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Modal AnalYsis of Coupling Problems inopticd Fibers

ANGEL CARDAMA, MEMBER, IEEE, AND EDWARD T. KORNHAUSER, SENIOR MEMBER) IEEE

Absfracf—A modal analysis of the problems of excitation of the
dominant mode in ah optical fiber by incident plane waves and
Gaussian beams has been carried out, and the results applied to
the effect on transmission of misalignment in fiber junctions due to
offsets, tilts, and gaps. The results in cases of matched media con-
firm the accuracy of previous theoretical treatments using the Born
approximation, which in turn show good agreement with experi-
mental results. In addition, the modal analysis gives more precise
solutions when there is a mismatch of media and makes possible
the treatment of some problems to which the Born approximation
is not applicable.

I. INTRODUCTION

OVER THE 1’AST five years the advances inade in

optical signal processing techniques and in the de-

velopment of low-loss glasses for optical fibers have made
‘ the utilization of the enormous bandwith available in

optical communications an attractive possibility. However,

if such fibers are actually to be employed as transmission

channels, in the manner of transmission lines and n~icro-

wave waveguides, one must be able to couple, splice,

bifurcate, etc., in a way analogous to that used with those

older channels. This is not a trivial technical problem,

because the core of the fiber, where the fields are concen-

trated, is typically only a few microns in diameter so that

the difficulty, for example, of aligning two fibers when

splicing is critical.

The excitation of propagating modes on a fiber by vari-

ous types of source illumination has been studied by

Snyder [1]–[3] and Marcuse [4J both using the Born
approximation. Furthermore, splicing techniques have

been developed [5]–[7] and some measurements made

[7]-[9] of the effects of imperfect alignment at the inter-

face between two uniform fibers. Most recently Cook et al.

[9] have also given a theoretical analysis of the effects of

misalignment in splicing on the transmission coefficient,

again making use of the Bonn approximation. The im-

portance of such a theoretical calculation lies in the fact
that it would enable one to set meaningful standards of

precision which must be adhered to in the practical means

used for splicing.
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However, all of the theoretical calculations mentioned

employ the Born approximation, i.e., the assumption

that the fields at the illuminated cross section of the fiber

consist entirely of those in the incident wave. That there

must be a discrepancy [10] resulting from the use oi this

approximation is indicated by the fact that Marcuse [4]

calculated two values of transmission coefficient corre-

sponding to the two possible boundary conditions to be

used (continuity of tangential E or of tangential H) and

arbitrarily took their geometric mean. Although this

mean result was always quite reasonable, in some cases

one of the two boundary conditions led to a transmission

coefficient larger than unit y, which is clearly impassible.

Consequently, this paper will reexamine the basic

excitation problems, making use of a more rigorous modal

expansion of the fields, which in turn is based on the

general techniques for hybrid modes developed by Yagh-

jian [11], [12]. The solutions will show that, rather

surprisingly, the result of taking the geometric mean of

the two Born approximation coefficients was remarkably

accurate. h’inall y, the results and techniques will be

applied to the problems of the effect on efficiency of

transmission at the junction of two similai optical fibers

of three types of defect in their alignment: tilt of one

axis with respect to the other, offset of their axes, and

swiall gaps between the fiber cores. Numerical results

will be presented for all of these problems and compared

with the corresponding Ilml approximation results.

II. lJORIIULATIOX

The surface modes of the infinite circular dielectric rod

have been extensively studied [2], [13], [14], and their

orthogonalit y well established [1.5]. The fact that the

modes are hybrid and the existence of a continuous spec-

trum malce the exact solution of diffraction and scattering

problems for a fiber \vith infinite outer diameter (od) a

formidable task. In fact, there is no kM)~YD exact solution

even for the axially symmetric caseJ which reduces to a
scalar problem [16], [17]. An exact solution would re-

quire solving an integral equation, and one possible means

of overcoming the difficulty of its solution would be to

approximate the integrals by infinite summations and

solve the resulting linear system. A natural way of achiev-

ing this is to enclose the dielectric rod in a concentric

perfectly conducting cylinder with radius large compared

to the core radius and the wavelength. As the radius of the

metallic pipe increases, the surface modes are unaffected

and the nonsurface type modes become a continuum
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(Appendix). This method will allow us to solve the excita-

tion and fiber coupling problems by a normal-mode anal-

ysis, as in a standard waveguide discontinuity y problem,

and to take into account the reflected energy.

