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ABSTRACT 25	

Metabolic phenotypes of individuals are the result of genes, environment, lifestyle, diet and gut 26	

microbiota interactions. The aim of this study is to evaluate the robustness of clinical and 27	

metabolic phenotyping in identifying differential responsiveness to dietary strategies in the 28	

improvement of cardiometabolic status. Clinical phenotyping of 57 male volunteers with high 29	

cardiovascular risk factors was performed using K-means cluster analysis based on 69 30	

anthropometric and plasma biochemical parameters. Cluster validation analysis based on Dunn 31	

analysis for internal coherence and FOM analysis for external homogeneity was applied. The K-32	

means analysis produced four clusters with particularly significant clinical profiles. Basal 33	

differences on the urine metabolomic profiles among clinical phenotypes were explored and 34	

validated by OSC-PLS-DA models. Multivariate analysis (OSC-PLS-DA) of 1H-NMR spectra 35	

revealed that the model comparing the “obese and diabetic cluster” (OD-c) against the 36	

“healthier cluster” (H-c) showed the best predictability and robustness in terms of explaining the 37	

pairwise differences between clusters. When considering these two clusters, two different 38	

groups of metabolites were observed after following an intervention with wine polyphenol 39	

intake (WPI, 733 Equivalents of Gallic Acid [GAE/day] per 28 days). Cluster differences 40	

between baseline and post-intervention values of 24h-urine NMR metabolomic data were 41	

analyzed by ANOVA. Those associated to a specific metabotype (OD-c), glucose as the 42	

significantly characteristic of the group (FDR correction, p<0.01,) and lactate, betaine and 43	

dimethylamine with a trend; and those associated to wine polyphenol intervention (OD-c_WPI 44	

and H-c_WPI), tartrate (FDR correction p<0.001), and mannitol, threonine methanol, fucose 45	

and 3-hydroxyphenylacetate in a trending profile. On the other hand, 4-HPA (metabolite derived 46	

from gut microbial metabolism after wine polyphenol intake) significantly increased (FDR 47	

correction, p<0.05) for H-c_WPI compared to OD-c_WPI and basal periods (H-c_BAS and 48	

OD-c_BAS), exhibiting a metabotypic intervention effect. This study provides efficient 49	

strategies for targeting the heterogeneity in individual’s responsiveness to dietary intervention 50	

and the identification of health benefits in specific population groups. 51	

  52	
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1 INTRODUCTION 53	

Metabolic phenotypes (metabotypes) are the result of interactions among several different 54	

factors (diet, lifestyle, gut microbiota, genetics, etc.), and describe characteristic metabolic 55	

profiles reflecting the biochemistry, the physiological status, and the environmental exposure in 56	

a population (Rezzi, Ramadan et al. 2007; Holmes, Wilson et al. 2008). Applications of 57	

metabolic phenotyping in nutrition research could be very useful in terms of assigning 58	

individuals to a particular metabolic phenotype. This could help improve our understanding of 59	

the linkage between both diet and disease with the different individual metabotypes (McNiven, 60	

German et al. 2011; Kinross, Li et al. 2014). 61	

Metabolomic technologies permit the characterization of large numbers of small molecules in 62	

human biofluids. 1H-NMR-based metabolomics is a very robust technique for performing 63	

metabolomic studies, enabling the simultaneous detection and quantification of a wide range of 64	

different metabolites. Because of this, NMR-based metabolomics has been applied in a variety 65	

of disciplines. In the field of nutrition, NMR-based metabolomics has been used to identify the 66	

most significant changes in a metabolic profile arising from dietary intervention studies, dietary 67	

biomarker studies and diet related disease studies (Brennan 2014). It can also be used to identify 68	

new small molecule candidates for disease biomarkers (Rupérez, Ramos-Mozo et al. 2012; 69	

Yang, Wang et al. 2013) 70	

Cardiovascular disease (CVD) is the leading cause of mortality worldwide, with CVD-71	

associated deaths rising very quickly in low-to-middle income countries. Modifiable risk factors 72	

for CVD—which include hypertension, smoking, abdominal obesity, abnormal lipids, diabetes 73	

mellitus, stress, low consumption of fruits and vegetables, and lack of regular physical 74	

activity—are the major contributors to CVD morbidity and mortality (Dahlöf 2010). 75	

Additionally, reduced plasma HDL levels and elevated plasma TAG concentrations are known 76	

to be significant risk factors for ischemic heart disease (IHD) (Lewington, Whitlock et al. 2007; 77	

Frikke-Schmidt, Nordestgaard et al. 2008). C-reactive protein (CRP) is another CVD risk 78	

marker (Ridker, Danielson et al. 2009). In addition, high plasma levels of homocysteine are 79	
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considered to be a risk factor for vascular disease, heart failure and strokes (Kaptoge, Di 80	

Angelantonio et al. 2010). Another important risk factor is type 2 diabetes mellitus (T2D). The 81	

prevalence of T2D is increasing rapidly around the world. Clinical predictors such as body mass 82	

index (BMI), fat distribution measured by Waist-hip ratio (WHR), CRP and fasting blood 83	

glucose levels can be helpful in measuring diabetes risk (Pradhan, Manson et al. 2001; Wilson, 84	

Meigs et al. 2007; Wannamethee, Papacosta et al. 2010; Wang, Larson et al. 2011). 85	

The low incidence of coronary heart disease (CHD) in Mediterranean countries has been partly 86	

assigned to their distinct dietary habits (Dauchet, Amouyel et al. 2009). Several studies have 87	

shown an inverse association between the Mediterranean diet and the incidence of CVD 88	

(Estruch, Ros et al. 2013). As one of the main constituents of Mediterranean diet, wine and its 89	

components, especially polyphenols, may provide additional health benefits (Chiva-Blanch, 90	

