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Abstract While solid mechanics codes are now conven-
tional tools both in industry and research, the increasingly
more exigent requirements of both sectors are fuelling the
need for more computational power and more advanced algo-
rithms. For obvious reasons, commercial codes are lagging
behind academic codes often dedicated either to the imple-
mentation of one new technique, or the upscaling of current
conventional codes to tackle massively large scale computa-
tional problems. Only in a few cases, both approaches have
been followed simultaneously. In this article, a solid mechan-
ics simulation strategy for parallel supercomputers based on a
hybrid approach is presented. Hybrid parallelization exploits
the thread-level parallelism of multicore architectures, com-
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bining MPI tasks with OpenMP threads. This paper describes
the proposed strategy, programmed in Alya, a parallel multi-
physics code. Hybrid parallelization is specially well suited
for the current trend of supercomputers, namely large clus-
ters of multicores. The strategy is assessed through transient
non-linear solid mechanics problems, both for explicit and
implicit schemes, running on thousands of cores. In order
to demonstrate the flexibility of the proposed strategy under
advance algorithmic evolution of computational mechanics,
a non-local parallel overset meshes method (Chimera-like)
is implemented and the conservation of the scalability is
demonstrated.

Keywords Computational mechanics · Finite element
method · Parallel computing · Chimera

1 Introduction

With the increasing need for more advanced modeling tech-
niques involving non-local approaches or multiphysics inter-
actions, finite element (FE) solid mechanics codes require-
ments have traditionally slowed down the parallel efforts
aimed at increasing the computational scalability of such
codes. One of the direct consequences of this is that most
commercial codes cannot efficiently scale on parallel com-
puters when more than hundreds of cores are used [5,24].
Academic FE codes, on the other hand, have often relied on
the need to develop one unique technique of interest, poten-
tially followed by a secondary development phase aimed at
scaling it up because of the prohibitive cost of the technique.
As a direct consequence, researchers have often focused on
the scalability of one technique independently of the other
ones; see for example the Arbitrary Lagrangian-Eulerian
(ALE) methods [51], Discontinuous Galerkin (DG) meth-
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ods [21,71], fluid–structure interaction (FSI) [27,51,67] or
even expensive constitutive models (and their also expensive
meshing requirements) such as crystal plasticity [70]. It is
also noticeable that the range of fields of application for these
references is extremely wide, ranging from bio-medical, mil-
itary, seismic, or fracture mechanics to polycrystalline texture
analysis.

1.1 Fluid Mechanics Versus Solid Mechanics

Fluid mechanics computational codes have generally been
exploiting advanced techniques conjointly with parallel
efficiency (see for instance OpenFOAM [9], Alya [1] or
CODE_SATURNE [4]). This can be explained by the fact
that fluid problems have traditionally required larger meshes
than Solid Mechanics problems but also by the fact that
model requirements for solids may hinder the paralleliza-
tion itself, for instance, in fracture mechanics. In that sense,
the development of parallel Solid Mechanics codes requires
a more complex structure in order, to not only solve the par-
tial differential equation (PDE) involved, but also to add the
complex features typical of computational Solid Mechan-
ics: e.g., non-linear behavior of materials, non-locality of the
model in fracture mechanics or continuum damage theory,
non-linearity (and unphysical) forces in contact mechanics,
multi-scale model needed in fracture and cracks, etc.

1.2 FE Solid Mechanics Codes

Designing computational models of complex material defor-
mation mechanisms such as fracture, phase change or impact
requires a combination of new numerical methods and
improved computing power. Beyond the advanced numerical
techniques, an increased computational power is needed to
resolve the many length and time scales of these problems.
Most of the modern FE codes can parallelize over distrib-
uted memory clusters to allow for solution on larger meshes
or to reduce computation time. Sandia Labs has developed
the SIERRA framework [77], which provides a foundation
for several computational mechanics codes, for instance the
highly scalable software Salinas [23] or the open source
code CODE ASTER [3]. Other open source software such
as Gmsh [36] or FEniCS [61] also offer PETSc [19] or Epe-
tra [45]. Recently, however, shared memory multicore tech-
nology such as graphics processing units (GPUs) [55] have
gained prominence due to their arithmetic ability and high
power efficiency, such as in FEAST software package [41].