To find the scattered and transmitted fields for a wave

incident at z = O, Fig, 1, we will have to expand the fields

on both sides of the interface as an infinite summation

of the modes in each structure. Continuity of the trans-

verse components of the fields at z = O gives

~ a~e~ + E, = ~ a.e.
n m

–~aJh2+Hi=~a.k (1)
n m

where E,, Hi are the transverse incident fields, em, h~ the

transverse fields of the surface and nonsurface modes of

the fiber, and efi’, h.’ are the forward traveling modes of

the homogeneously filled circular waveguide [18] in the

launching case or the hybrid modes of the fiber in the fiber

junction case.

The set of modal coefficients am, which will give the

efficiencies of excitation, can be obtained from (1) by

cross multiplication by hn’ and en’, integration over the

cross-sectional area A at the leit of the interface, and

making use of the orthogonalit y of the modes, giving

afiWnml + A. = ~ aJII~’1
m

— a.’AT..’ + B. = ~ kN%”L (2a)
m

these two equations can be added to obtain a linear system

for the modal coefficients of the transmitted modes

~~l%lIWm”+N.m[=A.+B., )/ = 1,2,. . . (2b)

where Nnnt = Jen’ x h: ..2 da are the normalization fac-

tors of Lhe TE and TM modes and

An =
/

(E, X hJ) .2 da (3)
A

B. = ~ (en’ X H~).%da (4)
A

/
N.m = (e.’ X h~) ..2 da (5)

A

M%9L=
/

(em X h;)”2 da. (6)
A

A. and B. can be calculated from the expressions of the
incident fields, and the cross-normalization factors, N~”II

and M~n, have been calculated by Yaghjian [12] by

reducing the surface integrals to line integrals and are

given in the Appendix.

Fig. 1.

The summation over n includes for the launching case

all TE and TM modes of the homogeneous circular metal-

lic waveguide arranged in order of increasing eigenvalues,

and in the fiber junction case all the propagating surface

modes and all the nonsurface modes (Appendix).

To obtain a numerical solution of (2b), we shall have

to truncate the system and solve the resulting finite

system, adding more equations until the modal coefficients

obtained become stable within the accuracy of the com-

putations, and the addition of new equations does not

produce further variations.

Practical fibers are made with the radius of the cladding

large compared to the core radius and usually are ex-

ternally coated. This in fact reduces the continuous

spectrum to a discrete one but does not affect significantly

the surface modes. The preceding model can be viewed

not only as a solution for the transversally infinite fiber

but as an exact study of the propagation and excitation

of modes in a fiber with a metallic external coating.

III. EXCITATION COEFFICIENTS

.4. Truncated [lniform Plane Wave

For this case, the incident fields at z = O are taken as

those of a uniform plane wave in a medium of dielectric

constant e~ illuminating a circle of radius c concentric

with the fiber and propagating at an angle 6 with respect

to the axis of the fiber z. The plane of the fiber axis and

the direction of incidence is t,alwm to be the J, z plane, so

that

Ei = EO exp ( –jk3 z sin 0)~ (7)

with 1cS2= 0J3.w, ii = k sin e + 2 cm e, and an @ time

dependence is assumed.

