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Abstract

One of the main difficulties using multi-point statistical (MPS) simulation based on annealing techniques or genetic
algorithms concerns the excessive amount of time and memory that must be spent in order to achieve convergence.
In this work we propose code optimizations and parallelization schemes over a genetic-based MPS code with the
aim of speeding up the execution time. The code optimizations involve the reduction of cache misses in the array
accesses, avoid branching instructions and increase the locality of the accessed data. The hybrid parallelization scheme
involves a fine-grain parallelization of loops using a shared-memory programming model (OpenMP) and a coarse-
grain distribution of load among several computational nodes using a distributed-memory programming model (MPI).
Convergence, execution time and speed-up results are presented using 2D training images of sizes 100×100×1 and
1000×1000×1 on a distributed-shared memory supercomputing facility.

Keywords: Geostatistics, Stochastic simulation, Multi-point statistics, Code optimization, Parallel computing,
Genetic algorithms

1. Multi-point statistics simulation1

Numerical modeling with geostatistical techniques aims at characterizing natural phenomena by summarizing and2

using the spatial correlation of collected data in order to measure the uncertainty at unsampled locations in space. As3

explained by Deutsch (2002), in simulation techniques, this spatial correlation is imposed into a model commonly con-4

structed on a regular lattice. The models must reproduce the statistical (histogram) and spatial distribution (variogram5

or other spatial statistics) and their quality is often judged in terms of the reproduction of geological features.6

Conventional techniques in geostatistics address the modeling using statistical measures of spatial correlation that7

quantify the expected dissimilarity (transition to a different category) between locations separated by a given vector8

distance, in reference to a given attribute, such as the facies, rock type, porosity, grade of an element of interest,9

among others. This is done using the variogram. Limitations of these techniques have been pointed out in that they10

only account for two locations at a time when defining the spatial structure (Krishnan and Journel (2003)). Much11

richer features can be captured by using multi-point statistics (MPS) that consider the simultaneous arrangement of12

the attribute of interest at several locations, providing the possibility to account for complex features, such as hierarchy13

between facies, delay effects, superposition or curvilinearity.14

MPS simulation aims at generating realizations that reproduce pattern statistics inferred from some training source,15

usually a training image. For example, in figure 1, left, we can see a training image based on sinuous channels with a16

simulated realization. These training images are used as a pattern database to generate simulations of the underlying17

image, as shown in figure 1, right. The simulations use those patterns with the aim that the training and simulated18

images share the same pattern histogram.19

There are several approaches to simulate accounting for MPS. Modifications of conventional methods to impose20

local directions of continuity using the variogram is a simple approach to impose some of the complex geological21
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Figure 1: Training image (left) and simulated realization (right)

features (Xu (1996); Zanon (2004)). Object based methods and methods inspired in the genetic rules and physics22

of the deposition of sediments in different environments also seek to overcome the limitations of conventional cat-23

egorical simulation techniques, with significant progress (Deutsch and Wang (1996); Tjelmeland (1996); Pyrcz and24

Strebelle (2008)). Presently, the most popular method is a sequential approach based on Bayes’ postulate to infer25

the conditional distribution from the frequencies of multi-point arrangements obtained from a training image. This26

method, originally proposed by Guardiano and Srivastava (1993), and later efficiently implemented by Strebelle and27

Journel (2000), is called single normal equation simulation (snesim) (see also Strebelle (2002)). This method has28

been the foundation for many variants such as simulating directly full patterns (Arpat and Caers (2007); Eskandari29

and Srinivasan (2007)) and using filters to approximate the patterns (Zhang et al. (2006)). The use of a Gibbs Sampling30

algorithm to account directly for patterns has also been proposed (Boisvert et al. (2007); Lyster and Deutsch (2008)).31

A sequential method using a fixed search pattern and a ‘unilateral path’ also provides good results (Daly (2005); Daly32

and Knudby (2007); Parra and Ortiz (2009)). Other approaches available consider the use of neural networks (Caers33

and Journel (1998); Caers and Ma (2002)), updating conditional distributions with multi-point statistics as auxiliary34

information (Ortiz (2003); Ortiz and Deutsch (2004); Ortiz and Emery (2005)) or secondary variable (Hong et al.35

(2008)). Recently, a couple of new approaches focused on patching patterns directly to reduce computing time and36

impose larger scale structures, have been presented (Rezaee et al. (2013); Faucher et al. (2013)). These methods have37

a significant potential for practical applications. Alternatively, the problem can be addressed as an optimization one,38

using simulated annealing (Deutsch (1992)) or genetic algorithms (Peredo and Ortiz (2012)). The genetic approach is39

still under development, but essentially follows the same stochastic strategy as the annealing scheme. This work fo-40

cuses on code optimizations and parallelization of a genetic-based sequential code that simulates categorical variables41

to reproduce multi-point statistics. However, many of the techniques and ideas proposed here can be applied to other42

codes implementing similar simulation algorithms.43

In section 2 we explain the basic ideas about genetic algorithms, parallel architectures and programming models.44

After that, the main bottlenecks of the genetic-based simulation are detailed in section 3. A brief explanation of the45

actual implementation is presented in section 4, together with the proposed code optimizations and parallelization46

schemes, in sections 5 and 6 respectively. Finally, in the last sections we include the results obtained and final47

conclusions.48

2. Genetic algorithms and Parallel computing49

Genetic algorithms (GA) were developed in the 1970s with the work of Holland (1975) and in subsequent decades50

with De Jong (1980) and Goldberg (1989). Initially used to find good feasible solutions for combinatorial optimization51

problems, today they are used in various industrial applications, and recent advances in parallel computing have52

allowed their development and continuing expansion.53

In the canonical approach of GA, typically there is an initial population of individuals, where each individual is54
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represented by a string of bits, as indivk = 000110101, and a fitness function f itness(indivk) which represents the55

performance of each individual. The fitness function, or objective function, is the objective that must be minimized56

through the generations over all the individuals. A termination criteria must be defined in order to achieve the desired57

level of decrement in the fitness function. The main steps and operations performed in a canonical GA can be viewed58

in algorithm 1. Selection and restart are operations performed over the entire population. Selection extracts the best59

individuals and restart modifies part or the entire population in order to jump from local optimal values. Crossover60

and mutation are operations performed over particular individuals of the population. Crossover mixes the bits of two61

individuals according to a predefined set of cut points and mutation modifies specific random bits from one individual.62