Large scale Solid Mechanics FE computation became a
field of research on its own as soon as in the early 80’s [37].
However, if preconditioner optimization studies for large
scale computing were tackled shortly after [49], and bar-
ring a few exceptions (e.g., Ref. [35] focusing on XFEM),
they have almost always been focused on conventional FE

codes (and often for one unique application) without consid-
eration of all the previously listed evolutions [17,33,60,79].
In the particular case of FE for Solid Mechanics, many com-
puter codes were written to solve one specific application
and are not flexible enough to adapt the newest schemes and
technological improvements. These limitations of code struc-
ture make it difficult to integrate the latests research that is
required to solve ever larger and more complicated problems.
Instead, the rapid advances on parallel computation require
the code to be developed from the beginning for any large
scale application, and then enhanced with advanced tech-
niques following the same large scale framework imposed
by the code structure.

1.3 System of Equations

The cornerstone of any FE method involves an assembly and
a solution of a linear or non-linear system of equations. In an
implicit scheme, this solution process requires solving a liner
system of equations, which usually has dimension of millions
and even billions of degrees of freedom. The solution of large
sparse linear systems of equations is the main concern in any
parallel code [43]. The algorithms to solve these systems are
basically grouped into two categories: direct methods and
iterative methods. For decades, research has mainly focused
on taking advantage of sparsity to design direct methods that
can be economical. However, a substantial portion of the total
computational work and storage required to solve stiff ini-
tial value problems is devoted to solve these linear algebraic
systems, particularly if the system is large (see for instance
the study in Ref. [38]). However, over the last decade, several
efficient iterative methods have been developed to solve large
sparse (non-symmetric) systems of linear algebraic equations
that involve a large number of variables (sometimes of the
order of millions) [72]. In these cases, direct methods would
be prohibitively expensive even with the best available com-
puting power and iterative methods appear as the only ratio-
nal alternative.

1.4 Algebraic Solvers

An algebraic system Ax = b can be approached by two
categories of methods. Krylov subspace methods tackle the
problem directly by solving directly for x. Some examples are
the conjugate gradient (CG) method for the symmetric cases,
generalized minimal residual (GMRes) and the biconjugate
gradient (BiCGSTAB) method for the non-symmetric cases
[72]. The other family of methods are the primal and dual
Schur complement methods, which solve for the interface
unknowns, the restriction of x on the subdomain interfaces
and its dual (e.g. the FETI method [32,73]), respectively. For
this last class of methods, Krylov solvers can then be used
to solve the interface problem. In both approaches, a precon-

123



Computational Solid Mechanics for Supercomputers 559

ditioner is also required to enhance the convergence. Exam-
ples of classical preconditioners are the Gauss-Seidel, block
diagonal, Deflated [62] or Multigrid [13,57,66]. The precon-
ditioner can also be based on domain decomposition meth-
ods (DD) as well. Some examples are: Schwarz, Restricted
Additive Schwarz (RAS), Block LU, Imcomplete Block LU,
where the support of the preconditioners coincide with the
subdomains of the mesh partition.

Some definitions are now introduced to assess the effi-
ciency of a solver plus a preconditioner in a parallel environ-
ment. Let np and dof be the number of parallel processes
and the number of degrees of freedom of the algebraic sys-
tem, respectively. If tnp(dof ) is the time to achieve the con-
vergence criterion of the solver, the efficiency of the strong
scalability is defined as as

Efficiency of strong scalability = t1(dof )

np × tnp(dof )
.

Thus, a solver with a unit efficiency enables one to
achieve convergence np faster by using np processes, i.e.
tnp(dof ) = t1(dof )/np. Krylov solvers with classical pre-
conditioners can be made strongly scalable, as long as dof
is sufficient large on each process, in order to keep a high
work versus communication ratio. However, if one wishes to
increase the global number of degrees of freedom by refining
the mesh, the strong scalability does not provide any infor-
mation about the computing time. The observation of weak
scalability means that the amount of time budged does not
increase if one maintains a fixed number of dof per proces-
sor. In this case perfect efficiency is achieved if the run time
stays constant while the workload (dof ) is increased in direct
proportion to the number of processors:

Efficiency of weak scalability = t1(dof )

tnp(np × dof )
.

This criterion is useful to estimate the CPU time while
refining the mesh and answer the following question: if one
refines the mesh by a given factor, how many more CPUs
should one use to converge at the same computing time.
Even though it is relatively easy to maintain the number
of iterations of the solver independently of dof , it is much
harder to maintain the computing time. This is due to the
fact that complex preconditioners must be used, in addition
to some coarse space solver to propagate information across
the CPUs. These coarse space solvers are usually the bottle-
neck of the weak scaling [18,39].

It must be emphasized that some solvers present the same
convergence independently of np. This is the case for exam-
ple of Krylov methods together with a diagonal precondi-
tioner. Weak scalable solvers do not, as the mesh partition is
the base for the construction of the local solvers. Therefore,

they do not enable reproducibilty. This means that if a sim-
ulation is carried out on 1,024 CPUs on one day, different
convergence or even results may be obtained on another day,
using 256 CPUs. This is not a trivial remark as reproducibility
is a very relevant aspect in the industry.