We will consider only ~-polarized plane waves, which

excite only modes with gl (0), VZ(0) given by (A6) with

n = 1. Expressions for the other polarization could be

similarly derived. Also we will assume the fields incident

at z = O, but if the source w-ere at z = Z. (z. < O) with

e%or a different medium in the region Z. < z < 0, the

problem could be treated in a similar way by writing the
continuity equations at the z = Z. and z = O interfaces

and eliminating coefficients until we are left with a system

relating incident and transmitted fields, as will be done in

studying the effects of gaps in fiber joints.
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I?oranx-polarized uniform plane wave, we obtain

EZ = –EOexp (–jA?”cos@) sin O (9a)

E, = EOexp (–jAYcos+) COSOCOS4 (9b)

E+ = –EO exp ( –~Ar cos 4) cos Osin 4 (9C)

with
A=%sine (10)

the Hi field components are obtained from (8) and (9).

We shall lhave to solve the system (2). Substitution

into (3), (4) of the fields of the homogeneous] y filled

circular waveguide [18] gives for An and B. the following

expressions.
For n odd, TEln modes

13m2E,Cos ~ 0 2“
An= –j—

//
exp ( –jAr cos 4)

wo’Yn 00

[

tll(~nr)

1
. -—COS24 + J/ (7J’) Sill’ 4 Y Ch d4 ( 11)

~nr

with -Y. = Pl~’/b (n = 2m — 1, m = 1,2, ●..), where

PI~’ is the mth order zero of J{, b is the radius of the guide,

and I% is the propagation constant of the nth mode. Use

of the recurrence relations for the Bessel fuctions gives

c h

A. = –j ~2~ cos e
H

exp ( —jAr cos 4) [Jo (?’TJ”)
#u/’loy* 00

+ J2(w) C(JS~4]T dr c14. ( 12)

Using the associated series

exp ( —~Ar cos 4) = Jo (AT) + 2 ~ ( —j) ‘Jk ( Ar) cos ~4
k=l

(13)

and integrating over @gives

A, . . –j% (t,/po) ‘% Cos eln’ ( 14)

with

!
I.1 = ‘ [Jo(~.r)Jo(Ar) – J2(7.r)J,(Ar) ]r d? (15)

o

which can be integrated analytically to give

[

– [C/ (yn’ – A’)]{ fi[Jo(w) + J2(w) ~l(AC)

1=1 = – ~.[Jo(Ac) + J2(Ac) VI(W) ), A # Y..

(2/@Jl’(At), A = 7$$

(16)

B. is obtained in the same way as

Bz = –j * (eJ/po) %rl.1 (17)

for normal incidence (0 = O), A = O, and

CJ1(’ync)
Inl – A=O. (18)

Y. ‘

“1.
100

80

60

m

g,o.

Lo 2

20 4

6
0123 ~Pc

a) a=2, n$=1.L9

V = 2.4143

c) a=2, n,=l

V = 2.4143

●I.
100

80

60❑
e .@

2
40

20 L
a 6

0 123LPC

b) a=l , ns:l,49

V = 1.207

80

60

k

e ,00

2

Lo
L

20 6

8
0 123 ~P

d] a=!, n,=l

V = 1.207

c

Fig. 2. HE,, mode launching etticiency in a fiber with nl = 1.50,
n~ = 1.49, b = 25 ~, a = 1?2 p, xo = 0.9 p, excited by a truncated
1miform plane wave at obhque i ncidenee versus radius of illumi-
nated area.

Similar] y for n even, TM1. modes, we have

.4n = –j : (e3/#o) % cm 191n’ (19)

~.EO
B~= –j—

( dM) 112rIn2 (20)
‘Y71

with ~. = P1~/b (n = %n, n~ = 1,!2,. . .), where Pl~ is

the mth order zero of J1.

I.?, =
/

‘ [JO(~.rkJo(Ay) + Jz(7.7)J2(Ar) ]r dr (21)
o

and

1

– [c/ (’y.’ – A’) ]{ AIJo(-rnc) – ~2(7mc) uI(Ac)

— Tn[~o ( AG) — R72( AG)]~I(TnG) } , A#~.
In’ =

1

(c2/2) {J02(Ac)

at normal incidence

+ J,’(Ac) + J22(Ac)

– ~3(flc)~1(fk) ], A=yn

(~~)

~ , = CJl(-ync)
n A=O. (23)

‘Y. ‘

Substitution in (2) gives a system with the modal coeffi-

cients in the fiber as unknowns. Fig. 2 represents numerical
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Fig. 3. HEII mode launching efficiency in a fiber with nl = 1.50,

nz = 1.49, b. = 25 P, a = 1,2 P, XO = 0.9 P, excited by a Gaussian
beam at obhque incidence versus Gaussian width u.