Other operators can be found in the mentioned literature.63

Algorithm 1 Canonical genetic algorithm
1: INPUT: N individuals (population)
2: Evaluate a fitness function f itness in each individual
3: while termination criteria is not achieved do
4: {Breeding a new generation}
5: Sort the individuals by their fitness function value
6: if no improvement is measured in the population then
7: Restart: select some individuals and restart their bits
8: Sort the individuals by their fitness function value
9: end if

10: Selection: select the best individuals based on their fitness function
11: Crossover: breed new individuals crossing bits of individuals from the selection
12: Mutation: breed new individuals mutating some bits of individuals from the selection
13: Replace old individuals with new ones
14: Evaluate a fitness function f itness in each individual
15: end while
16: OUTPUT: best individual in the population

In parallel computing architectures, as described by Culler et al. (1998), the two main models are distributed-64

memory and shared-memory, with their respective best known programming models MPI (Snir et al., 1998) and65

OpenMP (Chandra et al., 2001). In the first model, each processor has its own private memory and the data inter-66

changed between processors travels through a network in chunks of messages. The speed of this communication67

depends on the speed of the interconnection network. In the second model, each processor has access to a common68

memory through data coherence and data consistency methods.69

In order to use efficiently all the resources of parallel architectures, we need to explore algorithms that can exploit70

the parallelism and be able to adapt to future trends.71

Genetic algorithms receive the classification of embarrassingly parallel technique to solve problems. This clas-72

sification comes from the fact that separating the workload of the problem into several parallel tasks is trivial. This73

property motivates its investigation and application in the field of geostatistics, and particularly in MPS simulation.74

3. Bottlenecks of genetic-based MPS simulation75

We can see in algorithm 1 that the evaluation of the function f itness is performed #generations × #individuals,76

and strong evidence indicates that this function is the most time consuming routine (a profiling using the gprof tool,77

Graham et al. (2004), tells us that for sufficiently large training images, more than 96% of the execution time is spent78

in this routine). Its calculation is based on an object called template. A template T consists in a set of coordinates that79

defines cell positions. Another interpretation is that a template is basically a pattern of memory accesses. Patterns(T )80

represents all the possible patterns that can be generated from a template T given k possible categories. If a template81

is defined as T = {(1,1), (2,1), (1,2), (2,2)} (4 nodes) and the number of categories is k = 2, the pattern database82

Patterns(T ) will have 24 elements. Complex geometries can be used to define the template and its corresponding83

pattern database, for example, in figure 2 we have a template defined as T = { (1,1), (5,1), (9,1), (4,4), (5,4), (6,4),84
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(1,5), (4,5), (5,5), (6,5), (9,5), (4,6), (5,6), (6,6), (1,9), (5,9), (9,9) }. This template is disconnected and its memory-85

access pattern is very irregular. This irregularity induces a slowdown in the overall performance when we need to86

traverse all its nodes. In contrast, the template of figure 3 has a regular memory-access pattern, if we access to the87

first element T (1, 1), additionally the CPU will bring to the cache memory contiguous elements for free (each CPU88

has its own cache line size, for example 64 bytes, which means that each cache line can store 16 consecutive integers89

of 4 bytes). In Fortran, the CPU will bring a column line, in C/C++, a row line (see Hennessy and Patterson (1990)90

for more details about the CPU memory hierarchy).

Figure 2: Template of 17 nodes with a complex geometry (irregular memory accesses)

Figure 3: Template of 18 nodes with a simple geometry (regular memory accesses)

91

Given the pattern database Pattern(T ), two main tasks must be performed:92

• First we have to count the frequency of appearances of each pattern in the training image and store them in an93

appropriate structure.94

• After that, for each individual in the population, and in each generation, we have to count the frequency of95

appearances of those patterns and calculate the following equation (other possible equations can be viewed in96

Peredo and Ortiz (2011)):97

f itness(indivk) =
∑

p∈Patterns(T )

Op
(
f reqT I(p) − f reqindivk (p)

)2 (1)
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with Op a weight factor for each pattern, f reqT I(p) and f reqindivk (p) the number of appearances of pattern p in98

a training image and individual indivk respectively.99

In both tasks, we have to handle with patterns located at boundary nodes. A buffer zone of halo nodes, with size100

equal to h = max{width(T ), height(T )}, is added at the boundaries of the training image and realizations. For the101

training image, an extension of the original image is added keeping the geological continuity and statistical properties102

(alternative, for sufficiently large images, a reduction of size h in each side of the images can be applied, keeping the103

removed space as buffer zone). For each individual in the population, the buffer zone is filled with random categorical104

values between 0 and k − 1.105

For the first task, following ideas from Straubhaar et al. (2011), we store the frequencies of the patterns that appear106

in the training image in a list L. In this list each element is a pair (d, f ) where d = (s1, . . . , s|T |) is the pattern (data107

event), stored as an array of integers of length |T | with si ∈ {0, . . . , k − 1} (k categories), and f is the frequency of108

appearance, stored as an integer. With this structures defined, the algorithm used in this task corresponds to algorithm109

2 using an empty frequency list L.110

For the second task, the accounting process is performed using algorithm 2. In this algorithm, we compare the

Algorithm 2 Fitness function calculation: f itness(indivk)
1: INPUT: individual indivk, training image frequency list L, template T
2: sum← 0
3: Laux ← L