For some applications leading the very stiff systems,
direct solvers could even be required. Direct methods appear
as feasible solution for solving linear systems that are ill-
conditioned. Actually, they are commonly used in implicit FE
codes for structural dynamic problems. However, these meth-
ods were initially discarded due to their high storage memory
requirements. In the past the limitations of CPU and mem-
ory requirements have prevented the use of these methods but
nowadays, with the increasing advances in power computing
new trends on direct solvers are being investigated. These
are either multifrontal [16] and supernodal techniques [34].
Multifrontal techniques are basically the multifrontal mas-
sively parallel solver (MUMPS) [28] and the Watson Sparse
Matrix package (WSMP)[40]. SuperLUDIST [58] is a MPI
parallel version of SuperLU family of solvers for unsymmet-
ric systems based on supernodal right LU factorization. A list
of the available software for solving sparse linear systems
via direct methods is presented in Ref. [12]. Performance
results of these iterative solver are compared against a direct
solver routine of the commercial Harwell Software Library
[53].

Many studies on the behavior of iterative solvers in clas-
sical Solid Mechanics problems have been carried out. For
instance, a comparison was made between preconditioned
conjugate gradients (PCG) and Multigrid methods (MG),
applying them to a series of test problems of plane elas-
ticity [52]. Different iterative solvers for large scale linear
algebraic systems for 3D elasticity are compared in Ref.
[30]. Solving nonlinear Solid Mechanics problems with a
Newton-type method could be problematic if the determina-
tions, storage or solution cost associated with the Jacobian is
high. The Jacobian Free Newton–Krylov methods [54] ini-
tially developed for CFD problems has been applied to non-
linear computational Solid Mechanics in Ref. [42]. Multi-
grid methods, either as iterative methods or as a precondi-
tioners, have been studied in many application areas: for the
Helmholtz equation when analyzing frequency responses of
an structure [14], for plasticity problems [85] or recently in
fracture mechanics with the XFEM method [83]. In contrast,
direct solvers are not as popular as iterative solvers. MUMPS
has been used for simulations of linear elasticity coupled
with acoustics in [69]. SuperLU was used to solve FSI prob-
lems with large- displacements in Ref. [44]. As a conclu-
sion, despite some recent efforts, more focused research is
needed to analyze the solvers behavior and requirements in
complex structures or in the recent techniques for the spe-
cific features of Solid Mechanics problems, such as fracture
mechanics.
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Fig. 1 General architecture of a supercomputer: nodes, cores and
accelerators, and associated common programming languages

1.5 Parallel Context

High performance computational mechanics codes exploit
one or more levels of parallelism offered by modern super-
computers. A general supercomputer architecture is depicted
in Fig. 1, together with some common programming lan-
guages. At the coarse level, the architecture consists of nodes,
in a distributed memory environment. At the medium level,
each node is composed of a given number of cores, in a
shared memory environment. These nodes can, in turn, use
the accelerators (e.g. GPUs or Xeon Phi.) as a fine level of
parallelism [68].

MPI is the most commonly used Message Passing Library
on distributed memory architectures while OpenMP [10] is
the preferred one for shared memory architectures, i.e. par-
allelizing the computation at the core level. Accelerators can
be programmed using programming languages like OpenCL
[8], OpenACC [7] or CUDA [63]. Very few unstructured
mesh computational mechanics codes have been ported to
accelerators [2,26,46]. There are three main reasons for this:
the huge cost of porting large codes; the difficulty in mapping
codes with irregular memory access to the vector architec-
ture (SIMD) of accelerators; the lack of a standard language
[25]. One standard candidate is the new version of OpenMP,
namely OpenMP4 (see new advances in [10]). On the other
hand, Intel solution to accelerators, the Xeon Phi, presents
very appealing features for unstructured meshes due to its
very low programming effort together with its computing
power. See Ref. [82] for more complete assessment Solid
Mechanics problems.

1.6 Libraries

Many different software packages are available to solve a
linear system of equations. Most modern solid mechanic
codes include an abstract interface to a LinearSolver class
that operates on a sparse Matrix and a Vector for the right

hand side. Inherited from this LinearSolver base class are
different solvers that can interface to packages. In the top
of these packages are PETSc [20], which supports also MPI
and GPU architectures, and Hypre [31], which provides also
Multigrid preconditioning in a parallel MPI environment.
Moreover, MUMPS methods are also included in a direct
solver library developed in Ref. [16], which is supported
by MPI. The WSMP software package WSMP [40] is also
developed using an hybrid implementation with MPI and P-
threads, among others. Abstracting the solver interface in
this manner allows the application writer to choose the most
effective solver for the particular problem.

