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*Highlights (for review)

Highlights

e Cell voltage followed a daily pattern consistent with water level variation.

e Maximum current and power densities were that of 219 mA/m?and 36 mW/m?.

e The primary treatment affected the diversity of bacteria colonizing MFCs.

e The primary treatment affected the relative abundance of bacteria colonizing
MFCs.

e A high predominance of one OTU belonging to Geobacter was found in anodes

biofilm.
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CONSTRUCTED WETLAND TREATMENT PLANT

(1. Homogenization tank; 2. HUSB reactor; 3. Settlers;
4 and 5. Horizontal Subsurface Constructed Wetlands)
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18  Abstract

19 This work aimed at determining the amount of energy that can hedbed by
20 implementing microbial fuel cells (MFC) in horizontal subsurfacastructed wetlands
21 (HSSF CWs) during the treatment of real domestic wastewktethis aim, MFC were
22 implemented in a pilot plant based on two HSSF CW, one fed withapr settled
23 wastewater (Settler line) and the other fed with the effl# a hydrolytic up-flow
24  sludge blanket reactor (HUSB line). The eubacterial and aath@mmmunity was
25  profiled on wetland gravel, MFC electrodes and primary treatstewater by means
26 of 16S rRNA gene-based 454-pyrosequencing and gPABSoiRNA andmcrA genes.
27  Maximum current (219 mA/fand power (36 mW/f) densities were obtained for the

28 HUSB line. Power production pattern correlated well with wadgsel fluctuations
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within the wetlands, whereas the type of primary treatmemgleimented had a
significant impact on the diversity and relative abundance baaaria communities
colonizing MFC. It is worth noticing the high predominance (13-16% ddtivel
abundance) of one OTU belonging@eobacter on active MFC of the HUSB line that
was absent for the settler line MFdence, MFCs show promise for power production

in constructed wetlands receiving the effluent of a HUSBtoga

Key words: constructed wetlands, domestic wastewater, madrial cells,Geobacter

1 Introduction

Microbial Fuel Cells (MFCs) are bioelectrochemical systéhat generate current by
means of electrochemically active microorganisms asysasalln a MFC, organic and
inorganic substrates are oxidized by bacteria and the electrerisaasferred to the
anode from where they flow through a conductive material and staesb a higher
redox electron acceptor, such as oxygen, at the cathode (Logan2€0&, Rabaey et
al., 2007). So far, there are two well-known bacterial genetach present
exoelectrogenic activity in pure culture, i.&hewanella (Ringeisen et al., 2006) and
Geobacter (Richter et al., 2008; Kiely et al.,, 2011)To date, a high diversity of
microorganisms has been described to perform anode respiration ttaia degree
(Logan, 2009). Over 20 different exoelectrogenic bacteria haverbperted in the last
decade, belonging to diverse phylogenetic groups: alpha-proteddacter
(Rhodopseudomonas,  Ochrobactrum and  Acidiphilium),  beta-proteobacteria
(Rhodoferax, Comamonas), gamma-proteobacteria Sewanella, Pseudomonas,
Klebsiella, Enterobacter and Aeromonas, Citrobacter), delta-proteobacteria
(Geobacter, Geopsychrobacter, Desulfuromonas and Desulfobulbus), Epsilon-
proteobacteria (Arcobacter), Firmicutesldstridium and Thermincola), Acidobacteria
(Geothrix) and ActinobacteriaRropionibacterium) (Logan 2009; Xing et al., 2010).
However, the power density achieved in most of the experimestdang with mixed
cultures is higher than in pure cultures (Rabaey & Verstr&é@5; Rabaey, et al.,
2004; Nevin et al., 2008)hese results reinforce the idea that increased el@gtrici
generation could be attributed to synergistic interactions withi@ microbial
community. Namely, there could be microorganisms that do not egehdirectly

electrons with the electrode, but could be settling up interacimmng other members



61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

of the microbial community playing a crucial role not only in dperation of a MFC
but also on its performance improvement (specially under the pees#ncomplex
organic substrates such as wastewater) (Borole et al., 201lefamdnces therein).
Methanogens such addethanosaeta and Methanosarcina are, for example, routinely
detected in mixed species, anode biofilms of MFCs, where thesuprably promote
syntrophic interactions with exoelectrogenic eubacteria in theeanofilm (Chung and
Okabe, 2009; Rotaru et al., 2014a, 2014b; Sotres et al., 2014).

Compounds oxidized at the anode are mainly simple carbohydrates sylclcase or
acetate that can be already present in the environment or cbfeone the microbial
degradation of complex organic substrates such as organic sésliorewastewater
(Min and Logan, 2004; Reimers et al. 2001, Rabaey and Verst24€1®8). MFCs are,
therefore, an alternative technology to harvest energy diracily fvastewater in the
form of electricity (Du et al., 2007). In order to ensure the afsthe anode as the final
electron acceptor by electrochemical active microorganisimsacceptor with higher
redox potential shall be present in their vicinity (Lefebvrale 2011). Consequently,
the electromotive force of the cell will depend on the redaxlignt between the anode
and the cathode (Logan et al. 2006, Rabaey and Verstraete, 2005).