4: for each node (i, j) from indivk do
5: Extract pattern located in node (i, j) using template T and store it in an array localPattern of length |T |
6: Search localPattern in the list Laux

7: if localPattern exists in Laux then
8: Laux[localPattern]← Laux[localPattern] − 1
9: end if

10: end for
11: for each pattern p in Laux do
12: sum← sum +Laux[p] ∗ Laux[p]
13: end for
14: OUTPUT: sum

111

histograms of the individual and the training image. A considerable bottle-neck for this calculation is the access to112

the list L which stores the training image histogram, because for each extracted pattern from an individual, a search113

must be performed over it in order to see if this pattern exists in the histogram of the training image or not. A pro-114

posed solution to this problem is to store the elements (d, f ) of the list using a lexicographical order in the patterns d.115

This order allows to search the existence of a pattern in the list using a binary search with an average and worst case116

performance of order O(log2 n) comparisons, with n the length of L.117

118

In the next section we will explain the implementation issues for this two tasks using code examples in Fortran 90119

as programming language, in order to see the data structures that are used and the proposed optimizations.120

4. Implementation121

4.1. Storage of pattern frequencies from training image122

The routines involved in the storage and management of the list L are encapsulated in a Fortran module called123

patternOperations. This module consists of a set of global variables and routines performed over arrays of inte-124

gers. Part of its code structure is depicted in code 1.125

126
module patternOperations127

implicit none128

integer (4) :: npatterns129
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type patternType130

integer (4), pointer :: pattern (:)131

integer (4) :: frequency132

end type patternType133

type(patternType), pointer :: patternList (:)134

135

contains136

subroutine patternInsertion (...)137

subroutine patternSearch (...)138

subroutine patternComparison (...)139

subroutine printPatternList (...)140

end module patternOperations141
142143

Code 1: Module patternOperations.f90

Initially, when we store the pattern histogram of the training image, we use the global array patternList to144

keep track of the different patterns patternList(i)%pattern(1:tem nodes) with their respective frequencies145

patternList(i)%frequency. A first scan to the training image must be performed in order to fill patternList.146

Using the routine patternInsertion, each time a new pattern is found, the memory space used by patternList is147

re-allocated (adding one new element with frequency equal to 1) and all the elements previously inserted together with148

the new pattern are re-ordered according to a lexicographical order. If an existing pattern is found, the frequencies are149

updated. The lexicographical order is as follows: given two arrays of integers of the same length A = (a1, . . . , an) and150

B = (b1, . . . , bn) we will say that A is greater than B if and only if ∃k ∈ {1, . . . , n} such that ak > bk and ∀i satisfying151

i < k, ai = bi holds. For example, given this arrays A = (0, 0, 0, 1, 0, 0) and B = (0, 0, 0, 0, 0, 0), this order will indicate152

that A is greater than B.153

After the filling step, patternList will be scanned each time we call the routine patternSearch. This routine154

gives the index position in the global array patternList where the searched pattern is located, if there is a match. If155

there is no match, it returns -1. This routine is implemented through a simple iterative binary search, which uses the156

routine patternComparison to compare patterns.157

The routine patternComparison basically traverses each pair of pattern’s nodes until they have different values158

and keeps track of which pattern has the greater one, returning 0 if they are equal, 1 if the first array is larger than the159

second one, and -1 otherwise. The parameters of this routine are two arrays with the pattern values and the length of160

those arrays (must be equal on both).161

As we explained before patternSearch and patternComparison are intensively used by the routine that cal-162

culates the fitness function. In the worst case, if the training image pattern list L has size n and the template has t163

nodes, a search in the list will perform t ×O(log2 n) comparisons. For very large templates, this pattern search is very164

time consuming and different data structures must be used in order to get a reasonable execution time in the search165

task.166

4.2. Calculate f itness(indivk)167

Following algorithm 2, which explains all the steps involved in the calculation of the fitness function, in this168

subsection we explain its associated routine presented in code 2. In this routine, the input indivk is a 2D integer169

array with an image loaded (an individual in the genetic algorithm terminology). The inputs tem nodes, tem rows,170

tem cols, tem coord rows and tem coord cols correspond to the specific template that we are using. For exam-171

ple, in figure 2, tem nodes = 17, tem rows = tem cols = 9 and tem coord rows and tem coord cols are arrays172

that store respectively the row and column coordinates of the nodes in template T .173

174
subroutine fitnessFunction(indivk ,rows ,cols ,175

tem_rows , tem_cols , tem_nodes ,176

tem_coord_rows ,tem_coord_cols ,value)177

use patternOperations !! contains global variables npatterns and patternList178

179

integer (4), intent(in) :: indivk(rows ,cols)180

integer (4), intent(in) :: rows , cols181

integer (4), intent(in) :: tem_nodes182

integer (4), intent(in) :: tem_rows , tem_cols183

integer (4), intent(in) :: tem_coord_rows(tem_nodes)184
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integer (4), intent(in) :: tem_coord_cols(tem_nodes)185

integer (4), intent(out):: value186

integer (4) :: ii,irow ,icol ,inode ,pos187

integer (4) :: freq_aux(npatterns)188

integer (4) :: localPattern(tem_nodes)189

190

do ii=1, npatterns191

freq_aux(ii)=patternList(ii)%frequency192

end do193

value=0194

do icol = 0,cols -tem_cols195

do irow = 0,rows -tem_rows196

do inode = 1, tem_nodes197

localPattern(inode)=indivk(198

irow+tem_coord_rows(inode),199

icol+tem_coord_cols(inode)200

)201

end do202

call patternSearch(tem_nodes ,localPattern ,pos)203

if(pos/=-1) then204

freq_aux(pos)=freq_aux(pos) -1205

end if206

end do207

end do208

do ii=1, npatterns209

value=value+freq_aux(ii)*freq_aux(ii)210

end do211

end subroutine fitnessFunction212
213214

Code 2: Subroutine fitnessFunction

We can see that in this implementation, the values of Op, the weight factors described in equation (1), are equal to 0215

if f reqT I(p) = 0 and equal to 1 otherwise (we only take into account patterns that are present in the training image).216