TABLE I

Born Approxi-
Modal Solution Modal Solution mation

O(K) for nj = 1 for n, = 1.49 (Geometric mean)

0.5 33.83 percent 35.24 percent 34.16 percent
1. 8072 84.08
1..5

83.81
95.78 99.75

2.
99.60

90.12 93.84
2.5

93.69
78.10 81.32

3.
81.19

65.81 68..52
3.5

68.40
35.09 57.36

4’.
57.26

46.25 48.15 48.07

Note: HE,I mode launching efficiency in a fiber with nl = 1.50,

~z = 1.49,. b = M p, a = 2 p, AO = 0.9 p excited by a Gaussian
beam of width u at normal incidence from a medium with refraction
index ns.

solution of that system and gives the eficiency of excita-

tion of the HE1l mode versus radius of the illuminated

area for various angles of incidence. A more extensive

set of curves for different fibers, outer radius and medium

of incidence together with the corresponding Born ap-

proximations can be found in [19].
The transmitted HEII mode was found to be in phase

with the incident fields; values of Bessel functions were

calculated to six digits accuracy and the ratio of imaginary

to real part of the modal coefficient is of the order of 10–6.

Maximum launching cfliciencies Oi SO percent with

matched media and 77 percent for vacumn were obtained

B. Gaussian Beam

We shall now consider an incident Gaussian beam prop-

agating at an angle 0 with respect to the axis of the fiber

z. Again, the plane of the axis and the direction of incidence

is taken to be the x, z plane, and the center of the beam

is displaced a, distance d on the positive x-axis.

For small angles of incidence we have

(24)
Hi is given by (8) with

D = d/u2 (26)

and A given by (10).

We shall consider only x-polarized beams and treat

oblique incidence and offsets separately. Ii both were

considered, it would be necessary to perform numerical

integrations with Bessel functions of the complex argu-

ment {r. If the center of the beam were not on the x-axis

but at a point (d,cr), then the argument of &CO@ in (24)

would be replaced by Dr cos (t#J— a) and both polariza-

tions of the HE1l mode would be excited. The formalism

to treat those cases is the same as that for the cases A = O

or D = O, but the computations become much more

cumbersome.

For oblique incidence (D = 0) we obtain the expressions

for An and B. given by (14), (17), (19), (20) but with

– J,(7.T)J2(A7)]Y dr (27)

+ J2(7N)J2 ( Ar) IT Cb. (28)

Both of these expressions require numerical integration,

and if both tilts and offsets were to be considered sinml-
taneously, a multiplicative factor exp ( – dz/2u2) would

appear and { would replace A.

Fig. 3 shows two of the curves obtained [19]. Maximum

values of efficiency are 99.7 percent for a = 2~ and 9S.7

percent for a = 1.5P. As the radius of the core a decreases,

the maXhIml decreases and the effect of tilts increases.
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Fig.4. HE,, mode launching efficiency inafiberwithn, = 1.50,
nz = 1.49, b = 25A+ a = 1,2A xo = 13.9P, excitedh aGaussian
beam with the axis displaced d versus Gaussian width ~.

Again, the efficiency for the vacuum was about 4 percent

less than for m = m. The results are insensitive to changes

in the pipe radius except for fibers with very small core

radius. A Born approximation was carried out for the

same cases, and the geometric mean of the two values

obtained for the modal coefficient was in very good agree-

ment for matched media, but for incidence from the

vacuum was about 4 percent higher than the corresponding

modal solution (Table I). Since the theoretical calculations

of Cook et al. [9] are also based on the Born approxima-

tion, the same degree of precision presumably also applies

to them.

For beam offsets (A = O), using the associated series

exp (D cos 0) = 10(D) +

we again obtain A. and B. given

but with

– J2(-ynr)I’(Dr) ]r d?-.