To generate the redox gradient between electrodes, MFCseadgoirseparated areas
that contain the anode (anaerobic area) and the cathode (aeropi¢naseane aquatic
environments there is the existence of natural redox gradieattgan be exploited to
produce energy via MFC implementation. So far, MFC have bemstlyrimplemented
in rice paddy fields (De Schamphelaire et al.., 2008, Kaku e@08) or marine
sediments (Reimers et al.., 2001; Rezaei et al., 2007). Fudhe horizontal
subsurface flow constructed wetlands (HSSF CWSs) are enginegseegms used for
wastewater treatment that are subjected to great spatiek variations (especially in
depth) (Garcia et al. 2003). Although the system is mainlyrabi@e(Baptista et al.
2003), the very upper part of the wetland remains under aerobiciooadiecause its
close contact with the atmosphere giving redox gradients of allbM (Garcia et al.
2003; Dusek et al. 2008; Pedescoll et al. 2013; Corbella et al.,. ZxLd)result, natural
redox gradients in HSSF CWs could be exploited to produce eneagyMFC
implementation, though only laboratory or small-scale based expets with synthetic
wastewater are currently available (Yadav et al., 201@aséiior et al., 2013; Fang et
al.,, 2013; Zhao et al., 2013). Furthermore, one of the main prolérosnstructed

wetlands is clogging (Pedescoll et al. 2011a). To prevergriary treatments are
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applied to wastewater. Generally, physical treatments susktters or imhoff tanks
are used. However, recently other technologies such as hydraiytiow sludge
blanket (HUSB) reactors are being considered (Pedescoll28Xlb). A HUSB reactor
prevents methane formation during organic matter hydrolysis dadaw HRT when
compared to conventional anaerobic digesters (Ligero et al., 20@i¢over, HUSB
reactors have the advantage over conventional settling of prgvidi higher
concentration of biodegradable substrates (such as acetate) (@sregahl., 1994) that
can be easily removed in HSSF CWs. HUSB reactors asreargrtreatment are of
special interest in the context of MFC implemented in HSSFE. 8&¢ordingly, HUSB
reactors will provide a higher concentration of rapidly biodegradsistrate when
compared to conventional settling, thus providing higher amount bfdu#FC. This
work aimed at determining the amount of energy that can be hahmsteplementing
MFC in HSSF CW during the treatment of real domestic waséewahe effect of the
type of primary treatment on power production, the daily and seaggattain of power
production and the assessment of microbial populations associatedstewater,

electrodes (graphite) and CW materials (gravel) aeadsiressed.

2 Material and methods

2.1 Pilot plant

The pilot plant used in this study consisted of two horizontal subsuffase
constructed wetland. The wetlands were set up in March 2011 and4hatid.surface

(70 cm length x 55 cm width). Wetlands were filled up with grdidgh=7.3; G=0.8)
giving an initial porosity of 40%. Water level within the wetls was kept at 30 cm (5
cm below the gravel surface). Both wetlands were planted wotmmon reed
(Phragmites australis), which were very mature at the moment this study was
conducted (2.5 years after wetlands construction). Each wetlana R¥C cylinder of

20 cm diameter placed at the middle of the wetland thakdenot only to sample

extraction but also to allocate the MFC.

The pilot plant was fed with urban wastewater pumped dirdaiiyn the municipal
sewer. Initially, wastewater was coarsely screened aed @ifat it was pumped to a
homogenisation tank of 1.2°mvhere wastewater was continuously stirred in order to
avoid solids sedimentation. After the homogenisation tank, wattewas conveyed to

the primary treatment. The primary treatment consistamb¥entional settling for one
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of the wetlands and an anaerobic treatment based on a hydrolytiowugttidge
blanket reactor (HUSB reactor) for the other. The HUSBtogamnsisted of a PVC
cylinder of 115 L of volume that was operated at 4 hours of HRT afh@ gtVSS/L.
The settler consisted of two PVC cones of 14 L volume eachwibig operated in
parallel. After the primary treatment, wastewater ywasped to the wetlands at a flow
rate of 21 L/day, giving a design HRT of 2.6 days and an organiinpaate of 7.2
g.BODs.m?.day" and 6 g.BORm?.day* to the HUSB and Settler line, respectively.

2.2 Microbial fuel cells

Six MFC were set up for the purposes of the present work. Thrgemf were placed
within the wetland fed by a HUSB reactor (HUSB_MFCs) and tke akthem were
placed within the wetland fed by the settler (SET_MFCs)uffeidl). Two of the three
MFC for each wetland were in closed circuit whereasother was left in open circuit

and served as a control.

Each cell consisted of a cylinder of 40 cm in length and 5 cm inedéammade out of a
plastic mesh filled with gravel up to a height of 35 cm (Fig2yeBoth electrodes,
anode and cathode, were placed within the cylinder at 15 cm and Sauntbe water

level, respectively. Thus, the distance between eléesr was that of 10 cm.