5. Code optimization217

We have applied several code optimization techniques to the previous described routines, in order to better exploit218

the CPU resources of the sequential execution. These optimizations can be grouped as: increase data locality, improve219

stack memory usage, code specialization of fitness routine, branch and load reductions.220

5.1. Increasing data locality of the main data structures221

The routines patternSearch and patternComparison are based on the global data structure patternList.222

The first modification consists in adapting this structure to the column-major order of the Fortran language in order to223

exploit the data and temporal locality.224

The column-major order in Fortran is related to the way in which the CPU accesses the data stored in memory.225

In this order, the matrices are accessed using the address row + (col − 1) ∗ numrows with numrows fixed. The cache226

lines that are moved from the main memory to the cache memory consist in contiguous memory addresses of fixed227

size. Leaving col fixed and traversing first all values of row, we can minimize the accesses to non-contiguous memory228

addresses (Hennessy and Patterson (1990)). Modifying the data structures in order to increase this kind of accesses229

reduces the cache data misses, reducing the overall execution time.230

The new structure is simply a 2D array in which the row size is the number of nodes in the template, tem nodes,231

and the column size is the number of patterns found in the training image.232

233
module patternOperations234

implicit none235

integer (4) :: npatterns236

integer (4), pointer :: patternList (:,:) !! (tem_nodes) X (patterns in training image)237

integer (4), pointer :: frequency (:) !! (patterns in training image)238

239
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contains240

subroutine patternInsertion (...)241

subroutine patternComparison (...)242

subroutine patternSearch (...)243

subroutine printPatternList (...)244

end module patternOperations245
246247

Code 3: Module patternOperations.f90 with re-designed data structures

5.2. Using the stack memory to store local arrays248

In Fortran, using the Intel’s compiler ifort, we can use the option -auto, which causes all local, non-SAVED249

variables to be allocated on the run-time stack, including fixed-length arrays. The default is -auto-scalar, saving250

all the scalar variables in the run-time stack. The main advantage is that the access time to the run-time stack is251

faster than the time access to the run-time heap (which stores the dynamically allocated memory), which decreases252

the execution time (Intel Corporation (2006)). A negative side of this option is related with the stack size. The stack253

has a maximum size fixed before the execution and if that size is exceeded, a stack overflow error can be obtained.254

Also, if we use several threads with OpenMP, each thread has its own stack memory space, so the amount of global255

stack space is increased proportionally to the number of threads. In order to avoid a stack overflow, we can calculate256

exactly how much data we need to allocate before compile time and see if it can fit in the stack. If it is too big, we257

can add more space to the stack, for example using the ulimit command in Linux operating systems or setting the258

environment variable OMP STACK SIZE with an appropriate value.259

5.3. Specialization of fitness function to an input template260

Given an input template, we can specialize our fitness function routine in order to exploit the data accesses pro-261

vided by the template. For example, in the fitness function of code 2 using the template of figure 2, the variables262

icol+1,. . . ,icol+9 are calculated several times, but in reality we only need to calculate them one time per row-263

iteration and keep their values stored in an auxiliary variable. This allows for avoiding the accesses to the coordinate264

arrays tem coord rows and tem coord cols (see code 4) and keeping the cache memory clean for other data.265

If we denote by t = tem nodes, n = cols − tem cols and m = rows − tem rows, the total number of memory266

accesses performed by the fitness routine (only taking into account the arrays tem coord rows, tem coord cols267

and indivk) is 3 × t × n × m. Using this optimization the total number of memory accesses for the same arrays268

is t × n × m with a reduction of 3x less memory accesses than the original scenario. In the modified code depicted269

in 4, using the template described in figure 2, loop unrolling and common subexpression eliminations are included270

in order to eliminate the accesses of the arrays tem coord rows and tem coord cols and re-utilize the values of271

icol+1,. . . ,icol+9.272

273
subroutine fitnessFunction (...)274

...275

integer (4)::rowplus1 ,rowplus4 ,rowplus5 ,rowplus6 ,rowplus9276

integer (4)::colplus1 ,colplus4 ,colplus5 ,colplus6 ,colplus9277

...278

do icol = 0,cols -tem_cols279

colplus1=icol+1280

colplus4=icol+4281

colplus5=icol+5282

colplus6=icol+6283

colplus9=icol+9284

do irow = 0,rows -tem_rows285

rowplus1=irow+1286

rowplus4=irow+4287

rowplus5=irow+5288

rowplus6=irow+6289

rowplus9=irow+9290

localPattern (1)=indivk(rowplus1 ,colplus1)291

localPattern (2)=indivk(rowplus5 ,colplus1)292

localPattern (3)=indivk(rowplus9 ,colplus1)293
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...294

localPattern (15)=indivk(rowplus1 ,colplus9)295

localPattern (16)=indivk(rowplus5 ,colplus9)296

localPattern (17)=indivk(rowplus9 ,colplus9)297

call patternSearch(tem_nodes ,localPattern ,pos)298

if(pos/=-1) then299

freq_aux(pos)=freq_aux(pos) -1300

end if301

end do302

end do303

...304

end subroutine fitnessFunction305
306307

Code 4: Subroutine fitnessFunction specialized to the input template of figure 2

5.4. Branch reduction308

The routine patternComparison, described in code 5, which is the most intensive in terms of execution time,309

can be re-designed in order to reduce the number of branch instructions (control flow, for example if-then-else or310