Urpi-Sarda et al. 2013). In particular, the regular consumption of wine polyphenols used in this 91	

study appears to mitigate CVD risk factors, leading to reduced blood pressure (Chiva-Blanch, 92	

Urpi-Sarda et al. 2012) and inflammatory parameters (Chiva-Blanch, Urpi-Sarda et al. 2012). 93	

The health benefits of polyphenols provided by wine intake are of particular interest. In the 94	

present study, a long-term feeding trial was performed to determine changes in urinary 95	

metabolites between different metabotypes. Therefore, the aim of the present work was to 96	

classify a specific population into phenotypic groups according to their biochemical 97	

characteristics, and then to use 1H-NMR-based urinary metabolomics to observe the different 98	

metabolic responses after red wine polyphenols intake. 99	

2 MATERIAL AND METHODS 100	

2. 1 Subjects and Study Design 101	

The study was a prospective, randomized, crossover, and controlled trial (Chiva-Blanch, Urpi-102	

Sarda et al. 2012). High-risk subjects aged ≥55 years without documented CHD (CHD: 103	

ischemic heart disease—angina/recent or past myocardial infarction/previous or cerebral 104	

vascular accident, peripheral vascular disease) were recruited for the study. The subjects 105	
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included had diabetes mellitus or more than three of the following CHD risk factors: tobacco 106	

smoking, hypertension, hypercholesterolemia, plasma LDL cholesterol ≥160 mg/dL, plasma 107	

HDL cholesterol <40 mg/dL, obesity (BMI (in kg/m2) ≥30), and/or a family history of 108	

premature CHD (first-line male relatives <55 years or females <65 years). Participants had to 109	

voluntarily give signed informed consent. Subjects with a previous history of CVD, any severe 110	

chronic disease, alcoholism, or other toxic substance abuse were excluded.  111	

To fulfil the objectives of the present study, we used 1H-NMR spectroscopy to evaluate the 112	

urinary metabolomes from 57 participants between baseline and after 28 days of red wine 113	

polyphenols intake (WPI, polyphenol content:733 Equivalents of Gallic Acid [EGA/day]) in 114	

form of dealcoholized wine from a Merlot grape variety. Results of polyphenol composition 115	

analysis of the beverages are shown in Supplemental material, Table S1. The Institutional 116	

Review Board of the hospital approved the study protocol, and all participants gave written 117	

consent before participation in the study. The trial has been registered in the Current Controlled 118	

Trials in London, International Standard Randomized Controlled Trial Number 119	

(ISRCTN88720134).  120	

2.2 Anthropometric Measurements and Biochemical Analyses 121	

Anthropometric measurements and biochemical analyses were performed using standardized 122	

methods (Estruch, Martínez-González et al. 2006). BMI and WHR were measured in all the 123	

participants to evaluate their obesity status. Systolic and diastolic blood pressures as well as 124	

heart rate were also measured. Clinical parameters were tested in the blood and urine of 125	

participants at the beginning of the study (baseline) in order to characterize the biochemical 126	

status of each participant. Blood glucose levels, total cholesterol, high-density lipoprotein 127	

cholesterol (HDL), low-density lipoprotein cholesterol (LDL), LDL/HDL ratio, 128	

triacylglycerides (TAG), 24h-diuresis, plasmatic creatine, uric acid, aminotransferases, 129	

bilirubin, ferritin, C-reactive protein, albumin, enzymes (alkaline phosphatase, lactate 130	

dehydrogenase), ions (Na+, K+), as well as globulins, apolipoprotein levels, hemoglobin and red 131	
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blood cell count; with several coagulation parameters (prothrombin, thrombin, fibrinogen) were 132	

measured. In total, 69 anthropometric and biochemical baseline parameters were evaluated. 133	

These are shown in Table 1. 134	

2.3 Biochemical Biomarkers and Clinical Phenotype by a k-means Algorithm 135	

The final data set contained 69 variables from 57 samples (of the initial set of 61 individuals, 4 136	

were excluded because of incomplete data regarding clinical and anthropometric parameters). 137	

Prior to k-means analysis all variables were typified. All cluster metrics were computed with 138	

1000 different random initializations of the k-means algorithm in order to avoid local minima. A 139	

maximum number of 100 iterations were allowed in the k-means calculations. All computations 140	

were carried out using the R package for Statistical Computing v. 2.14.1. This included the 141	

statistics package for the k-means algorithm and the clValid package for the cluster validation 142	

analysis. Dunn analysis for internal coherence and FOM analysis for external homogeneity were 143	

applied to the dataset employing Euclidean distances and a k-means clustering algorithm. Our 144	

results suggest that a cluster solution consisting of 4 centers or groups (4 clusters) showed the 145	

optimal properties of internal coherence and grouping stability (the detailed methodology and 146	

the validation procedure are in the supplemental material).  147	

2. 4 Metabolomic NMR Spectroscopy 148	

2.4.1 1H-NMR sample preparation, data acquisition and processing 149	

The protocols used for this work were based on previously published methodology (Vázquez-150	

Fresno, Llorach et al. 2012). The urine samples were thawed, vortexed, and centrifuged at 151	

13,200 rpm for 5 min. The supernatant (600 µL) from each urine sample was mixed with an 152	

internal standard solution (120 µL, consisting of 0.1 % TSP (3-(trimethylsilyl)-proprionate-153	

2,2,3,3-d4, chemical shift reference), 2 mM of sodium azide (NaN3, bacteriostatic agent), and 154	