The anode and cathode were made out of 20 cylindrical graphitelrads length and
0.5 cm diameter each) wrapped with a stainless steel mesimemgrade 316L.
Electrodes were 2.5 cm length, 3 cm wide and 1 cm height and shagred (Figure
2). The external circuit connected both electrodes by cooper wik®rze external

resistance of 1000 ohms. Epoxy resins were used to isolate consdobim water.

2.3 Redox, conductivity, temperature and water level measurements

Redox potential, water temperature, conductivity and water \see¢ monitored all
through the experiment. Redox potential was measured by means of Rarproe
(Ag/AgCI reference system - accuracy: = 10 mV). Waeel variation within the
wetlands was determined using a pressure probe (TNS 119, Desinnmients SA).
Water temperature was measured using a Campbell Scientifit. T@&Mmperature
Sensor. Finally, water conductivity was measured using a pertaisbbe
(Endress+Hauser CLM381). Water level variation and temperatere continuously

measured while redox was alternatively measured in eachndedlaring periods of
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approximately 4 days. Both parameters were recorded by conneoéingensors to
dataloggers (Datataker DT50 series 3) that stored one valely €5 minutes.
Conductivity and pH were manually measured three times a vikeglarding redox
potential measurement, two probes were placed just by the electetdecm (cathode)
and 15 cm (anode) depth) and data obtained was transformed to exprgssrésrms

of the standard hydrogen electrodeg)(E

2.4 Voltage measurements

MFC were connected to a datalogger (Datataker DT50 serieki®) wollected a value
of voltage across the external resistance every 15 minutds.g¢ measurements were
conducted in both lines from middle February to middle June 2013d@érsid). After
that, only the HUSB line was kept in operation until the end of tiaygteriod in July
2013 (second period).

2.5 Physical and chemical analyses

Water quality parameters surveyed during the experiment wéxes,Btotal COD,
soluble COD, ammonia, nitrate, nitrite, sulphate and orthophosphatdys&s were
performed according to Standard Methods (APHA-AWWA-WEF, 2005). Samplas
conducted at the inlet, middle and outlet of the wetlands on a weagly. Water flow

was also daily measured and removal efficiencies cagmlilzn a mass balance basis.

2.6 Electrochemical characterization

Cell electromotive force was calculated according to Lodaal.2006). Current was

calculated following ohms law and power calculated according t
P=V?/R

Where,

V: is voltage across the resistance (in Volts)

R: external resistance (in Ohms)

All electrical data was related to the projected anodia,avhich was considered to be
the base of the electrode (7.5%rm order to express power production per wetland

surface.
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The maximum attainable voltage in a MFG{fEis:
Eemf =Ecat — Ean

Where,

Ecen: cell voltage (in volts)

Ecat is the redox at the cathode (in volts)

Ean is the redox at the anode (in volts)

However, in a bioelectroquemical system cell performancaivigys affected by a
number of losses that reduces the maximum attainable voltage tEa cell voltage
(Ecen) (Logan et al., 2006, Clauwaert et al., 2008). In the preserk MFC efficiency

was calculated as follows:

__ Ecell

Veps =100

emf

It is important to note that average cell efficiency wakutated taking only into

consideratiork,,, s values higher than 100 mV.
2.7 Microbial community assessment
2.7.1 DNA extraction

Wastewater samples from settler and HUSB were filtenettiplicate (5 mL each
replicate) by means of Swinnex® Filter Holders (Milliporefhnmembrane filters of
cellulose acetate (Whatmam®.22 pm pore diameter). Filtrates were kept frozen at -
20°C until DNA extraction. Total DNA was extracted from uefht wastewater
filtrates, graphite material and gravel samples from beitites and HUSB lines. A bead
beating DNA extraction was performed in triplicate by meah®owerSoil® DNA
Isolation Kit (MoBio Laboratories, Solano Beach, CA, USA), following

manufacturer’s instructions.

2.7.2 Quantitative PCR assay

The ratios between eubacterial and methanogenic archaeal populate determined

by quantifying thel6SribosomalRNA gene {6SrRNA) and the gene encoding of alpha
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subunit of methyl-coenzyme M reductas®rA). Gene copy numbers @6S rRNA and
mcrA fragments were quantified in triplicate with the quantitatreal time PCR
(qPCR) as elsewhere described (Sotres et al., in p&iasidard curves were performed
with known concentrations of the following reference cloned gel@&SrRNA gene
from Desulfovibrio vulgaris subsp.vulgaris ATCC 29579, inserted in a TOPO TA
vector (Invitrogen, Belgium); andracrA gene fragment obtained frolkhethanosarcina
barkeri DSM 800 cloned a TOPO TA vector as well. The qPCR effooésn of
amplification were 92,2% and 90.4%, while the Pearson Correlateffiients (R)

of the standard curves were between 0.999 and 0.971, and the skrpeseiween -
3,524 and -3,575 fdt6SrRNA andmcr A gene, respectively.

All results were processed by MxPro™ QPCR Software (Seatd-a Jolla, CA).