Fig. 4 shows the effect of offset misalignments and

(29)

(~o)

(30)

(31)

indi-
cates that they are more critical than tilts. Alignments
of cores of I or 2 microns in fiber joints is not an easy task,

especial] y in the field; also in the launching system there

is the possibility of some misalignment. In fibers close to

cutoff of the TMOI mode an offset equal to the core radius

reduces the efficiency by more than half. As the radius

of the core is decreased the effect decreases, as expected.

Also as u increases the effect becomes less important but

then the efficiency drops and the effect of tilts increases.

Born approximations for these cases can be found in [19].
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IV. THE FIBER BUTT JOINT WITH A GAP

The problem depicted in Fig. 5 is that of two identical

metallic coated fibers aligned on the same axis, but whose

ends are separated by the gap region O < z < ZOwhich

has a refractive index ns. ln region I, z <0, there is a

set of forward-moving incident modes with amplitudes

a~O,k=l,2, ”””, k, and backward-moving reflected modes

with coefficients a~fl). Region II, O < z < zO, is charac-

terized by a set of TE and TM circular waveguide modes

with forward-directed modal coefficients ati(2) and back-

ward-directed ones b~f2J; and in region III, z > ZII, a set of

transmitted hybrid modes ai(3J is excited.

If one takes the cross product ot the modal fields L and

e% with the equations for continuity at z = O of tangential

E and H, respectively, and then integrates over the cross

section, the result is

~ &@~ONh~ - N~~a. (1) = ~ a%@JN~m— ~ &@JN~”l
k=l .n=l n=l

(32)

~ &a~ON~~ + .V~~an”) = ~ an(2ji14~n + c b~’2)M~n,
k=l a=1 ~=1

~= 172, . . . (33)

where the cross-normalization factors N~~ and ill~n are

defined as in (5), (6), and where

.~mm= ( (em X &).iclf-Z. (34)
‘A

An exactly similar procedure applied at z = ZOyields

‘ae(2)Nmmlexp ( —,jb~’zo) — bfi~2)Nfi.’ exp (j/3~’zo)

= ~ a,(3JML” exp ( –j@L.zo) (35)
1=1

~n(2)~nn{ exp ( ‘,~~.’~o) + bn ‘z).~~~’ exp (.&’20)

= ~ a,@)Nn2 exp ( –.j13tzo) (36)
1=1

where ,8. is the propagation constant of the nth mode and

the primes refer to region II.

The reflected mode coefficients and those in region II

may be eliminated from the four sets of equations ob-

tained, leaving

{

m Um,nUZ,n exp [j(O.’ – /3z)zo] – Vn,.VZ,n exp [–j(@n’ + Bz)201
S at(3) ~

~Nn%t
1

= ~ &na%hONw, m = 1,2,3,. .0 (37)
1=1 ~=1 h=l
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a) a:2, V = 2.4143 b) a:15, V= 1.810

Fig. 6. —: Coupling efficiency for a gap of length z, in a fiber
with nl = 1..50, nz = 1.49, b = 25 A a = 1.5 p, ~o = 0.9 u.
0: Experimental results [8] for a fiber of 3.7-M diameter core,
nl = 1:6171, nz = 1.6038, at x = 0.6328 presented on the same
normahzed separation-core radii scale.

where U.,. = iV~m + M~n and V~,n = llf~n — N%m.

When there is only a single incident mode, the HEll,

all terms except the first one on the right hand side are

zero, and that one is 2a1°N11. Nume~ical solutions for

this case have been found by truncating the system of

equations to m ~ 40 for four different sizes of fiber with

ng = nj = 1.49, corresponding to a gap filled with nlatch-

ing oil, and m = 1 corresponding to an air gap. The

results are shown in Fig. 6, which also includes a compari-

son with the experimental results of Bisbee [81. Even

though his ratio a/A is somewhat different, the agreement

is good, as it was for his data on offsets as well; however,

it should be emphasized that, unlike the other problems

previously considered, no Born approximation solution

can be obtained for thk one, and the theoretical values

are the only ones available. It might also be noted that

the reason the curves are relatively insensitive to the value

of a/X is that the absolute transverse distribution of the

fields remains nearly the same even though more of it is

contained in the cladding at smaller a/L

The same technique could be applied to the case of

lateral displacement as well, but the lack of rotational

symmetry would make the calculations of the cross-

normalization factors much more complicated, requiring

numerical integration.