1.5 M KH2PO4 in 99 % deuterium water (D2O)). The optimized pH of the buffer was set at 7.0, 155	

with a potassium deuteroxide (KOD) solution, to minimize variations in the chemical shifts of 156	

the NMR resonances. The mixture was transferred to a 5-mm NMR tube. The processed 157	
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spectral data were bucketed in domains of 0.005 ppm and integrated using ACD/NMR 158	

Processor 12.0 software (Advanced Chemistry Development, Inc.). The spectral region between 159	

4.75 and 5.00 ppm was excluded from the data set to avoid spectral interference from residual 160	

water.  161	

2.5 Statistical Analysis 162	

2.5.1 Biochemical biomarkers and phenotyping cluster differences 163	

Clusters were performed using k-means cluster analysis as described previously. A 164	

Kolmogorov-Smirnov test (p<0.05) was used to test the normality of the all variables using 165	

SPSS, version 18.0 for Windows (SPSS®, Chicago, IL, USA). ANOVA analysis was performed 166	

to evaluate differences in the mean biochemical measurements across clusters where statistical 167	

differences were analyzed (p<0.05).  Comparisons between clusters were assessed using a 168	

Tukey post-hoc multiple comparison test. In the case of non-parametric variables, a Kruskall 169	

Wallis test was used to test significant differences. Additionally, a Mann-Whitney test was used 170	

to detect significances between clusters. All these tests were performed by SPSS, version 18.0 171	

for Windows (SPSS®, Chicago, IL, USA).  172	

2.5.2 Metabolomic cluster analysis- OSC-PLS-DA multivariate analysis 173	

Data generated from the NMR spectral integration were submitted to MetaboAnalyst (Xia, 174	

Mandal et al. 2012). Data were normalized using the sum of the spectral intensities, then log 175	

transformed and Pareto scaled. Data were then analyzed using the SIMCA-P+ 13 software 176	

(Umetrics, Umea, Sweden) by multivariate discriminant analysis OSC-PLS-DA. A pairwise 177	

comparison analysis between the four clusters was carried out. The quality of the models was 178	

evaluated by the goodness-of-fit parameter (R2X), the proportion of the variance of the response 179	

variable that is explained by the model (R2Y) and the predictive ability parameter (Q), which 180	

was calculated using seven-fold internal cross-validation (Vázquez-Fresno, Llorach et al. 2014). 181	

Validation of the OSC-PLS-DA models was carried out by a permutation test (n=200). 182	

Additional information about the methodology is provided in the supplementary data. After 183	



8	
	

untargeted analysis with baseline samples which characterized two most discriminant clusters, 184	

then, the quantification of the samples was performed for these two clusters. 185	

2.5. 3 Metabolomic phenotype analysis by ANOVA  186	

Quantified data were submitted to MetaboAnalyst in order to find possible differences between 187	

clusters after WPI and normalized (24-h urine volume normalization, cube root transformed and 188	

Pareto scaled) (Xia, Mandal et al. 2012) before further analysis. Metabolites were analyzed by a 189	

one-way ANOVA test followed by Fisher’s LSD test for multiple comparisons. The false 190	

discovery rate (FDR) test, a statistical approach to the problem of multiple comparisons, was 191	

used in this study to counter the effect of multiple testing and verify the most discriminating 192	

metabolites (Benjamini and Hochberg 1995). Box-plots were used to show the statistical 193	

differences between treatments with P values <0.05 being considered significant. Figure 1 194	

displays a summary of the steps followed in this study. 195	

2.6 Metabolite Identification and Quantification 196	

The methyl singlet produced by a known quantity of TSP (0.97mM) was used as an internal 197	

standard for chemical shift referencing (set to 0 ppm) and for quantification. The 1H-NMR 198	

spectra were analyzed using the Chenomx NMR Suite Professional Software package (version 199	

7.8; Chenomx Inc, Edmonton, ALB, Canada), which permitted both identification and 200	

quantification by manually fitting the NMR spectra to an internal metabolite database.  201	

 202	

3 RESULTS AND DISCUSSION 203	

3. 1 Characterization of Clinical Phenotypes.  204	

61 participants were initially recruited into this study; of these, 57 participants were included in 205	

the final cluster analysis (4 were removed from the study because an incomplete biochemical 206	

profile). Of the 69 baseline biochemical parameters, k-means cluster analysis classified 4 207	
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distinct phenotypic groups: cluster 1 (n= 12), cluster 2 (n= 13), cluster 3 (n= 14) and cluster 4 208	

(n= 18). Age, smoking habits, mean dietary intake, mean concentrations of biochemical 209	

parameters and statistical tests for each cluster are presented in Table 1. Cluster 1 was defined 210	

by a significantly lower systolic blood pressure (mmHg), α2-globulin (%) and neutrophil levels 211	

(%); higher total cholesterol (mg/dL), LDL cholesterol (mg/dL), apolipoprotein B (mg/dL), and 212	

apolipoprotein B/apolipoprotein A ratio (APOB/APOA), compared with all other clusters. 213	

Cluster 2 showed lower LDL/HDL ratio compared with all other clusters and significantly 214	

higher blood glucose levels compared to cluster 4. Cluster 3 was characterized by significantly 215	

higher BMI values, α2-globulin (%), β-globulin (%),albumin/globulin ratio, and homocysteine 216	

(µmol/L) levels and a lower albumin percentage (%) compared with the other clusters. In 217	

addition, CRP values were the highest in cluster 3 and statistically significant compared with 218	

clusters 1 and 4. Furthermore, glucose levels were significantly higher in cluster 3 (>126mg/dL) 219	

compared with cluster 4 (<110mg/dL). More than >126mg/dL is diagnostic of T2D following 220	

the American Diabetes Association (ADA) criteria. Cluster 3 had the highest but not statistically 221	

significant values of the WHR index, a measure of fat distribution and also a BMI>30 indicating 222	

an obese participants cluster (Apovian and Gokce 2012). There is a strong positive association 223	

between obesity (measured by BMI) and risk of T2D in men (Wannamethee, Papacosta et al. 224	