2.7.3 454-Pyrotag sequencing of total eubacterial and archaeal micpoipiallations

Massive bar-coded6S rRNA gene libraries targeting eubacterial region V1-165
rRNA and archaeal region V3-V4 were sequenced utilizing 454 FLX Titani
equipment (Roche Diagnostics, Branford, CT, USA). In summdiiyted DNA
extracts (1:10) were used as a template for PCR. Each (WNA independent total
DNA extract per sample) was amplified separately with A68irRNA eubacteria and
archaea set of primers containing unique multiplex identifieDjMégs recommended
by Roche Diagnostics (Roche Diagnostics, 2009). For eubacteriadgotlae primer set
were 27F (5-AGRGTTTGATCMTGGCTCAG-3) and 519R (5-
GTNTTACNGCGGCKGCTG-3'), while archaeal set of primererav 349F (5'-
GYGCASCAGKCGMGAAW-3) and 806R (5-GGACTACVSGGGTATCTAAT-3)).
The PCR conditions, subsequent purification and 454-pyrosequencing steps were
performed as elsewhere described (Llado et al., 2015). DNAs seguenced utilizing

Roche 454 FLX titanium instruments following manufacturer’s guidsline

Downstream 454-Pyrosequencing data analysis was carried outidy Q8ME

software version 1.8.0 (Caporaso et al., 2010a) following a frngnmrotocol and
grouping into Operational Taxonomic Units (OTUs) as previously destriLladé et
al.,, 2015). OTUs were taxonomically classified using BLASTnirejaGreenGenes

database and compiled into each taxonomic level (DeSantisnhiigeet al. 2006).



244  Data from pyrosequencing datasets was submitted to the Sequeadt@iRhive (SRA)
245  of the National Center for Biotechnology Information (NCBI) undher study accession
246 number SRP042796.

247 2.8 Assessment of cathode limiting conditions

248  Results from the main experiment suggested that MFC perfeemaas limited by the
249  cathode surface applied. In order to confirm this hypothesisoe experiment was
250 conducted at the end of the study period. The experiment consistedeaasing the

251 surface of cathode up to five times than that of the anodewiorof the MFC

252 implemented in the HUSB line. More precisely, the cathodantde surface ratios
253 tested were that of 1:1, 1:5, 1:4, 1:3, 1:2 and again Lslwas recorded by means of a
254  datalogger (Datataker DT50 series 3) which collected a waflusltage across the
255  external resistance every 15 minutegy las measured for three days at each cathode

256 to anode surface ratio tested.

257 2.9 Satistical analyses

258 Differences among experimental conditions for any of the densil parameters
259  (physico-chemical parameters, redox conditions and cell voltaged determined by
260 carrying out ANOVA tests, T-tests and Wilcoxon tests dependingetype of dataset
261 being compared. Data normality and homogeneity of variances deteemined by
262 performing the Kolmogorov-Smirnoff and Levenne tests, respectiRifferences
263 among experimental conditions were considered significant aups/akllow 0.05. All
264  statistical analyses were performed using the softwareagackR 3.0.2, with the
265 exception of statistical multivariate analyses (covariamased Principal Component
266  Analyses PCA) of pyrosequencing data which was analyzed bps€LSTAT 2014
267  software (Addinsoft, Paris, France).

268

269 3 Results and discussion

270 3.1 Treatment performance

271 No differences were found between experimental lines for ammoitiate, nitrite,
272 sulphate and orthophosphate. Ammonia removal was 60%, regardless trieexiad

273 line considered (Table 1). Ammonia removal efficiency in AS3N usually ranges
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from 40% to 55% (Garcia et al. 2010). Higher ammonia remotes teere reported
could be attributed to high evapotranspiration rates typical froall gfanted units
(Pedescoll et al. 2013, Tanner 2001). Accordingly, water leveti@ars impose higher
redox conditions in wetlands which, in turn, may favour nitrificati@arcia et al. 2003,
Garcia et al. 2010). In terms of organic matter, it wakdrigt the effluent of the HUSB
reactor yet significant differences were only detectedHertotal COD. Hence, better
removal rates for the settler line can be attributedlowar organic loading rate when
compared to the HUSB line. This result was already expected #irecaim of the
anaerobic reactor was to increase the total amount of biatidieasubstrate supplied
to the wetlands (Alvarez et al. 2008, Ligero et al. 2001).edeer, samples extracted
from the central part of the wetlands indicated that B&Dluble and total COD in the
vicinity of the MFC were significantly higher for the HUSIARé when compared to the
settler line. This result suggested that higher concemtisatif substrate were available
for the HUSB_MFCs which, in turn, could lead to a better perdmce of the cells
(Cheng and Logan, 2011, Liu et al., 2004).

Furthermore, pH was mostly constant along the experiment andtol@sg, regardless
the type of primary treatment applied. Water temperatuss imaaverage, 17.9 + 5.2
°C, with minimum values in February (6 °C) and maximum valoeduly (28 °C).

Moreover, water temperature followed a daily cycle with gerature variations of

about 2 °C between day and night without significant differeanesng treatment lines.