V. SUMMARY AND CONCLUSIONS

The effect of including a conducting boundary at ~“= b

was found to be insignificant as long as x = b/a > 4;

there was less than 0.3 percent difference between the

calculated launching efficiwzcies for pipes of S-P and Q$LL

radius. The type of coating used on the fiber seems to be

irrelevant.

The maximum transmission coefficient for excitation

by a normally incident uniform plane wave was 81 percent,

as compared with a value of 80 percent obtained by Snyder

[3] with a Born approxilnation. The corresponding values
for excitation by a Gaussian beam were 99.6 percent, as

compared with a value of 99.7 percent reported b y Marcuse

[4] when the beam is incident from a medium matched

to the cladding. In fact, if one takes the geometrj c mean

of the two possible Born approximation solutions, the

results are surprisingly close (within 0.2 percent ) to the

modal solution in all cases where the media were matched;

but if the medium of incidence is vacuum,, the Born ap-

proximation solution is about 4 percent higher (Table I).

The practical effect of tilts or offsets of the incident

beam is quite pronounced; an offset of’ one core radius

or a tilt of 4° reduces the coupling efficiency to less than

50 percent for the cases treated. However, a gap of 25

radii is required to produce a comparable effect when

matching oil is used or about 15 radii for an air gap, so

that in practice the gap is apt to be a much less serious

problem. The effect of a gap of given length is insensitive

to the core diameter when it is of the order of a wavelength

because the lateral extent of the fields does not change

very much. However, as Cook et al. [9] have pointed out,

a smaller core diameter makes the effect of offsets, as

measured in core diameters, less critical and of angular

displacements more critical when one finally approaches

the situation where the fields begin to spread laterally.

Although ~he gap problem was solved by rigorous

application of the boundary conditions to the modtil

expansions, in the tilt and offsd problems in fiber j unc-

tions COW@Ut21tkJOd symplicity prompted an approximai e

treatment, replacing the incident HEII mode in the fiber

by a Gaussian beam. This should, however, give excellent

results for the case of incidence from an actual fiber for

that value of u corresponding to maximum transmission

at normal incidence and no offsd,, since at this point the

two types of incident fields are w’ry nearly identical. That

choice of a k appropriate because the two fibers were

assumed idwltical, and coupling is maximum when the

incident wave is very nearly matched to the transmitted

mode. This s i.mp]ification is also borne out by the experi-

mental results of Cook et al. [9], who got good agreement
with their Bc,rn approximation calculations.

A related problem, that of the radiation into a uniform

medium fr(m] the termination of a fiber, has been treated,

yielding a transmission coefficient of 96 percent for radia-

tion into a vacuum and 100.0 percent for a matched

medium.

In conclusion, the more rigorous modal analysis has

shown that the Born approximatioli does give accurate

results in all cases treated using matched media, and

that, even though it requirm somewhat greater computa-

tional effort, the modal approach would be advantageous

in problems ~rhere serious mismatches of refractive index

occur or ~vhere the Born approximation is inapplicable, as

in the case of the gap.