2010). In epidemiological studies, high plasma levels of homocysteine (hyperhomocysteinemia) 225	

are considered to be a risk factor for vascular disease (Welch and Loscalzo 1998), heart failure 226	

and strokes (Collaboration 2002). Among persons with T2D, the association between 227	

homocysteine levels and cardiovascular disease may be stronger than that in non-diabetic 228	

individuals (Ndrepepa, Kastrati et al. 2008). Moreover, cluster 3 showed the lowest HDL-229	

cholesterol levels and the highest TAG levels compared to the other clusters. These features are 230	

considered risk factors for IHD (Lewington, Whitlock et al. 2007; Frikke-Schmidt, 231	

Nordestgaard et al. 2008). Finally, cluster 4 showed significantly lower concentrations of TAG 232	

(mg/dL), leucocyte count (x109/L), neutrophils (x109/L), lymphocytes (x109/L) and erythrocyte 233	

sedimentation rate (mm/h) than cluster 3; also K (mEq/L) presented lower levels compared to 234	

other clusters. The elevated circulating white blood cell count (neutrophils, lymphocytes and 235	
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monocytes) has been proposed as one of a few biomarkers of potential utility for cardiovascular 236	

disease risk prediction (Horne, Anderson et al. 2005). Moreover, the erythrocyte sedimentation 237	

rate (<10 mm/h) may be indicative of inflammation and a useful additional diagnostic criterion 238	

for coronary heart disease (Yayan 2012). On the other hand, low serum potassium levels (<4 239	

mEq/L) in a propensity-matched study was associated with higher mortality and chronic heart 240	

failure (Ahmed, Zannad et al. 2007). Overall, cluster 4 had lower levels of cardiovascular 241	

disease biomarkers than all other clusters (Table 1).  242	

3.2 Clinical Phenotypes and NMR-based Metabolomic Profiles 243	

After separation of the participants into 4 biochemically distinct clusters, an OSC-PLS-DA 244	

analysis was performed to discriminate the clusters by their NMR-derived urinary profiles. The 245	

results obtained by OSC-PLS-DA showed that the most strongly discriminated clusters were 246	

cluster 3 versus cluster 4 (see Supplemental Material); for this reason, all subsequent analyses 247	

were focused on further characterizing cluster 3 which was named the “obese and diabetic 248	

cluster” (OD-c), versus cluster 4 or named the “healthier cluster” (H-c).  249	

3. 3 Metabolomic Phenotype Analysis to Responses to Wine Polyphenol Intake 250	

Table 2 presents the results from the multiple comparison ANOVA analysis comparing cluster 251	

OD-c and H-c before and after wine polyphenols intake (WPI). Several metabolites exhibited to 252	

be associated to wine polyphenols intervention including tartrate, 4-hydroxyphenylacetate (4-253	

HPA), 3-hydroxyphenylacetate (3-HPA), mannitol, methanol threonine and fucose. Further, 4 254	

metabolites presented an association to metabolic phenotype (OD-c) which includes glucose, 255	

lactate betaine and dimethylamine, associated to obesity and TD2 (Xie, Waters et al. 2012; 256	

Menni, Fauman et al. 2013). 257	

After false discovery rate (FDR) correction, tartrate, glucose and 4-hydroxyphenylacetate (4-258	

HPA) exhibited significant results. Different patterns of response were observed for these 3 259	

metabolites: Tartrate was higher for both clusters after WPI (OD-c_WPI and H-c_WPI) (wine 260	

polyphenols intervention metabolite). Glucose was higher in the baseline group and after 261	
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intervention in cluster OD-c (OD-c_BAS, OD-c_WPI) compared with cluster H-c (H-c_BAS 262	

and H-c_WPI) (metabolic phenotype related metabolite) characteristic for cluster OD-c. Finally, 263	

4-HPA showed higher urinary excretion after WPI among subjects H-c_WPI than those in OD-264	

c_WPI and at baseline (OD-c_BAS, H-c_BAS), exhibiting a distinct post-intervention 265	

metabolic response in individuals for different clusters (metabotypic intervention effect). Box-266	

plots show the statistical differences observed for these metabolites by multiple comparison 267	

ANOVA analysis (Figure 2).  268	

Tartrate is the major organic acid in grapes and so it is also present in wine (Son, Kim et al. 269	

2008; Son, Hwang et al. 2009). Recently, it has been proposed to be a biomarker of wine 270	

consumption for both interventional and epidemiological studies (Vázquez-Fresno, Llorach et 271	

al. 2014). The tartrate urinary excreted amounts for OD-c_WPI were 1.06±0.19 mmols 272	

(84.57±14.58 µM/mM creatinine), as well as H-c_WPI 1.29±0.29 µmols (107.89±16.69 273	

µM/mM creatinine) in 24h-urine samples (Table 2). Similar to our results, a recent study 274	

reported a tartrate concentration of 91.8µg/mg creatinine (73.69 µM/mM creatinine) measured 275	

after 10h of acute wine intake (200 ml) (Regueiro, Vallverdú-Queralt et al. 2013). Additionally, 276	

the presence of this metabolite at statistically significant levels in both groups after WPI  277	

demonstrated a global compliance by all individuals in this intervention study. 278	

The presence of glucose in urine has long been used as an indicator of diabetes mellitus 279	