Conductivity was significantly higher for the HUSB line when canegl to the settler
line. More precisely, conductivity was, in average, 2.6962 InS/cm and 3.37 = 1.85
mS/cm to the settler and the HUSB line, respectively. Higbacentration of salts has
been previously related to higher MFC performances (Cheng ana L2Q&1). This
result suggested that cell performance could be higher for th&BHline when

compared to the settler line.

3.2 Redox and voltage pattern

Redox for both wetlands followed a very similar and conservatitterpa Redox
potential at the anode was very constant and averaged -219 + Z8=n1M30) and -
220 £ 46 mV (n=1177) for the HUSB and settler lines, respectivatiiout significant
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differences among treatment lines. Redox potential at the cattestzibed a very
constant day-night pattern, especially pronounced for the HUSB (kigure 3).
Accordingly, during nightly hours the redox potential at 5 cm depth almsst as
reduced as that of 15 cm depth and, therefore, the redox gradiesnalmost zero.
However, during sunlight hours the redox potential increased to a natatdat
reaching maximum values between 200 and 300 mV, regardless #wnexpal line
considered. Overall, and as has been previously des¢@loedella et al., 2014), redox
gradient between the anode and the cathode ranged between 400 and 500 mV,
regardless the experimental line considered and, thus, no cagmifiifferences were

recorded among experimental conditions.

Concerning cell voltage, MFC replicates performed similéstyboth lines (Figure 4).
Furthermore, it is widely accepted that cell electromeotiorce €., ) equals the
difference between the cathode and the anode potential (redox gradiens the
losses of the system (namely overpotentials and ohmic lossggn( et al., 2006). As
expected, voltage recorded followed the same daily pattern biegametox gradient
(Figure 4), showing picks during sunlight hours and being close to zero digimtty
hours. Although there was a notable variability on the pickEyvolhge started to rise
roughly between 11:00 and 15:00h and decreased between 18:00 and 23:00h.

During the first period, maximum daily cell voltage averagédt 29 mV and 50 £ 27
mV for the HUSB and the settler line, respectively. AlthotighHUSB line achieved a
higher maximum cell voltage (136 mV when compared to 103 m\hiosettler line),
daily average cell voltage, yet higher for the HUSB linaswot significantly different
among treatment lines. During the second period, HUSB_MFCs ach&wnaximum

cell voltage of 164 mV.

3.3 Effect of evapotranspiration on daily and seasonal cell performance

As it has been pointed out in the previous section, daily osuitaivere observed all
through the study period either in terms of redox (Figure 3) lbvokage (Figure 4).
Similar patterns have been reported in current literature foCgviimplemented in
planted environments such as rice paddy fields (Kaku et al., 2008¢l@nphelaire et
al., 2008) or, more recently, in constructed wetlands (Villaset al., 2013). So far, an

increase in the electrical output during sunlight hours is atéibub a higher
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photosynthetic activity of plants that increases the totadusamof substrate available
(root exudates) for energy production (Strik et al., 2008; Kaku et2808; De
Schamphelaire et al., 2008). However, water losses causedapgtenspiration in
planted systems have been also described to influence MFCrparnice (Strik et al.,
2008). Although water level inside the wetlands was set to lmem3&ignificant water
level variations from the design value were observed all aloagtudy period. More
precisely, water level within the wetlands decreased flmmdesign level in 3.1 + 0.9
cm (in May where plants started to grow) to 6.1 + 1.8 cm (lp Where plants were
already grown) (Figure 5). Moreover, intense water leveatian, especially from May
until the end of the study period, left the cathode of the MFC exposkd &amosphere
during the central hours of the day. When cathode was air-expogegkn availability
increased and favoured the current generation due to an increasecefi tvoltage. Our
results are in accordance with current literature sinissgénerally accepted that MFC
performance is related to oxygen availability at the cathode €t al., 2008; Oh et al.,
2004).

Furthermore, our results suggested not only that cell voltagenflasriced by water
level variation on a daily basis, but also in terms of seds@m@tions (Figure 6a and
6b). To this regard, from February until middle May, whereptemture was that of
12.4 + 4.4 °C and plants were not yet developed, no significamér and current were
recorded. From middle may until the end of July, when temperetgecup to 21.1 *
5.1 °C and plants were already developed, both current and powely dtaded to
increase, reaching maximum values during the first period o®BB and settler lines
under operation) of 181 mA/and 25 mW/rhand 138 mA/mand 14 mW/rhfor the
HUSB_ MFCs and the SET_MFCs, respectively. During the seconddp@nly the
HUSB line) microbial fuel cells achieved the maximum power amueat densities
recorded for the whole study period (219 mA/amd 36 mW/rf). Average values for
the first period were 82 + 38 mAfmand 6 + 5 mW/rhand 66+37 mA/thand 4 + 4
mW/n? to the HUSB_MFCs and the SET_MFCs, respectively. Omilyer production
values (data not shown) followed also the same pattern than thetcaneg power
density, reaching maximum values during the first period of about 258.m¥\tay"

and 158 mwWh.r.day" for the HUSB line and the settler line, respectively.
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Regarding cell efficiency in the first period, voltage meead (E.)) compared to the
maximum attainable (&) was, in average, 13 + 12% and 7 + 5% to the HUSB and the

settler line, respectively. Therefore, results suggetsiat MFC were highly limited.

