integer. We obtain )

o' = 2ub/E [ZMO/G] (29)

and, consequently, T'= 27/0' will be the new
sampling period.

To maintain w, can be necessary in many situa-
tions; for example, when x(t) has the forms
i (t) cosw,t or -qx(t) sinw.t, or when w, is
the (angular) frequency of a certain 'carrier"
(i.e., the "important'" information is the pair
ix(t), qx(t), defined just respect to w,). But
when x(t) is an arbitrary general bandpass
signal, w, has not a strict sense of "central"
frequency, but only a sense of average of
"extremes" (wo - 0/2 and w, + 0/2): a concept
of secondary Importance, since bandlimitation
is not a physical possibility. The argument
that the in-phase and quadrature components
will have a bandwidth 0/2 only in w, is used
has the same practical weakness. We can remark
also that their new expressions will be written
in terms of 0' and T', and neitheir O nor T
(the interpolations show "apparent' bandwidths
0'/2). Thus, in some cases we can think that
our main concern is with obtaining a sampling
rate as low as possible, and that to maintain
wn 1s of secondary importance. Then, we will
look for the minimum (average) sampling rate,
1/T" = ¢"/2m , without maintaining wgp. (We
suppose that a "sufficient" part of the signal
is in wp- 0/2< |w| < wp+ 0/2). If we divide 2w,+
+0 in a maximum number of equal segments (the
extremes of which have to cover (-wn- 0/2,
+0/2)and (wg- 0/2, wp+ 0/2)), these segments

-
wi?l have a width

. wg + O 2w0 + g (30)

s ¥ = ————
Ge = El(2m0+o)/01 o E[(w,+ 0)/0]
and the situation is equivalent to that of (27),
introducing ¢", T" = 2n/¢'", and m”=w0—Gf'—0)/2.
The spectrum of x(t) is considereg as confined
to wl'- ¢"/2<|w|<wi+ ¢"/2, and has the (theoreti-
cal) property of being in w,- G/2<|w|<w8+d72 =
= wy— 0/2 (note: w,-0/2>w1-"0"/2). Then, an

0 . ol
average sampling rate o'/ such that
0/27<d" /<0 /2T results.

§. CONCLUSIONS

We have introduced an interpolation formula in
function of the samples of the outputs of N
linear T-periodically time-varying systems
having the signal as input, the samples being
taken at 1/N the Nyquist rate. We are now
searching for equivalent versions with kernels
different to those corresponding to linear
T-periodically time-varying systems.

We have also examinated the separate interpola-

tion for a bandpass signals, determining general
formulas and conditions under Brown's restric-
tion, considering samples of (linear time-
invariant) functionals of the signal, and
discussing possibilities when the restriction
is not verified. With some flexibility, it is
possible to include in our formulation cases
apparently not considered; but these remain as
a part of an extension for including here some
kinds of linear time-varying systems; we are
working in this direction at the present time.
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