while loops) executed inside a loop.311

312
subroutine patternComparison(length ,onePattern1 ,onePattern2 ,value)313

!314

! Compare two patterns.315

! If value = 0, both patterns are equals316

! If value = 1, the first pattern is bigger317

! If value = -1, the second pattern is bigger318

!319

integer (4), intent(in) :: length320

integer (4), intent(in) :: onePattern1(length)321

integer (4), intent(in) :: onePattern2(length)322

integer (4), intent(out) :: value323

integer (4) :: ii324

325

value = 0326

ii = 0327

do while ( value == 0 .and. ii < length )328

ii = ii + 1329

if ( onePattern1(ii) > onePattern2(ii) ) then330

value = 1331

elseif ( onePattern1(ii) < onePattern2(ii) ) then332

value = -1333

end if334

end do335

end subroutine patternComparison336
337338

Code 5: Subroutine patternComparison

When a branch instruction is processed by the CPU, some cycles may be lost due to an incorrect branch prediction339

or an expensive condition evaluation (Hennessy and Patterson (1990)). For that reason, we know that reducing the340

number of branches and relaxing their boolean conditions are good practices in order to reduce the overall execution341

time. A first version of the modified routine can be viewed in code 6.342

343
subroutine patternComparison(length ,onePattern1 ,onePattern2 ,value)344

! Compare two patterns.345

! If value = 0, both patterns are equals346

! If value = 1, the first pattern is bigger347

! If value = 2, the second pattern is bigger348

integer (4), intent(in) :: length349

integer (4), intent(in) :: onePattern1(length)350

integer (4), intent(in) :: onePattern2(length)351

integer (4), intent(out) :: value352
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integer (4) :: ii353

value = 0354

ii = 0355

do while ( value == 0 .and. ii <length )356

ii = ii + 1357

value=onePattern1(ii) - onePattern2(ii)358

end do359

end subroutine patternComparison360
361362

Code 6: First re-design of subroutine patternComparison with reduced number of branch instructions

In this re-design, almost all the branch instructions were eliminated from the original routine. Only the ones363

injected in the boolean conditions of the while loop remain. One possible way to get rid of the evaluation of those364

conditions is to unroll the loop and use explicit evaluations of each statement incrementing the value of the variable365

ii. Using this technique we are avoiding conditional evaluations and reducing the number of branch instructions366

performed by the CPU. The re-designed routine can be viewed in code 7. This modified routine is specialized and367

depends on the number of nodes of the template. In this case we are using the template described in figure 2.368

369
subroutine patternComparison(length ,onePattern1 ,370

onePattern2 ,value)371

integer (4), intent(in) :: length372

integer (4), intent(in) :: onePattern1(length)373

integer (4), intent(in) :: onePattern2(length)374

375

value=onePattern1 (1) - onePattern2 (1)376

if(value /=0) return377

value=onePattern1 (2) - onePattern2 (2)378

if(value /=0) return379

...380

value=onePattern1 (16) - onePattern2 (16)381

if(value /=0) return382

value=onePattern1 (17) - onePattern2 (17)383

if(value /=0) return384

end subroutine patternComparison385
386387

Code 7: Second re-design of subroutine patternComparison with reduced number of branch instructions and minimal boolean conditionals

5.5. Load reduction388

In the previous optimized routine patternComparison (code 7) the value of the array onePattern2 is invariant389

through the entire execution of the caller routine patternSearch, implemented as depicted in code 8.390

391
subroutine patternSearch(length ,onePattern ,pos)392

!393

! Search a pattern in the pattern394

! database of training image395

! If pos!=-1, found396

! If pos==-1, not found397

!398

use patternOperations !! contains global variables npatterns and patternList399

integer (4), intent(in) :: length400

integer (4), intent(in) :: onePattern(length)401

integer (4), intent(out) :: pos402

integer (4) :: isFound ,minn ,maxx403

integer (4) :: value ,ii ,jj404

405

minn = 1406

maxx = npatterns407

isFound =0408

do while ( minn <= maxx .and. isFound == 0 )409

pos = int(real(minn+maxx)* 0.5)410

call patternComparison(411
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length ,412

patternList(pos)%pattern ,413

onePattern ,414

value415

)416

if (value == 0) then417

isFound = 1418

elseif (value == 1) then419

maxx = pos - 1420

else421

minn = pos + 1422

end if423

end do424

if (isFound == 0) pos = -1425

end subroutine patternSearch426
427428

Code 8: Subroutine patternSearch

Its values correspond to the pattern that is going to be searched in the pattern database stored in patternList.429

Storing each of the array cells in register variables (up to the maximum number of integer registers available in the430

CPU) is an alternative that reduces the number of loads performed by the CPU. The variables op1 to op17 store the431

values of onePattern(1) to onePattern(17), using the template of figure 2. Using a pseudo-inlined version of432

the routine patternComparison together with the registers op1 to op17 allows us to reduce by a half the number433

of loads executed and also to reduce completely the number of routine calls to patternComparison. The code 9434

depicts this modifications.435

436
subroutine patternSearch(length ,onePattern ,pos)437

438

use patternOperations !! contains global variables npatterns and patternList439

440

integer (4), intent(in) :: length441

integer (4), intent(in) :: onePattern(length)442

integer (4), intent(out) :: pos443

integer (4) :: isFound444

integer (4) :: minn ,maxx ,value445

integer (4) :: ii,jj ,pos446

integer (4) :: op1 ,op2 ,op3 ,op4447

...448

integer (4) :: op15 ,op16 ,op17449

450

op1=onePattern (1)451

...452

op17=onePattern (17)453

minn = 1454

maxx = npatterns455

pos = -1456

do while ( minn <= maxx )457

pos = int(real(minn+maxx)* 0.5)458

do459

value=patternList (1,pos) - op1460

if(value /=0) exit461

...462

value=patternList (17,pos) - op17463

if(value /=0) exit464

exit !! value ==0465

end do466

if (value == 0) then467

minn = maxx + 1468

elseif (value == 1) then469

maxx = pos - 1470

else471

minn = pos + 1472

end if473
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end do474

end subroutine patternSearch475
476477

Code 9: Re-design of subroutine patternSearch with reduced number of loads

6. Parallelization478

6.1. Fine grained parallelization with OpenMP479

A parallelization scheme using OpenMP over a genetic-based MPS code was described in Peredo and Ortiz (2012).480