Power and current densities described by Villasefior et al. (20iB)Yadav et al.
(2012) for MFC implemented in constructed wetlands are 43 ni\ath of 16 mW/rh
and 37 mA/rf and 70 mA/m, respectively. Therefore, our results are in the range of
that previously reported in literature, though this is the fins¢ that, to the knowledge
of the authors, MFC are implemented in pilot-scale wetlandsdirige real domestic
wastewater, where the availability of easy biodegradable ratdsstis of lesser extent
when compared to synthetic wastewater. Overall, despitd W#&B line showed higher
maximum power production when compared to the settler line, no semifi
differences were recorded among treatment lines. It is i@potb point out that
authors believe that one of the reasons behind the lack of sigmitidferences among
treatment lines concerning the average cell voltage redondes the high oxygen
limitation at the cathode. Indeed, the experiment on the assesehtathode limitation
conditions performed at the end of the study period confirmed th& bfferated
during the whole period of study were probably subjected to a cathmitatitbn
surface (Figure 7). From Figure 7 it is clear that in otdeavoid any cathode limiting
condition the surface of cathode shall be around four times higherthla of the

anode.

3.4 Effect of primary treatment on bacterial populations in MFC-implemented CW

Microbial community assessment was conducted on gravel,ragest (graphite
material from open and closed circuit MFC) and from primaegted wastewater from
both the settler and HUSB reactor. Samples were taken faoiyn &une 2014. Total
eubacteria and archaea populations were determined by qPCR6En&RNA gene

based 454 pyrotag sequencing approaches.
3.4.1 Total eubacteria and methanogenic populations abundance

Total microbial populations ranged from 2 #1096 - 1 16SrRNA gene copies - mt,
with methanogens accounting for 0.10-0.13% of total community in botketter and

HUSB-treated wastewater. Total eubactet&S{rRNA gene) and methanogenic archaea



403
404
405
406
407
408
409
410
411
412
413
414

415

416
417
418
419

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

in the effluent of the HUSB reactor were significanthyver (P<0.05) than that of the
effluent of the settler (See supplementary material Eig8i; Table S1). Total
eubacterial population recorded for both gravel and electrodes wesggndicantly
different among experimental lines and ranged from 2 td@ - 16 16S rRNA gene
copies - §. Methanogenic population ranged from 0.6 ® mhorA gene copies 4to 1.2

. 10 mcrA gene copies Y (accounting for 0.22 to 0.49 % of total microbial
populations) in graphite samples from active circuits of thdesedand HUSB line,
respectively. Furthermore, methanogenic populations were seymtifrchigher (P<0.05)
in the anode material of MFC operated at closed circuitv@circuit) when compared
to gravel, regardless the primary treatment applied. Howewdy in case of the MFC
within the settler line the methanogenic population were sagmifly different between

active and inactive MFC.
3.4.2 16SrRNA gene-based 454 pyrotag sequencing of total eubacteria and archaea

Taking into account the slightly differences recorded regarding éatécteria and
methanogenic archaea abundancE%rRNA gene-based 454 pyrotag sequencing was
carried out to gain insight on microbial community structureotdlteubacteria and

archaeal populations.

In the present study 16 samples for eubacteria and 14 for argbeeassessed. A total
number of 136,925 and 72,233 sequences were obtained for eubacteria aed,arch
respectively. After sequence processing, a total high-quedigs of 107,747 and
12,519 were retained for eubacteria and archaea, respectitielyav€rage clean reads
for eubacteria per sample were 5,794-8,304 for treated wdstew®52-10,330 for the
Settler line samples (gravel and graphite) and 5,020-6,667 feadse HUSB line
samples (gravel and graphite). The coverage (%) ranged frdd8o9%. 98.9% for
eubacteria and 94.6 to 99.9% for archaea (See supplementaryam@itdiie S2).
However, the average cleaned reads taxonomically assigredraea per sample were
from five to ten fold lower than those achieved for eubactéee (supplementary
material Table S2). The number of OTUs (97% of similarity)dubacteria ranged from
352 to 434 in wastewater samples, and from 436 to 775 for graphite aetisgaples.
The number of high quality reads for eubacteria were not signifycdifferent among
experimental lines, regardless the type of sample considgedhary treated

wastewater, gravel, and graphite samples). However, signify higher diversity was



435  encountered for the HUSB line samples when compared to ther $iettlebased on

436  certain diversity estimators such as OTU numbers (640-775p-Ch(837-987),

437  Shannon-Wienner (5.0-5.5), and even a higher evenness index (0.23-0.88) (Se
438  supplementary material Figure S2 and Table S2).