1.7 Alya

Alya [1] has been conceived as a Computational Mechanics
code developed at Barcelona Supercomputing Center (BSC–
CNS) and aimed at solving PDEs in unstructured meshes.
Alya exploits the similarities of the PDE-governed prob-
lems to solve with high parallel performance compressible
and incompressible flows, thermal flows, excitable media
or quantum mechanics for transient molecular dynamics
[29,47,48,81], while running in thousands of cores. Paral-
lelization is hidden behind a common solver that assembles
matrices and residuals and carries out the solution scheme.
The scalability of the code thus exclusively depends on one
unique set of parallel communication subroutines indepen-
dently of the physics of the problem. Additionally, Alya
is specially well-suited for the parallel solution of coupled
multi-physics problems.

In the present work, the Solid Mechanics module of Alya
is introduced. Using the large scale PDE solver capabil-
ity of Alya’s kernel, the solid module was implemented so
that any future development of more complex FE techniques
should conserve the high scalability of the code. These devel-
opments have been carried out along two parallel strate-
gies: first, the MPI implementation at the node level, where
the parallelization is based on a sub-structuring technique
and uses a Master–Worker strategy [48]; and secondly, the
OpenMP implementation used to treat many-core proces-
sors. The overall code is thus hybrid MPI/OpenMP. Non-
symmetric problems are solved using GMRes or Bi-CGStab
schemes and symmetric ones, solved using CG methods
[72]. There are several available preconditioners: diagonal,
Deflated, RAS, blockLU, etc.

The Alya framework is specially well-suited to solve cou-
pled problems. A Chimera overset meshes strategy is a par-
ticular way of coupling problems: two or more problems are
solved in different meshes which are connected using their
respective geometrical information. This connection scheme
results in the fusion of all the problems in one single matrix.
The problem can then be solved using the same paralleliza-
tion scheme proposed earlier [29]. This scheme was thus

123



Computational Solid Mechanics for Supercomputers 561

implemented in Alya as an illustration of its large scale par-
allelization strategy where the code structure naturally lends
itself to complex non-local approaches without loss of scal-
ability performance.

The article is structured as follows. Section 2 introduces
the governing equations and briefly describes the numerical
method. Section 3 describes the structure of Alya, with spe-
cial attention on the parallel strategy and the solver in Sect.
4. The parallelization and hybrid strategies are formally pre-
sented in Sect. 5 and the optimal scalability of the code is
also shown. Section 6 presents some problems of applica-
tions where the Alya modules have been used with good per-
formance. The paper ends with some conclusions and future
lines.

2 Numerical Scheme

The computational solid mechanics problem is solved using
a standard Galerkin method for a large deformation frame-
work using a generalized Newmark time integration scheme.
This framework, developed in a total Lagrangian formula-
tion, is only briefly summarized below; for more details, see
Ref. [59].

2.1 Standard Galerkin Governing Equations

Let ϕ : R3 → R
3 be the function that maps a material point

of an undeformed body X ∈ B0 in the reference configura-
tion to its point x = ϕ(X) ∈ B in the current (or deformed)
configuration. The deformation gradient tensor F is defined
as F := ∇0x, where ∇0 is the gradient operator with respect
to the reference configuration. In cartesian basis, the compo-
nents of F are given by Fi J = ∂xi/∂X J . Index i in vector x
and J in vector X are written in lower and upper case to indi-
cate that the component is referred to in the current and refer-
ence configurations, respectively. Since x(X) = X + u(X),
where u is the displacement vector, the deformation gradient
can be given by F = I +∇0u, with ∇0u as the displacement
gradient.

The equation of balance of momentum with respect to the
reference configuration can be written as

Div P + b0 = ρ0ü , ∀X ∈ B0 , (1)

where ρ0 is the mass density (with respect to the reference
volume) and Div is the divergence operator with respect to
the reference configuration, with Div P = ∇0 · P . Tensor P
and vector b0 stand for the first Piola–Kirchhoff stress and
the distributed body force on the undeformed body, respec-
tively. Prescribed displacements and tractions are applied at
reference boundary Γ0 = Γd0 ∪Γn0, where Γd0 and Γn0 cor-
respond to the Dirichlet and Neumann boundary conditions,
respectively:

u = ū , ∀X ∈ Γd0 , (2)

P · N0 = t̄0 , ∀X ∈ Γn0. (3)

where N0 is the normal to the boundary in the reference
configuration.