In that work, the proposed parallelization was based on parallel do-loops over the fitness function routine. The481

parallelization presented in this work is essentially the same, based on parallel do-loops, but taking in consideration482

the previously described code optimizations.483

484
subroutine fitnessFunction (...)485

use patternOperations486

...487

idthread=omp_get_thread_num ()+1488

numthreads=omp_get_num_threads ()489

...490

do ii=1, npatterns491

freq_aux(ii)=frequency(ii) !! global492

freq_aux_by_id(ii ,idthread)=0 !! local493

end do494

value=0495

496

!$OMP PARALLEL PRIVATE( localPattern ,pos ,icol ,irow , &497

!$OMP colplus1 ,colplus4 ,colplus5 ,colplus6 ,colplus9 , &498

!$OMP rowplus1 ,rowplus4 ,rowplus5 ,rowplus6 ,rowplus9 , &499

!$OMP freq_aux_by_id )500

!$OMP DO501

do icol = 0,cols -tem_cols502

colplus1=icol+1503

colplus4=icol+4504

colplus5=icol+5505

colplus6=icol+6506

colplus9=icol+9507

do irow = 0,rows -tem_rows508

localPattern (1)=indivk(rowplus1 ,colplus1)509

...510

localPattern (17)=indivk(rowplus9 ,colplus9)511

call patternSearch(tem_nodes ,localPattern ,pos)512

if(pos/=-1) then513

freq_aux_by_id(pos ,idthread)=freq_aux_by_id(pos ,idthread) + 1514

end if515

end do516

end do517

!$OMP END DO518

!$OMP END PARALLEL519

520

do jj=1, numthreads521

do ii=1, npatterns522

freq_aux(ii)=freq_aux(ii)-freq_aux_by_id(ii,jj)523

end do524

end do525

526

do ii=1, npatterns527

value=value+freq_aux(ii)*freq_aux(ii)528

end do529

end subroutine fitnessFunction530
531532

Code 10: Parallelization of specialized subroutine fitnessFunction with OpenMP
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The main difference with the sequential code 2, besides the code optimizations, is the utilization of a local array533

freq aux by id which stores the frequencies of the patterns calculated locally by all threads. After each thread534

finishes their corresponding loops (an implicit wait is placed at the end of the loop for thread synchronization) all535

those frequencies are gathered into the global array freq aux and this array is used to calculate the final value of the536

fitness function.537

Several schedules (static, dynamic and guided with different chunk sizes) were tested but none of them was538

considerably faster than the others, so we choose to stay using the static schedule in all of our tests. No profit was539

obtained after tuning the chunk size, because no false sharing (a review of this topic can be found in Culler et al.540

(1998)) was introduced in the calculations since no writing is done in the matrix indivk. The default value of chunk541

size was used in the execution of the tests.542

6.2. Coarse grained parallelization with MPI+OpenMP543

If the initial population is distributed in several processes, the amount of work that each process does decreases544

with a reduction in the execution time. Following ideas from Cantú-Paz (1998), we implement an island-based545

parallelization scheme in which each process waits for the best individuals calculated by the others (other islands),546

and asynchronously each process sends to everybody the best individual calculated by itself. In this way, all processes547

share the same best individuals and each one can combine them in order to breed a new generation. The steps are548

depicted in algorithm 3. Using this distribution of load, each process can use several threads with OpenMP as in the549

previous subsection and the code optimizations explained in the previous section. The result of this integration is a550

hybrid distributed-shared memory parallelization based on the MPI and OpenMP programming models.551

Algorithm 3 Parallel canonical genetic algorithm (based on island model)

1: INPUT: P processes, N
P individuals per process (population)

2: for each process p do
3: Evaluate a fitness function f itness in each individual
4: while termination criteria is not achieved do
5: {Breed a new generation}
6: Sort the individuals by their fitness function value
7: if no improvement is measured in the local population then
8: Restart: select some individuals and restart their bits
9: Sort the individuals by their fitness function value

10: end if
11: Selection: select the best individuals based on its fitness functions
12: Crossover: breed new individuals crossing bits of individuals from the selection
13: Mutation: breed new individuals mutating some bits of individuals from the selection
14: Replace old individuals by new ones
15: Send (asynchronously) the best individual to the other processes
16: Receive (asynchronously) the best individuals from other processes and copy them in the population (using

the memory space of the worst individuals)
17: Evaluate a fitness function f itness in each individual
18: end while
19: end for
20: OUTPUT: best individual in population of process master.

The only drawback of this parallel implementation is the reduction of the population size in each island. Each552

process will have a population of N
P individuals, and if N is not sufficiently large, local minimum will be achieved553

earlier in the convergence process, restricting the search for better solutions. A solution to this problem is to set large554

population sizes according to the number of processes involved in the executions and the size of the search space,555

in our case, the number of template nodes and training image nodes. Several tests must be done in order to get a556

good estimation of the optimal population size. In this work, however, our focus was to get reasonable values of557

performance and convergence, leaving this topic for future research.558
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The key part of the parallel strategy is the communication between the processes, which is equivalent to an all-to-559

all broadcast of the best individuals stored in each island. This communication can be implemented with MPI using560

asynchronous MPI Isend/MPI Irecv/MPI Wait or with the intrinsic routine MPI Allgather.561