439  Global diversity results clearly showed the existence @opulation shift in MFC
440 implemented in constructed wetlands, specially driven by HUSBegatted wastewater.
441  The diversity encountered in our 458SrRNA gene pyrotag libraries in MFC coupled
442 CWs (Shannon index( in the range of 4.36 to 5.5) was significantly higher than that
443  described elsewhere in constructed wetlands treating domestieweder and swine
444  wastewater using the DGGE techniqite {.1-4 (Calheiros et al., 2009); H: 0.71-1.07
445  (Dong and Reddy, 2010); tRFLP:(2.9-3.1) or those using clone libraries (H: 2-3.8) in

446  CW treating industrial wastewater polluted with arsenicand (Arroyo et al., 2013).

447  Biodiversity of eubacteria (by class) and archaea (by familyjerms of relative

448 incidence for the main taxonomic groups are shown in Figure 8a gaddbalso in

449 Table S3). Settled wastewater showed a high predominance oeprbttabacteria

450 (average 29%) and Flavobacteria (average 48%) (Figure Ugraleé®nentary material
451 Table S3). Anaerobically pre-treated wastewater showg@@dominance of beta and
452  gamma-proteobacteria (average 46% and 32%, respectivelyltamd]esser extent,
453  flavobacteria (6%) and clostridia (7%).

454  Samples analyzed for eubacteria from the wetland fed with ttikerseffluent
455  (including gravel and graphite at open and close circuit MFC) pesderat significant
456  differences concerning the dominance of groups at class lageB@-and b; Table S3).
457  Among eubacteria dominant classes were that of alfa-proteaba@esund 20-32%)
458  and Flavobacteria (around 16-30%).

459  Samples analyzed for eubacteria from within the wetlandvitid the HUSB effluent
460 (including gravel and graphite at open and close circuit MFG) ahowed no
461  significant differences concerning the dominance of groups atlelssgFig. 8a and b;
462 Table S3). Among eubacteria dominant classes were thapbipitoteobacteria (up to
463  17%), Deltaproteobacteria (up to 30%); clostridia (up to 18%); baictier (up to ca.

464  8%); synergistia (up to 9%) and anaerolineae (up to 6%).
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Diversity of eubacteria was significantly higher, encompasgnportant phylogenetic
and quantitative changes, when the HUSB line was compared t&etler line,
regardless the type of sample considered (Fig. 8a; Tabl&883.precisely, for gravel
and graphite samples of the HUSB line predominant groups werefti@ostridia,
delta-proteobacteria, Bacteroidia, Synergistia, alfa-prot#eba and Anaerolineae
(Figure 8; Table S3 and S4). Accordingly, the fundamental differemcmicrobial
community structure promoted by the two types of primary treatimenat considered
was the high enrichment in Bacteroidia (OTUs 1 and 2) and deltaspemtieria class in
the gravel and graphite samples of the HUSB line (OTU 4) wbewpared to gravel

and graphite samples of the settler line.

Regarding delta-proteobacteria class it is remarkableeféve predominance of the
Geobacteraceae family in gravel and graphite samples ¢fulsB line (19% and 5%
of relative abundance for the graphite of active MFC and gsamaples, respectively).
Within the Geobacteraceae family it is of special intaiesthigh relative abundance of
one OTU belonging t&eobacter in active MFC of the HUSB line (from 13 to 16%). In
the case of gravel and graphite samples from the settter@eobacteraceae were not
only less favored (below 2%), but even the detected Geobacter@ddae were
different from that of the OTUs found in samples from théSB line (Table S5).

Regarding archaeal population, it is noteworthy the high relatievafgnce of
Methanosaetaceae family at the effluent of both types ofapyitmeatments (55% and
81% for the settler and HUSB reactor, respectively). Furthes, there was a shift in
methanogenic archaea that consisted in a high decrease ofandsedletaceae
encompassed by an enrichment of Methanomicrobiaceae/Thermaf@a®TU2) as it
is assigned by Greengenes/RDP Bayesian Classifier @@BHlghe. In addition, a non
methanogenic phylum (Chrenarchaeaota) was highly predominant irel gasn
graphite samples from both experimental lines. (Chrenarchaeosignes as
Fervidicoccaceae/Thermoprotei by Greengenes/RDP Bayesiaifi€tagg/ang et al.,
2007) (37-53% and 23-39% to the settler and HUSB linesecésply).

Multivariate statistical analyses were conducted by meansoghriate-principal
component analyses (PCA) (Figure 9a,b, and Figure S3-S4) anelsmammdence
analyses (CA) with similar results. PCA and CA analysi®aled the existence of three

main separate groups of samples encompassing different micradmamunities
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(primary treated wastewater samples, settler line and BHUW®) (Figure 9 a,b).
Regarding eubacteria, the main OTUs with the higher componenttiesigtribution in
wastewater were OTUs 8 and 673, closely similaCdmamonas denitrificans (beta-
proteobacteria) and OTUs 10 and 224 belonging to well known fermentative
Acinetobacter genus (gamma-protebacteria). Regarding the settleiQifids belonging