APPENDIX

The set of functions em, h,,,, are the fields of the modes

of a dielectric rod of permittivity El and radius a in a

medium of’ lo~ver permittivity 6Z surrounded by a per-
fectly conducting pipe of radius b and cam be obtained

from the usual longitudinal formulation [1 S].
l’or the range of the propagation constant k~2 < ~2 <

kiz(kl,j’ = W2pOel,z), we obtain the surface-type modes,

whose existanlce is independent of the surrounding pipe

and which have fields 1ocalized to the vicinity of the core

with cutoff condition D = k~. Their longitudinal com-
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ponents are given by The nofisurface type modes are obtained in the range

I

Jfi(qr),
&~ ?&andthelongitudinalcw mponentsare givenby

r<a

/

Jn(mr),Kn(xw)l.(sr) –In~xw)Kn(:r) r<a

E,= g,(@) J.(zJ)
K.(xto)l.(to) –1.(XW)K.(W) ‘

Ez=gl(0) J.(u)
J~(a,r).V~(x31) –.~”~(a,r)J~(xv)

a<r<b (Ala) J~(v).Vn(xv) ‘.}T.(~)J. (xV) ‘
.

Hz= (q/p”) ’/’(kl)Plg2(dJ)J)

where
\

6 = 1 – e2/el = 1 – nz2/n12

g,(4,={;192(@)={_:;}
with n a normegative integer.

The eigenvalue equation is

with

V2 ~

Pl=—
‘U2W2m + ‘712&2

(A3) u = ala w = ata ~2—v2=v2

(A4) and the eigenvalue equation

(A5) F’ = (&’//{/) P,

(A6) ‘

(A7)

F2=g(–71+ (1 – 6)7?371)

~3= .Yn’(v)
Uivn ( u)

J.’(v] /&”.’ (V) – J.(xv) /1~.(xV)

(A8) 7’ = Jn(v)/Nn(v) – J.(xV)/f~. (XV)

(A9)

(A12b)

(A13)

(.414)

(A15)

(A16)

(A17)

(AIS)

(A19a)

(A19b)

Jn’ (U) K.’(w)

‘1 = d.(u) ‘2 = toK. (w)

~, = i.’(w) /Kn’(w) – In(xw) /K.(~w)

In(w) /K.(w) – ln(xw)/&(x1o)

~, = ].’(w) /Kn’(w) – ~.’ (xw)/Kn’ (xW)

in(w)/Kn(w) – in’(xW)/Kn’(Xw) ‘ ‘ ~ .7’cJ

f
(Ldkk’ –

P.” – %’ c
efiefig’e~) .fi cll

As b increases, these modes become the surface modes

The following surface integrals have been reduced by

(A1O) Yaghjian [11] to simple line integrals The index ~~?is used
for the modes of the fiber, and n refers to the modes of the

homogeneous cylindrical waveguide.

(Alla)

&I~’I =
!

(en X h.’) .2 da
A

(Allb)

of the open rod. I.n the limiting case x ~ cc :.% -+ 1, & -+ 1,

and (Al ), (A7) become the expressions for the open fiber +3
f

(fl.’~l.,’e~ + ~~e~.h~). ? dl.
[~]. Use of the ~symptotic expressions for the Bessel %’2 – pm2 .

functions yields for x>> 1 (~~())

–.–.l --@x –l+ex The cross-normalization coefhcient

$’- l–e, .$2‘---’
l+e~’

for w>> 1

N.. =
!

(en’ X h~) .2 da
gl -~ 1 + 2/x2= & = 1 — 2/x2~, for ~w <<1 A

and n z 1. is obtained from (A20) with ~Land m interchanged:
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(A21)

where the contour c includes both sides

faces, and

p.” = colqlen — bn’z

pmz = wzpo% — f?mz.

For a fiber with q in the core and q in

have

of all the inter-

(AJ2)

(A~:~)

the cladding, we

Mm” = jra ( 1 1—
2 — czlmt -yn )

(wpohmzhnt.’

‘Y. 2 — ff2m2

( 1 61’/62)
— j7ratie3 —

2 — ~1m2
)

2 — ~2m2
enz’em, ( a–)

I’. Y.

(A25 )

where

7.2 = w7.ll)E3 — /%’2

O!lmz = Wzpoq — Bmz

a2m2 = w2poez — /3m2.

(A26)

(A~7)

(A~~)

All field components have the angular dependence

removed and are evaluated ,at r = a, exeept e~~(a–),

which denotes the radial electric field of the core at 7“ = a.
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