(Urakami, Kubota et al. 2005). T2D is characterized by the presence of glucose in urine, 280	

obesity, high levels of homocysteine and CRP, which are all characteristics of cluster OD-c 281	

subjects (Table 1). Moreover, there is a strong positive association between obesity (measured 282	

by BMI) and T2D risk (Wannamethee, Papacosta et al. 2010). Glucose excretion amounts for 283	

volunteers corresponding to the OD-c were 14.04±7.56 mmols (2157.79±1108.56 µM/mM 284	

creatinine) and 13.78±7.85 mmols (1613.70±1042.12 µM/mM creatinine) in 24h-urine samples 285	

for the OD-c_BAS and OD-c_WPI groups, respectively. These values were significantly higher 286	

than concentrations found in normal urine (12.5 - 58.4 µM/mM creatinine) (Bouatra, Aziat et al. 287	
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2013). When reported values of glucose in urine are ≥100 mg/dl (5.5 mM) it is considered to be 288	

a positive test for diabetes (Urakami, Kubota et al. 2005).  289	

Lastly, 4-hydroxyphenylacetate (4-HPA) is a metabolite involved in tyrosine and phenylalanine 290	

metabolism. Also, 4-HPA is a compound that is known to be increased in urine after 291	

consumption of wine (Vázquez-Fresno, Llorach et al. 2012), chocolate (Martin, Rezzi et al. 292	

2009), or cranberries (Prior, Rogers et al. 2010). This is because it is also a metabolic byproduct 293	

of polyphenol degradation by gut microbiota (Moco, Martin et al. 2012), particularly F. 294	

prausnitzii, Bifidobacterium, Clostridium difficile, Subdoligranulum, Lactobacillus sp. are 295	

described to be responsible of metabolism of 4-HPA (Nicholson, Holmes et al. 2012). The 4-296	

HPA excretion amount for the differential response cluster (H-c_WPI) was 0.28±0.03 mmols 297	

(25.35±1.48 µM/mM creatinine), significantly higher than excretion values described in the 298	

literature in normal conditions (1.4-14.6 µM/mM creatinine) (Bouatra, Aziat et al. 2013). It has 299	

been described that obese and diabetic people experience changes in gut microbial metabolites 300	

as a result of these cardiovascular related pathologies (Shen, Obin et al. 2013). Some studies 301	

found a decrease of Bifidobacterium, F. prausnitzii, and some species of Clostridium and 302	

Lactobacillus in obese (Tagliabue and Elli 2013) and diabetic subjects (Everard and Cani 2013). 303	

These findings are in agreement with our results, as lower levels of 4-HPA were found in cluster 304	

OD-c than in cluster H-c after wine polyphehols intake.  305	

 306	

4 CONCLUSIONS 307	

The present study has shown that phenotypic analysis using an unsupervised clustering 308	

technique (k-means analysis) can identify clusters according with their biochemical profiles. 309	

The two most discriminating clusters were named according to their clinical parameters and 310	

identified as the “obese and diabetic cluster” (OD-c) and the “healthier cluster” (H-c). 311	

Moreover, metabolomic phenotyping using NMR detected a distinct metabolic response 312	

between individuals grouped in these phenotypic clusters. In particular, comparisons between 313	
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OD-c and H-c exhibited different levels of excretion of 4-HPA after wine polyphenols intake. 314	

Likewise, a metabolite linked with a specific metabotype (glucose) and another metabolite 315	

linked with dietary intervention (tartrate) were also observed. According to our results subjects 316	

in OD-c could have altered the gut metabolism compared to individuals of H-c. Lastly, this 317	

approach showed that clinical phenotyping combined with metabolomic analysis can produce 318	

interesting quantitative results, providing new insights about the relationship between diet, gut 319	

microbiota and health. 320	
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TABLES 471	

Table 1. Biochemical and anthropometrical parameters of subjects and mean baseline 472	

concentrations of individuals clusters. P-values of ANOVA test (ï) for parametric variables and 473	

Kruskall Wallis test (♦) for non-parametric variables, (p<0.05) for both tests. Superscript 474	

numbers (1,2,3,4) indicate differences between number cluster shown, in Tukey post-hoc test (for 475	

parametrical variables) and Mann-Whitney test.(for non-parametrical variables). 476	

 Cluster 1 (n=12) Cluster 2 
(n=13) 

Cluster 3  (n=14) Cluster 4 (n=18) p-value 

Characteristics 

Age (y) 59.83 ±8.62 62.08 ± 10.84 61.21 ± 5.98 59.78 ± 8.13 0.87+ 

Current smokers 
(%) 

1.75 ± 0.45 1.85 ± 0.38 1.86 ± 0.36 1.72 ± 0.46 0.14♦ 

Dietary Data 

Energy (MJ) 8074.70 ± 211.65 8046.42±1738.6
3 

8347.50±1909.31 7387.47 ± 1838.73 0.54+ 

TE protein (%) 21.37 ± 1.97 20.55 ± 3.17 19.86 ± 4.04 21.12 ± 3.94 0.70+ 

TE carbohydrates 
(%) 

43.19 ± 7.02 40.57 ± 8.58 43.05 ± 8.27 41.90 ±7.03 0.83+ 

TE fat (%) 33.68 ± 6.60 37.31 ± 7.36 36.44 ± 6.26 36.22 ± 4.54 0.56+ 

Anthropometrical and biochemical parameters 

BMI (kg/m2) 28.17 ± 2.62 27.33 ± 2.78 33.56 ± 4.011,2,4 29.02 ± 3.86 <0.001+ 

Waist-hip ratio 0.94 ± 0.05 0.98 ± 0.03 0.99 ± 0.051 0.96 ± 0.04 0.01+ 

Heart Rate 
(beats/min) 

72.17 ± 11.85 69.69 ± 7.09 68.71 ± 10.71 68.78 ± 8.94 0.78+ 

Systolic blood 
pressure (mm Hg) 