As usual in Finite elements methods [86], the weak form
of balance of the momentum (1) can be formulated for any
arbitrary admissible virtual displacement w, such that,

∫
B0

P ·∇w dV+
∫
B0

ρ0ü·w dV =
∫
B0

b0·w dV+
∫

Γn0

w·t0dΓ

(4)

For a FE approximation Ω0 = ⋃
e Ωe

0 of the undeformed
continuum body B0, let uh be a polynomial approximation
of degree k to the actual displacement u

uh(X) = N(X) uh, (5)

where uh denotes time-dependent nodal displacement and N
the three-dimensional matrix of shape functions.

Then, the discrete form of (4) consists in solving for the
array of nodal displacement uh ∈ R

3

Müh + fint = fext (6)

where M, fint (uh), and fext are, respectively, the mass matrix
and the vector of internal and external forces vector. For more
references, see [59].

The generalized Newmark formulation used here for Eq.
(6) can be written as [59]

Mün+1
h + fn+1

int = fn+1
ext , (7)

un+1
h = un

h + Δt u̇n
h + (Δt)2

[ (
1

2
− β

)
ün + βün+1

h

]
, (8)

u̇n+1
h = u̇n

h + Δt
[
(1 − γ ) ün

h + γ ün+1
h

]
, (9)

where superscripts “n” and “n+1” indicate that the variables
are evaluated at time tn and tn+1, respectively. Parameters
β and γ set the characterictics of the Newmark scheme.
Parameter β = 0 leads to an explicit Newmark scheme,
whereas for values 0 < β ≤ 0.5 leads to an implicit
scheme. In the latter case, the set of equations (7)–(9) are
solved for the unknown displacement un+1

h , velocity u̇n+1
h ,

and acceleration ün+1
h using the iterative Newton-Raphson

algorithm.

3 Numerical Implementation

The Alya system is a computational mechanics code devel-
oped with two main motivations. First, it was designed to
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Fig. 2 solidzmodule structure in Alya; kernel elements are in blue and
services in red. (Color figure online)

run with high efficiency standards in large scale supercom-
puting facilities. Secondly, various physical problem should
be allowed to be solved individually or in a coupled manner,
while conserving exceptional scalability and retaining their
individual efficiency.

Alya’s architecture is modular, grouping the different
tasks into kernel, modules and services. The kernel, the core
of Alya, contains all the facilities required to solve any
set of discretized PDEs (e.g., the solver, the I/O, the cou-
pling, the elements database, the geometrical information,
etc.).

The physical description of a given problem is provided
by its corresponding module (e.g., the discretized terms of
the PDE, the meaning of the boundary and initial conditions,
etc.). Other Alya modules than the one presented here include
incompressible or compressible flow, thermal transport, or
N-body problem, among others. Finally, the services con-
tain the toolboxes providing several independent procedures
to be called by modules and kernel (e.g., parallelization or
optimization).

3.1 Alya’s Solid Mechanics Module

A large database of element types and integration schemes
of different orders is available from previous work in the
other modules. Well known constitutive equations for large
deformation elasticity constitutive models, such as the neo-
Hookean or specific hyperelastic models, were also imple-
mented.

Figure 2 shows a flowchart of the solidz module. All the
geometrical and physical data of the problem are introduced
as input files. Once read, Alya initializes the computation
within the solidz module, either in serial or parallel mode.
The parallel service must be specified in the input files.

3.2 Mesh Convergence

The following test aims at studying the mesh convergence
of the Alya-solidz module. To this end, a target solution u(e)

with a given degree of regularity is used. By using a sta-
tionary manufactured solution belonging to the finite ele-
ment space (for linear and bilinear elements), the numeri-
cal scheme should provide an exact nodalwise solution, i.e.,
u = u(e), thus a) confirming that the equation is well coded
and b) allowing for the proposed mesh convergence study.
The analysis below uses indicial notation and the following
equation, obtained from Eq. (1), is solved:

ρ0üi − ∂Pi J
∂X J

= −∂P(e)
i J

∂X J
, (10)

where P(e)
i j = Pi j (u(e)). Assuming large deformations and

using a linear elastic constitutive law, i.e., the last term of
Equation (10) is given by:

∂P(e)
i J

∂X J
= CK JML

[
F (e)
i K
2

(
∂2u(e)

n
∂X J ∂XM

F (e)
nL + ∂2u(e)

n
∂X J ∂XL

F (e)
nM

)

+ ∂2u(e)
i

∂XK ∂X J
E (e)
ML

]

(11)

where CK JML is the fourth order elasticity tensor and FnL
(or FiK and FnM ) and EML are the deformation gradient and
the Green-Lagrange strain tensors, defined as:

F (e)
mL = ∂u(e)

m
∂XL

+ δmL

E (e)
ML = F (e)

nM F (e)
nL − δML

(12)

The 2D manufactured solution considered here is arbitrar-
ily chosen to be:

{
u(e)

1 = X3
1 X4

2

u(e)
2 = X3

1 X3
2

(13)

and is solved on a unit square. Figure 3 shows the resulting
mesh convergence results computed on a regular mesh of Q1
(quadrilateral) elements. The L2-norm of the error and of the
error of the gradient, ||ε(u)||L2 , and ||ε(∇u||L2 , respectively,
are shown and they are computed as follows:

||ε(u)||L2 =
√∫

Ω

(uh − u(e))2dΩ/

√∫
Ω

u(e)2dΩ,

||ε(u)||H1 =
√∫

Ω

(∇uh − ∇u(e))2dΩ/

√∫
Ω

(∇u)(e)
2dΩ.

The results successfully confirm a first order convergence
in the derivative and second order in the L2-norm of the
displacement with respect to h for the solidz module [50].
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the gradient of the displacement

4 MPI Parallelization

4.1 Parallel Context

The parallelization for distributed memory supercomputers is
based on a domain decomposition technique, using a Master–
Workers paradigm and MPI as the message-passing library.
In the core of the parallelization outer layer lies the auto-
matic graph partition tool, METIS [6]. First, the master reads
the mesh and performs the partition of the mesh into sub-
meshes, or subdomains, using METIS. Each of these subdo-
mains is called a Worker. The Master distributes each parti-
tion among the Workers that carry out the solution compu-
tational work. METIS mesh partition is done by maximizing
load balance and minimizing communication (see Ref. [48]
for more details). As a second step, the Workers build the
local elements matrices and local right-hand sides, and are in
charge of solving the resulting system solution in parallel. In
the assembling tasks, no communication is needed between
the Workers, and the scalability only depends on the load bal-
ancing. In the iterative solvers, the scalability depends on the
size of the interfaces and on the communication scheduling.

Depending on the constitutive model, the resulting equa-
tions can be symmetric or non-symmetric. In the implicit
case, the basic iterative solvers are GMRes and CG [72]. Dur-
ing the execution of these iterative solvers, two main types
of asynchronous communications are required:

– Point-to-point communications via MPI_ISend and
MPI_IRecv, which are used when sparse matrix-vector
products are calculated.

– Collective communications viaMPI_AllReduce, which
are used to compute residual norms and scalar products.

In the current implementation of Alya, the solution
obtained in parallel is, up to round-off errors, the same as the
sequential one all the way through the computation. This is
because the mesh partition is only used for distributing work
without in any way altering the actual sequential algorithm.
This would not be the case if one would consider more com-
plex solvers, like primal or dual Schur complement solvers
[64], or more complex preconditioners, like linelet [74] or
block LU [65]. Since the explicit framework is relatively
straightforward to implement, in the following we only focus
our attention on the implicit framework.

The numerical solution of a PDE (and consequently the
solid mechanics equations) consists mainly of two steps: first,
the construction of the matrix A and right-hand side (RHS) b
of the algebraic system Ax = b; second, the solution of this
system using an iterative solver. As far as the matrix and RHS
assemblies are concerned, only part of the matrix is assem-
bled for the interface nodes. For the iterative solvers, the basic
operations are the matrix-vector and the dot products. Let us
consider these two operations for a simple one-dimensional
case illustrated in Fig. 4.

In the context of FE, the coefficients of the matrix come
from element computations (see Sect. 2.1). The contribution
of node 3 comes from subdomain 1 and 2, namely A1

33 and
A2

33, respectively. Since

y3 = A32x2 + A33x3 + A34x4

and by rewritting it as

y3 = (A32x2 + A(1)
33 x3) + (A(2)

33 x3 + A34x4)

= y(1)
3 + y(2)

3

the parallelization only consists of a residual exchange.
Therefore, the idea is to use the distributive law of the

multiplication to carry out the matrix-vector product in par-
allel. Let us introduce two functions, that will be described
formally in the next subsection as PAREXC and PARASM.
In the previous 1D example, the asynchronous matrix-vector
product can be carried out in parallel as follows:

– Perform local matrix-vector product of boundary nodes
(node 3);

– PAREXC: Exchange the results on the interface y(1)
3 and

y(2)
3 using non-blocking MPI functions;

– Perform local matrix-vector product of interior nodes
(rows 1 and 2 for subdomain 1, 4 and 5 for subdomain
2);

– Synchronization MPI_Waitall;
– PARASM: Assemble (sum) the local contributions of

each subdomain: y3 = y(1)
3 + y(2)

3 .