A performance analysis tool called Paraver, described in Labarta et al. (1995), was used to generate trace views562

associated to an execution of the proposed implementation using 16 processes with 1 and 12 threads each. In these563

traces we can see the different states of execution described in algorithm 3. In the X-axis we have the execution time564

in microseconds and in the Y-axis we have the states of processes and threads. In figure 4 we can see the overall565

execution time with both processors sets using the same time scale.566

Figure 4: Execution trace (using the same time scale) with two processor sets, 16×1 (top) and 16×12 (bottom) processes×threads, using a training
image of size 1000×1000 running 10 generations of the algorithm 3

7. Results567

7.1. Timing568

In order to study the effectiveness of the optimizations and parallelizations, we use a test routine which loads two569

2D images, using one as training image and the other one as individual. After that, it calculates the fitness function of570

the individual using the previous routines. All measurements are average of 100 executions of this test routine. Two571

images sizes were used, 100 × 100 and 1000 × 1000. They are shown in figure 5. Additionally, full iterations were572

measured running 30 generations of the genetic algorithm.573

Figure 5: Training images of size 100×100 (left) and 1000×1000 (right)

The code optimizations were tested incrementally: if an optimization X reduces the execution time, all the subse-574

quent optimizations are calculated over the baseline time using the optimization X. The code compilation was done575

using ifort (Intel Fortran Compiler) version 12.0.4 (20110427) (Intel Corporation (2011)), without any added op-576

tions or flags. The default level of compiler optimization is -O2. The tests were executed in a cluster of compute nodes577
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running Linux operating system where every node has two processors Intel Xeon E5649 6-Core (12 CPUs per node)578

at 2.53 GHz with 24 GB of RAM memory, 12MB of cache memory and 250 GB local disk storage. The execution579

times and speed-up values obtained is detailed in tables 1 to 5.580

100×100 1000×1000
Optimization Time (seconds) Speed up Time (seconds) Speed up

Baseline 0.00319 1 0.402347 1
Increase data locality 0.00213 1.49x 0.26368 1.53x
Use Stack memory 0.00208 1.53x 0.257903 1.56x

Specialization of fitness 0.00181 1.76x 0.243201 1.65x
Branch reduction 0.00160 1.99x 0.222511 1.80x
Load reduction 0.00157 2.03x 0.214222 1.87x

Table 1: Code optimization: fitness function calculation of a 100×100 and 1000×1000 images using the template in figure 2

581

100×100 1000×1000
Threads Time (seconds) Speed up Time (seconds) Speed up

1 0.003190 1x 0.402347 1x
2 0.001800 1.77x 0.186401 2.15x
4 0.031770 0.10x 0.094410 4.26x
6 0.020684 0.15x 0.065002 6.18x
8 0.027191 0.11x 0.055411 7.26x

10 0.046754 0.06x 0.049403 8.14x
12 0.027156 0.11x 0.037000 10.87x

Table 2: Fine-grained parallelization without code-optimizations: fitness function calculation of a 100×100 and 1000×1000 images using the
template in figure 2

582

100×100 1000×1000
Threads Time (seconds) Speed up Time (seconds) Speed up

1 0.003190 1x 0.402347 1x
1+code-opt 0.001573 2.03x 0.222202 1.80x
2+code-opt 0.002028 1.57x 0.109205 3.68x
4+code-opt 0.012321 0.25x 0.056436 7.12x
6+code-opt 0.015411 0.20x 0.041220 9.76x
8+code-opt 0.027145 0.11x 0.036421 11.04x

10+code-opt 0.016694 0.19x 0.030886 13.02x
12+code-opt 0.017766 0.17x 0.023531 17.09x

Table 3: Fine-grained parallelization with code-optimizations: fitness function calculation of a 100×100 and 1000×1000 images using the template
in figure 2

583

584

585

Based on the results from table 1, the code optimization accelerates considerably the sequential execution of the586

fitness function calculation. A speedup of 2.03x and 1.87x was obtained for images of 100×100 and 1000×1000587

respectively. The best results were obtained after re-designing the data structures that handle the pattern list, allowing588

it to reduce the execution time by improving the locality of the memory accesses.589
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100×100 1000×1000
Processes×Threads Time (seconds) Speed up Processes×Threads Time (seconds) Speed up

1×1 3.466 1x 1×1 312.133 1x
1×2 1.852 1.87x 1×12 55.62 5.61x
2×2 0.934 3.71x 2×12 27.53 11.33x
4×2 0.556 6.23x 4×12 14.03 22.24x
8×2 0.295 11.74x 8×12 7.26 42.99x

16×2 0.213 16.27x 16×12 4.02 77.64x

Table 4: Coarse-grained parallelization without code optimizations: average generation step (30 generations) of the genetic algorithm using a
population of 1000 individuals, each one a 100×100 and 1000×1000 images respectively, using the template in figure 2

100×100 1000×1000
Processes×Threads Time (seconds) Speed up Processes×Threads Time (seconds) Speed up

1×1 3.466 1x 1×1 312.133 1x
1×1+code-opt 2.032 1.70x 1×12+code-opt 42.911 7.10x
2×1+code-opt 1.027 3.37x 2×12+code-opt 22.102 14.12x
4×1+code-opt 0.561 6.17x 4×12+code-opt 11.354 27.49x
8×1+code-opt 0.310 11.18x 8×12+code-opt 5.916 52.76x
16×1+code-opt 0.221 15.68x 16×12+code-opt 3.085 101.17x

Table 5: Coarse-grained parallelization with code optimizations: average generation step (30 generations) of the genetic algorithm using a popula-
tion of 1000 individuals, each one a 100×100 and 1000×1000 images respectively, using the template in figure 2