124.58 ± 15.082,3,4 153.54 ± 17.58 143.14 ± 13.79 141.22 ± 12.06 <0.001+ 

Diastolic blood 
pressure (mm Hg) 

81.58 ± 9.1 79.23 ± 7.36 77.00 ± 9.14 84.50 ± 8.59 0.098+ 

CRP (mg/dL) 0.15 ± 0.09 0.27 ± 0.31 0.37 ± 0.291,4 0.14 ± 0.182,3 0.028♦ 

Glucose (mg/dL) 101.25 ± 20.87 119.92 ± 28.62 132.07 ± 53.841,4 95.22 ± 18.102,3 0.01♦ 

Diuresi 24h (mL) 1587.50 ± 621.35 1946.15 
±753.454 

1470.00 ± 441.46 1339.56±425.43 0.03+ 
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Plasmatic 
creatinine (mg/dL) 

1.01 ± 0.17 0.96  ± 0.19 1.02  ± 0.11 0.96  ± 0.11 0.52+ 

Uric acid (mg/dL) 6.58  ± 1.47 6.10  ± 0.85 6.89  ± 1.38 6.11  ± 0.78 0.19+ 

Na (mEq/L) 141.75  ± 2.14 141.15  ± 1.77 141.36  ± 2.06 140.72  ± 1.49 0.50+ 

K (mEq/L) 4.28  ± 0.23 4.19  ± 0.36 4.24  ± 0.33 3.90  ± 0.241,2,3 0.002+ 

P (mEq/L) 3.66  ± 0.612 3.02  ± 0.49 3.40  ± 0.58 3.09  ± 0.67 0.03+ 

Mg (mEq/L) 2.07  ± 0.19 2.21  ± 0.31 2.02  ± 0.15 2.12  ± 0.16 0.13+ 

Fe (mEq/L) 85.00  ± 23.65 99.38  ± 26.96 75.43  ± 21.18 94.89  ± 30.19 0.084+ 

Total cholesterol 
(mg/dL) 

243.83±36.282,3,4 189.69  ± 14.68 184.79  ± 20.79 203.28  ± 40.97 <0.001+ 

LDL cholesterol 
(mg/dL) 

167.33 ±32.822,3,4 116.92  ± 14.14 114.71  ± 17.87 137.67  ± 33.57 <0.001+ 

HDL cholesterol 
(mg/dL) 

48.92  ± 13.14 52.46  ± 9.98 37.86  ± 5.071,2 46.61  ± 10.09 0.003+ 

LDL 
cholesterol:HDL 
cholesterol ratio 

3.61  ± 1.06 2.31  ± 0.541,3,4 3.06  ± 0.50 2.98  ± 0.53 <0.001+ 

Triglycerides 
(mg/dL) 

138.17  ± 59.29 101.69  ± 33.27 160.71  ± 73.142,4 95.61  ± 35.28 0.03+ 

Apolipoprotein 
APOA1 (mg/dL) 

146.58  ± 23.36 157.92  ± 14.833 138.43  ± 15.16 147.33  ± 17.28 0.05+ 

Apolipoprotein 
APOB (mg/dL) 

136.42 ± 24.982,3,4 98.85  ± 13.37 103.36  ± 13.89 106.50  ± 19.96 <0.001+ 

APOB/A ratio 0.95  ± 0.232,3,4 0.63  ± 0.095 0.76  ± 0.15 0.72  ± 0.086 <0.001+ 

ASAT (UI/L) 30.08  ± 13.56 23.23  ± 4.92 28.14  ± 10.6 24.39  ± 6.05 0.203♦ 

ALAT (UI/L) 44.42  ± 41.39 26.15  ± 8.97 31.21  ± 16.33 28.83 ± 15.03 0.230♦ 

GGT (UI/L) 42.00  ± 33.68 26.08  ± 7.95 36.71  ± 25.78 27.22 ± 17.36 0.450♦ 

Bilirubin (mg/dL) 0.77  ± 0.31 0.85  ± 0.263 0.56  ± 0.122 0.73  ± 0.25 0.024♦ 

Alkaline 
phosphatase (UI/L) 

135.00  ± 20.69 162.54  ± 53.67 127.29  ± 31.30 135.28±34.03 0.082+ 

Lactate DH (UI/L) 327.83  ± 64.77 305.31  ± 16.25 340.50  ± 63.66 357.39±46.26 0.104+ 

Total proteins (g/L) 74.08  ± 2.64 73.46  ± 3.69 72.14  ± 2.69 69.94±2.751,2 0.001+ 

Albumin (g/L) 47.33  ± 1.92 47.31  ± 1.883,4 44.00  ± 2.77 43.39  ± 1.82 <0.001+ 

Albumin (%) 65.87  ± 2.11 64.79  ± 2.49 60.32  ± 3.821,2,4 63.36  ± 2.53 <0.001+ 
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 α1 globulin  (%) 2.76  ± 0.223,4 3.10  ± 0.46 3.53  ± 0.48 3.27  ± 0.62 0.002+ 

α2 globulin (%) 5.93  ± 0.742,3,4 7.39  ± 1.14 9.10  ± 1.621,2,4 7.25  ± 1.49 <0.001+ 

Β globulin (%) 11.19  ± 0.76 11.21  ± 1.28 12.80  ± 1.831,2,4 11.02  ± 0.87 0.001+ 

Γ globulin (%) 14.25  ± 1.99 13.52  ± 2.04 14.25  ± 2.68 15.10  ± 1.77 0.25+ 

Albumin:globulin 
ratio 

1.94  ± 0.18 1.85  ± 0.21 1.54  ± 0.241,2,4 1.74  ± 0.19 <0.001+ 

Ferritine(ng/mL) 167.92  ± 102.02 187.85  ± 
166.93 

179.07  ± 144.77 208.56±152.61 0.89+ 

Folic acid  (serum) 
(ng/mL) 