Regarding the dot product, i.e., x · y we only need to
introduce the concept of own interface node. In the current
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Fig. 4 Iterative solver basic
operations: matrix-vector
product and dot product

implementation all vectors are assembled on the interface,
which implies:

x (1)
3 = x (2)

3 = x3 and y(1)
3 = y(2)

3 = y3

Then, if both subdomains compute their entire local dot prod-
uct, then the sum of the two contributions will account for
x3y3 twice, hence

α = x1y1 + x2y2 + 2 x3y3 + x4y4 + x5y5,

which provides a wrong result. In order to account only once
for the interface value, all the interface nodes are splitted
into own interface nodes and oth (for other) interface nodes.
That is, an interface node has the own status only in one
subdomain although it can be shared by others, but with status
oth. The local dot product thus only involves interior nodes
and interface nodes of own status.

In the next section we define formally the concept of inte-
rior and interface nodes and introduce some notations and
operators, as well as the functions PAREXC and PARASM
doing the parallel matrix-vector and dot products. The term
boundary will refer to the interfaces between subdomains.

4.2 Formal set definitions

Before introducing the parallel operators, it is first necessary
to define the basic sets, categorizing the nodes and elements
of each subdomain, as well as the relations between the sub-
domains. Some of the definitions are illustrated in Fig. 5.

Consider a computational domain Ω ∈ R. Let N =
{n1, n2, . . . , nN } and E = {e1, e2, . . . , eE } be the sets of
all nodes and elements, respectively, of the FE mesh used to
discretize the computational domain. Here, N and E denote

Fig. 5 Node sets

the total number of nodes and elements of the computational
mesh.

Any element e ∈ E can be defined as a tuple of nodes
e = (ne1, n

e
2, . . . , n

e
k) where k is the number of nodes per

element.
Two sets are defined to describe the nodal connectivity

with elements and nodes of the mesh, Lele(n) and Lnod(n),
respectively. For any arbitrary node n ∈ N :

Definition Element connectivity of n. Let Lele(n) denote
the set of elements in E directly connected to the node n.
Formally,

Lele(n) = {e ∈ E : n ∈ e}. (14)

Definition Node connectivity of n. Let Lnod(n) denote the
set of nodes in N directly connected to n. Formally,

Lnod(n) = {m ∈ N : ∃e ∈ Lele(n),m ∈ e} \{n} (15)
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The latter set represents the nodal connection of the mesh and
the matrix graph as well. It contains the information required
to construct the Compressed Sparse Row (CSR) format used
to assemble the sparse matrix of the algebraic system.

We then consider a domain decomposition by elements
(see the example of Sect. 4.1). In this work, the METIS [6]
library is used. LetN I and E I denote the set of nodes and ele-
ments of any arbitrary subdomain ΩI , respectively. The total
number of nodes and elements of the mesh can be grouped
by subdomains:

E =
S⋃

I=1

E I , N =
S⋃

I=1

N I ,

where S is the number of subdomains. As the domain decom-
position is performed by elements, the nodes can be shared
between subdomains, namely boundary nodes, but the ele-
ment subdomains are non-overlapping.

The interface created by the partition of the mesh divides
the set of nodes of any arbitrary subdomain ΩI into two
disjoint sets. On the one hand, the set of interior nodes:

Definition (Interior nodes of Ω I .) Let N I
int denote the set

of interior nodes of the subdomain ΩI . Formally,

N I
int = N I \

⎛
⎝ S⋃

J=1,J 	=I

N J

⎞
⎠ .

These nodes do not belong to the boundary.

On the other hand, the set of boundary nodes:

Definition (Boundary nodes of Ω I .) Let N I
bou denote the

set of boundary nodes of ΩI . Formally,

N I
bou = N I \N I

int

These nodes belong to the interface and are shared by differ-
ent subdomains, including ΩI .

In this new context of domain decomposition, let us define
a subset of the set Lnod(n) related with any boundary node
n ∈ N I

bou as:

Definition (Node connectivity of n belonging to Ω I .) Let
LI
nod(n) denote the set of nodes in N I directly connected to

n. Formally,

LI
nod(n) =

{
m ∈ N I : ∃e ∈ Lele(n),m ∈ e

}
\{n} (16)

The concept of adjacency between subdomains is defined
as

Definition (Adjacent subdomains.) Two arbitrary subdo-
mains I and J are adjacent when N I ∩ N J 	= ∅.

In order to carry out the scalar product we also need to
introduce the concept of own boundary and oth boundary,
where oth is defined in Sect. 4.1. This is achieved by split-
ting the interfaces between the subdomains that share it, for
example with METIS.