to Cloacibacterium (Bacteroidetes, OTU 1Rhenylobacterium (alpha-proteobacteria,
OTU 3) andSphingopixis (alpha-proteobacteria, OTU 7) were the main OTUs to define
the group. For the HUSB line it is worth mentioning the presencéwof main
distinctive OTUs on PCA/CA biplot (Figure 9 a,b and Fig S3-4)UQ@Tbelonging to
Rhodobacter/Bacteroidetes (assigned by Greengenes/RDP Bayesian classifier
databases, and OTU 4, closely similar in sequence (99.7%) tenwronmental
Geobacter (delta-proteobacteria) and @eobacter lovieyi Geo 7.1A (97.16%). OTU 4
was not detected neither in primary treated wastewater rtbeisettler line, and was
clearly more enriched in anode under closed (active) circuil§¥8) for the HUSB
line than in gravel (3%), and almost absent (0.6-1.5%) in openectiy@acircuit
(Table S3). Taking into account that MFC within the HUSB leveded to show higher
current and power densities when compared to the settler lifg, Orelated with
Geobacter might be a good candidate as a key player for exoelectrogedicurrent
production in this system. Coincidently,Geobacter enrichment was also reported in
constructed wetlands treating 1,2-dichloroethene-contaminated groendivateld et

al., 2010), and recently in the anode of lab-scale MFC coupleddonstructed wetland
system for decolorization of azo dyes (Fang et al., 2013). Howawararily to Fang et

al. (2013), in the present study methanogenic archaea belongWighanosaeta has
been just slightly enriched in the anode material of both expermiargs (Table S5).
Current research is revealing the occurrence of exoeleoimogactivity in
Methanosarcina and Methanosaeta sharing electrons with a concomita@eobacter,
(Rotaru et al.,2014 a, b) promoting potential electron current produativt-Cs and

complex microbial communities such as those harboured in naturedrenents.
4 Conclusions

The settler line slightly outperformed the HUSB line in teohs$reatment efficiency,

though only in terms of total COD differences were signifilsadifferent.



528 Maximum current and power densities recorded with microbialdeks implemented
529 in constructed wetlands for the treatment of real domestitewater was that of 219
530 mA/m?and 36 mW/rh

531  Microbial fuel cells implemented in constructed wetlands iveng the effluent of an
532 anaerobic reactor showed higher current and power densities thabiali¢uel cells
533 implemented in the wetlands receiving primary settled wadtaw However,
534 differences among treatment lines were not significantly miffe The lack of

535  significant differences was probably due to a cathode suifaitation.

536 Redox gradient between electrodes and cell voltage followed ya ca@rservative
537 pattern along the day with higher output cell voltage values ddagtight hours. The
538 main parameter controlling the cell voltage was water | leragiation within the

539  wetlands that resulted from intense evapotranspiration and exiheseathode to air.

540 The type of primary treatment implemented had a significapact on the diversity
541 and relative abundance of bacteria communities colonizing MF&.vibrth noticing
542 the high predominance (13-16% of relative abundance) of one OTU belotming
543  Geobacter on active MFC of the HUSB line that was absent for #ites line MFC.
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Table 1. Physical and chemical parameters measured. Note: average values are shown

with standard deviation in brackets.

HUSB SETTLER
in middle out % removal in middle out % removal
137
DBOsoiube (N=7) (mg 0, /L) 71 (26)* 55 115(53) 37 (14)*  42(25) 54
(63) 63)
323 137 126 100
CODxotal (n=17) (mg O, /L) 61 235 (19)* 69 (29)* 71
(33)*  (53)*  (60O)* (46)*
(mg NH4'- 19
AMMONIA (n=16) 41 (7) 58 39 (8) 17 (17) 60
N/L) (19)
(mg NOs-N/
NITRATE (n=13) ) <1 <1 <1 <1
L
NITRITE (n=13) mg NO-N/ L <1 <1 <1 <1
N 102 68
SULPHATE (n=13)  (mg SO,%/L) 34 113 (37) 68 (71) 40
(27) (53)
ORTHOPHOSPHATE  (mg P-PO,’
9(3) 10 (7) 7(2) 5(5)
E (n=13) /L)

* Significant differences among treatment lines.
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Figure 1. Microbial fuel cells implemented within the wetland at the beginning of the

experiment.
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Figure 2. Outline of microbial fuel cells and electrodes.
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Figure 5. Representative cell voltage and water level variation for the HUSB line.
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Figure. 8. Biodiversity of main representatives of eubacteria (sorted by class) (A) and
archaea (sorted by family) (B) expressed as relative OTUs abundance (%).Thermoprotei
class or Fervidicocacceae family in Chrenarchaeota phylum were assigned according
RDP Classifier and greengenes respectively. Thermoplasmata class or
Methanomicrobiaceae in Euryarchaeota phylum were assigned according RDP
Classifier and greengenes respectively. Note: gravel samples from the settler line did not

produce any DNA amplification and are not considered in Figure 7B.
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Figure 9: Covariance-based Principal Component Analysis biplot of a) eubacterial

archaeal OTUs distribution from pyrosequencing analysis from different samples.
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