9.50  ± 3.43 10.98  ± 2.79 8.51  ± 3.52 10.27  ± 4.65 0.36+ 

Intraerythrocytary 
folic acid (ng/mL) 

333.27  ± 79.13 401.54  ± 69.95 417.57  ± 107.39 374.38  ± 80.27 0.08+ 

Vitamin B-12 
(pg/mL) 

525.58  ± 368.70 428.85  ± 
145.05 

377.07  ± 139.37 380.44 ±110.63 0.29♦ 

Homocysteine 
(µmol /L) 

11.07  ± 2.60 11.17  ± 1.241,2,4 14.31  ± 4.28 11.26  ± 1.79 0.005+ 

Hemoglobin 
concentration (g/L) 

152.75  ± 9.92 151.00  ± 11.77 143.57  ± 9.15 147.33  ± 8.09 0.08+ 

Hematocrit (L/L) 0.45  ± 0.03 0.45  ± 0.03 0.43  ± 0.03 0.44  ± 0.025 0.16+ 

Erythrocyte mean 
corpuscular volume 
(fL) 

89.80  ± 2.59 91.05  ± 3.73 90.35  ± 5.30 88.78  ± 3.35 0.42+ 

Mean corpuscular 
hemoglobin (pg) 

30.20  ± 0.93 30.82  ± 0.98 30.31  ± 1.89  29.88  ± 1.16 0.28+ 

Mean corpuscular 
hemoglobin 
concentration (g/L) 

336.25  ± 5.15 338.45  ± 4.74 335.57  ± 7.44 336.56  ± 9.99 0.78+ 

Erytrocyte 
sedimentation rate 
(mm/h) 

7.08  ± 4.44 8.08  ± 3.86 11.07  ± 5.261,4 5.44  ± 2.312,3 0.003♦ 

Reed distribution 
width (%) 

13.06  ± 0.584 13.17  ± 0.59 13.59  ± 0.66 13.68  ± 0.53 0.01+ 

Hemoglobin 
distribution width 
(g/L) 

25.74  ± 1.46 24.49  ± 1.96 25.51  ± 2.65 26.03  ± 2.18 0.24+ 

Platelet count 
(x109/L) 

282.17  ± 56.364 233.54  ± 45.98 264.64  ± 63.99 220.17  ± 33.78 0.006+ 
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All values are mean ± SD, p-values are based on simple ANOVA test (+) for parametric variables and 477	
Kruskall Wallis test (♦) for non-parametric variables, (p<0.05 for both tests); Superscript numbers 478	
adjacent to values from each cluster denote a significant difference between indicated cluster number 479	
based on Tukey post-hoc test (for parametrical variables) and Mann-Whitney test.(for non-parametrical 480	
variables). TE protein %: protein as percentage of total energy intake; TE carbohydrate%: carbohydrate as 481	
percentage of total energy intake; TE fat %: fat as percentage of total energy intake. PCR: c-reactive 482	
protein; BMI: body mass index; ASAT: aspartate aminotranspherase; ALAT: alanine aminotransferase; 483	
GGT:gamma-glutamyl transpeptidase; Na: sodium; K: potassium; P: phosphorous; Mg: Magnessium; Fe: 484	
iron. DH: dehydrogenase;  485	

 486	

Mean platelet 
volume (fL) 

8.27  ± 0.47 9.11  ± 0.74 8.85  ± 0.72 8.89  ± 0.99 0.05+ 

Leucocyte count  
(x109/L) 

6.84  ± 1.73 7.09  ± 0.88 7.96  ± 1.234 6.15  ± 1.30 0.004+ 

Neutrophils (%) 50.45  ± 5.822,3,4 63.84  ± 8.78 58.26  ± 4.43 58.21  ± 6.32 <0.001+ 

Lymphocytes (%) 35.83  ± 4.422,4 24.90  ± 7.07 29.90  ± 5.06 29.83  ± 5.87 <0.001+ 

Monocytes (%) 6.58  ± 1.07 5.85  ± 1.09 6.44  ± 0.88 7.47  ± 0.632,3 <0.001+ 

Eosinophils (%) 4.12  ± 2.042,4 2.65  ± 1.23 2.77 ± 1.19 2.15  ± 0.72 0.002+ 

Basophils (%) 0.71  ± 0.25 0.79  ± 0.394 0.57 ± 0.2 0.49  ± 0.19 0.01+ 

Unclassified cells 
(%) 

2.16  ± 0.95 1.99  ± 0.93 2.05 ± 0.50 1.86  ± 0.56 0.726+ 

Neutrophils ( 
x109/L) 

3.49  ± 1.11 4.55  ± 0.891,4 4.63  ± 0.791,4 3.56  ± 0.84 0.001+ 

Lymphocytes ( 
x109/L) 

2.43  ± 0.612,4 1.75  ± 0.461,3 2.39  ± 0.562,4 1.85  ± 0.57 0.002+ 

Monocytes ( x109/L) 0.45  ± 0.12 0.42  ± 0.10 0.52  ± 0.13 0.45  ± 0.10 0.24♦ 

Eosinophil ( x109/L) 0.27  ± 0.15 0.19  ± 0.086 0.21  ± 0.09 0.13  ± 0.051,2,3 0.001♦ 

Basophils ( x109/L) 0.05  ± 0.03 0.05  ± 0.04 0.03  ± 0.04 0.08  ± 0.011,2 0.002♦ 

Unclassified cells ( 
x109/L) 

0.16  ± 0.06 0.15  ± 0.06 0.17  ± 0.054 0.11  ± 0.051,3 0.029♦ 

Prothrombin time 
(%) 