According to the results from tables 2 and 3, the fine-grain parallelization allows to accelerate the execution590

considerably only when the size of the training image and realizations are large, in our case a size of 1000×1000591

reaching a speedup of 17.09x with 12 threads in the best case. With a size of 100×100 no profit from the parallelization592

was observed (except in the non-optimized code with 2 threads), due to the small amount of work that each thread593

performs compared with the overhead introduced by thread management. The best speedup result, 2.03x, was obtained594

using the optimized code with only one thread.595

The coarse-grain parallelization accelerates the execution proportionally to the number of processes involved in596

it. This feature is obtained after distributing the workload evenly among the processes. In our case, the workload is597

represented by the population, which is divided among the processes. According to tables 4 and 5, the best results598

achieved in terms of speedup were obtained using the hybrid parallelization scheme with optimized code, MPI and599

OpenMP on large training and realization images of size 1000×1000. The thread selection policy used to defined how600

many threads will run in each test was based in the best results obtained in the corresponding fine-grain tests from601

tables 2 and 3, namely, 2 and 12 threads for small and large images respectively, using non-optimized code, and 1 and602

12 threads for small and large images respectively, using optimized-code.603

7.2. Convergence604

In order to test the convergence of the method using the parallel optimized code, we choose a fixed set of param-605

eters for the genetic algorithm and with those parameters we observe the behaviour of the fitness function and the606

realization obtained, starting from a randomly generated population of individuals. Those parameters are:607

• population size: 640 individuals608

• mutation rate: described in the next paragraph609

• crossover percentage: 50%, corresponding to the number of individuals selected to perform a crossover with610

other individual611

• restart percentage: 10%, corresponding to the percentage of individuals that will be restarted, in each restart612

step613

• number of cut-points: 10%, corresponding to the number of cut-points in the crossover operation614

• number of mutation nodes: described in the next paragraph615
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In order to accelerate the convergence, a multi-point mutation strategy was implemented. In this strategy, a616

random node and a random category were selected (in our tests, we have only 2 categories). Using an influence radius617

r calculated a priori (in our case r = 0.02 × min(#rows,#columns)) all nodes that fall within the circle centered in618

the random node with radius r are mutated (changed) into a new selected category (leaving the conditionant nodes619

without modification). Additionally, a cyclic-cooling scheme was implemented in order to control the variability of620

the population, by means of reducing the mutation ratio by a factor λ ∈ (0, 1) each 1000 generations. Starting from a621

mutation rate m = 1, if λm goes below a threshold, the ratio is restarted from m = 1 and a new mutation cycle begins.622

Samples of realization images and convergence plots of function 1 are included in figures 6-7. The convergence623

plots show the relative decrease in percentage of the fitness function with respect to the initial value (the best fitness624

value obtained in the first population of individuals). As we can see in these figures, the simulated images are not equal625

to the training image, which is not bad, because one of the objectives of the simulation process using MPS methods626

is to obtain simulated images that fits the underlying statistics of the training image but not being necessarily equal.627

If conditional data is used (nodes with information from the training image which are not modified in the simulation628

process) the resulting simulated image will be more similar to the training image with the corresponding match of629

the underlying statistics. The tests that we are considering do not use any conditional data. Therefore they must be630

considered as a worst case scenario in terms of convergence.631

Figure 6: Simulated realization of size 100×100 (left) and convergence plot showing 17000 generations

Figure 7: Simulated realization of size 1000×1000 (left) and convergence plot showing 17000 generations

8. Conclusions632

The proposed hybrid parallelization using an optimized code has shown reasonable speedup results, according to633

the time measurements reported in section 7. The differences between non-optimized and optimized code execution634

are considerable and justify our research in this recent topic. A negative aspect has to do with the loss of generality635

of some of the proposed optimizations. Applying routine specialization or branch/load reduction introduces several636
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modifications in the corresponding code, were specific values of the size of the template are used. If the size or637

geometry of the template changes, we need to modify those routines in order to adapt them to the new template’s638

values. If the complete code has to be used in an agile framework allowing the utilization of user-defined templates,639

this behaviour can generate inconveniences because each new template needs its own optimized routines, with their640

corresponding creation, compilation and inclusion in the main application. A possible solution to this problem can be641

the adoption of auto-tuning techniques to automatically deploy new kernels according to the geometry of the template642

in use. Examples of auto-tuning techniques applied to stencil optimization for Finite Differences PDE solvers can be643

reviewed in Datta et al. (2008, 2009).644

The strategies proposed to accelerate the convergence allow us to get fast realizations, using reasonable small645

populations (40 individuals per process) and a small restart percentage (10% of the population is restarted). However,646

a further research on the acceleration of convergence by tuning the genetic parameters (population size, mutation647

and crossover rates, percentage of selection, percentage of restarted population, number of cross points and mutation648

points, among others) is left open for future research. Also, several other research topics can be explored, among649

them we can mention: dynamic mutation rate (using the full annealing scheme), non-linear crossovers (using external650

information to mix two realizations with some physical or geological interpretation), or selective restart (allowing to651

reset only individuals that meet certain properties).652

This work focuses on 2D training images and realizations. However 3D models are used in real geostatistical653

scenarios. In order to adapt our code to the 3D scenario, several further optimizations and modifications must be654

done, but these are left as future work. Among the most relevant ones we can mention the specialization of the655

fitness evaluation to 3D templates, use of efficient data structures to manage large 3D images and 1D individuals,656

new methods to perform crossover and mutations in these individuals, and modifications of the fine and coarse grain657

strategies to the new 3D scenario. Another related future work could be the application of the fitness calculation658

optimized routines into the simulated annealing scheme of simulation as described in Deutsch (1992), using the MPI659

implementation described in Peredo and Ortiz (2011) or the standard routines implemented in the GSLIB library from660

Deutsch and Journel (1992).661

Finally, another possible research area is related to explore new computer architectures with this algorithm. Among662

the possible alternatives are NVIDIA’s GPUs (using two programming models, CUDA and OpenACC), Intel’s MICs663

(several cores in one chip and accelerators working toghether in Intel architectures) or energy-efficient new supercom-664

puters that will be available in the next years.665
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