97.58  ± 3.684 95.54  ± 5.72 96.00  ± 4.93 92.50  ± 5.83 0.126♦ 

Prothrombin time 
(seg) 

13.07  ± 0.45 13.23  ± 0.78 13.29  ± 0.47 13.56  ± 0.67 0.186+ 

Thromboplastin 
partial time (seg) 

28.48  ± 0.89 26.65  ± 7.97  26.38  ± 7.55 29.35  ± 2.11 0.386+ 

Fibrinogen (g/L) 3.18  ± 0.51 4.08  ± 0.821,4 3.73  ± 0.62 3.18  ± 0.37 <0.001+ 



22	
	

Table 2. Urinary excretion amounts [mmols, 24h-urine] of metabolites after ANOVA analysis, in parenthesis µM/mM creatinine. OD-c_BAS: obese and 487	

diabetic cluster in basal period; H-c_BAS: healthier cluster in basal period; OD-c_WPI: obese and diabetic cluster after wine polyphenols intake; H-c_WPI: 488	

healthier cluster after wine polyphenol intake. WPI: wine polyphenols intake; MTP: metabotype.4-HPA: 4-hydroxyphenylacetate; 3-HPA: 3-489	

hydroxyphenylacetate. DMA: dimethylamine. 490	

  491	
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MEAN ± SEM; mmols, 24h  
(µM/mM creatinine) 

Metabolite OD-c_BAS H-c_BAS OD-c_WPI H-c_WPI p-value FDR  
p-value  

Metabolite 
information 

 
Tartrate 0.140 ± 0.052  

(14.16 ± 5.78)  
0.451 ± 0.019 

(39.83 ± 14.74) 
1.065 ± 0.19  

(84.57 ± 14.58) 
1.292 ± 0.285 

(107.89 ± 16.69) 
7.09E-07 6.02E-05 WPI 

Glucose 14.044 ± 7.562 
(2157.79 ± 1108.56) 

0.210 ± 0.019 
(19.95 ± 1.61) 

13.786± 7.850 
(1613.70 ± 1042.12) 

0.188± 0.038 
(16.53 ± 2.08) 

0.0001 0.005 MTP 

4-HPA 0.170 ± 0.025 
(17.23 ± 2.04) 

0.163 ± 0.013 
(15.52 ± 1.13) 

0.184 ± 0.022 
(16.23 ± 1.95) 

0.280 ± 0.029 
(25.35 ± 1.48) 

0.0008 0.02 WPI-MTP 

3-HPA 0.056 ± 0.01 
(40.71± 8.34) 

0.062 ± 0.005 
(48.39± 3.99) 

0.0856 ± 0.016 
(56.04± 10.97) 

0.101 ± 0.012 
(75.7± 10.43) 

0.01 0.18 WPI 

Mannitol 0.556 ± 0.112 
(462.62+142.13) 

0.782 ± 0.144 
(646.87± 132.08) 

1.223 ± 0.157 
(804.66± 117.30) 

1.312 ± 0.255 
(957.04± 210.15) 

0.005 0.99 WPI 

Threonine 0.094 ± 0.014 
(9.07 ± 1.17) 

0.107 ± 0.013 
(10.33 ± 1.51) 

0.141 ± 0.013 
(12.64 ± 2.19) 

0.173 ± 0.032 
(15.00 ± 1.99) 

0.02 0.18 WPI 

Methanol 0.473 ± 0.077 
(46.83 ± 6.80) 

0.436 ± 0.050 
(39.99 ± 3.72) 

0.682 ± 0.133 
(51.02 ± 5.07) 

0.676 ± 0.076 
(59.91 ± 3.82) 

0.03 0.30 WPI 

Fucose 0.32 ± 0.04 
(30.58 ± 2.36) 

0.327 ± 0.023 
(30.55 ± 1.81) 

0.503 ± 0.069 
(39.01 ± 4.56) 

0.495 ± 0.081 
(42.84 ± 3.87) 

0.04 0.31 WPI 

Lactate 0.516 ± 0.19 
(65.56 ± 34.17) 

0.212 ± 0.075 
(19.77 ± 1.37) 

0.432 ± 0.087 
(37.83 ± 11.02) 

0.294 ± 0.030 
(26.09 ± 1.80) 

0.04 0.33 MTP 

Betaine 0.549 ± 0.217 
(56.01 ± 21.61) 

0.207 ± 0.030 
(19.36 ± 2.64) 

0.676 ± 0.245 
(53.77 ± 18.74) 

0.214 ± 0.037 
(18.83 ± 2.28) 

0.02 0.18 MTP 

DMA 0.469 ± 0.021 
(51.68 ± 7.82) 

0.503 ± 0.048 
(45.89 ± 3.20) 

0.905 ± 0.230 
(65.36 ± 8.11) 

0.568 ± 0.078 
(51.21 ± 4.62) 

0.02 0.18 MTP 

492	
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FIGURE LEGEND 493	

 494	
   Figure 1. Methodological strategy steps followed in the present study. CVD: cardiovascular disease; c: cluster; OD-c: obese and diabetic cluster; H-c: 495	

healthier cluster. OSC-PLS-DA: partial least-squares discriminant analysis with orthogonal signal correction. EGA: equivalents of gallic acid496	
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 497	

Figure 2. Box-plots of the metabolites derived from ANOVA test (p<0.05 after FDR 498	

correction). Different letters indicate significant differences between interventions. OD-c_BAS: 499	

obese and diabetic cluster in basal period; H-c_BAS: healthier cluster in basal period; OD-500	

c_WPI: obese and diabetic cluster after wine polyphenols intake; H-c_WPI: healthier cluster 501	

after wine polyphenols intake.  502	