Definition (Own and other’s boundaries of Ω I .) Let use
define N I

bou,own and N I
bou,oth such that

N I
bou,own ∩ N I

bou,oth = ∅,

N I
bou,own ∪ N I

bou,oth = N I
bou,

N I
bou,own ∩

S⋃
J=1,J 	=I

N J
bou,own = ∅.

4.3 Parallel Operators

We now define the parallel operator used in the algebraic
solver to carry out the matrix-vector product and assembly
contributions in an asynchronous way.

The node and element numbering is represented by a local
index index I , and an index used to exchange information
between two neighboring subdomains I and J , index I,Jbou .

For any arbitrary subdomain ΩI ,

Definition (Local node numbering inΩ I .) Let the function

index I : N I → {1, 2, 3, . . . , |N I |} (17)

be the local node numbering in ΩI defined as index I (n) =
i I where n ∈ N I and i I ∈ N. |N I | is the cardinal number
of the set.

For implementation purposes, the interior nodes are first
numbered followed by the boundary nodes, as shown in
Fig. 6. This ordering is useful to carry out not only the matrix-
vector product in an efficient way but also the dot product.

Note that for two arbitrary adjacent subdomains ΩI and
ΩJ , index I (n) is not necessarily equal to index J (n) for any
boundary node n ∈ N I

bou ∩ N J
bou .

Definition (Shared boundary node numbering in Ω I and
Ω J .) Let the function

index I,Jbou : N I
bou ∩ N J

bou → {1, 2, 3, . . . , |N I
bou ∩ N J

bou |}
(18)

be the shared boundary node numbering for two arbitrary
adjacent subdomains ΩI and ΩJ defined as index I,J (n) =
i ∈ N where n ∈ N I

bou ∩ N J
bou .

This index facilitates the data exchange between two sub-
domains and is constructed in such a way that both subdo-
mains are able to order their shared boundary nodes in the
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Fig. 6 Node numbering of
subdomain ΩI

Fig. 7 Shared node numbering index I,J (n) of the interface nodes
between ΩI and ΩJ

same way, see Fig. 7. In Alya, this task is carried out by the
master process, after the partition of the mesh.

Taking into account the previous defined functions, the
implementation details of the operators PAREXC and
PARASM from the point of view of any arbitrary subdo-
main ΩI are provided in Algorithms 1 and 2. As the exchange
of data between subdoamins is asynchronous, the operator is
divided into two parts: the data exchange first, given by Algo-
rithm 1, and the assembly operation, given by Algorithm 2.

Algorithm 1 The parallel operator PAREXC from ΩI : data
exchange

Input: a numeric array data with length N I

Output: void
for each adjacent subdomain J of I do

for each node n ∈ N I
bou ∩ N J

bou do
i = index I (n)

ibou = index I,J (n)

Construct the array data_send(ibou) = data(i)
MPI_Isend to send the array data_send to J
MPI_Irecv to receive the array data_receiveJ from J

end for
end for

4.4 matrix-vector and dot products

The two main parallel functions of an iterative solver, i.e., the
matrix-vector and dot products, referred to as MATVEC and
DOTPRO respectively, using the previously defined parallel

operators PAREXC and PARASM are described here. The
matrix-vector product in given by Algorithm 3. For the sake
of clarity, the indices of the matrix are not given in the CSR
format.

Algorithm 2 The parallel operator PARASM from ΩI : data
assembly

Input: a numeric array data with length N I

Output: a modified array data
for each adjacent subdomain J of I do

for each node n ∈ N I
bou ∩ N J

bou do
i = index I (n)

ibou = index I,J (n)

data(i) = data(i) + data_receiveJ (ibou)
end for

end for

Algorithm 3 The parallel matrix-vector product MATVEC
for each subdomain I do

for each n ∈ N I
bou do

for each a ∈ LI (n) do
i = index I (a)

Construct y I (i) = 0
for each b ∈ LI (n) do

j = index I (b)
Construct y I (i) = y I (i) + AI (i, j) × x I ( j)

end for
end for

end for
Exchange: PAREXC(y I )

end for
for each subdomain I do

for each n ∈ N I
int do

for each a ∈ LI (n) do
i = index I (a)

Construct y I (i) = 0
for each b ∈ LI (n) do

j = index I (b)
Construct y I (i) = y I (i) + AI (i, j) × x I ( j)

end for
end for

end for
end for
MPI_Waitall
for each subdoamin I do

Assemble: y I = PARASM(y I )
end for
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Fig. 8 Scalability test: computational mesh

Algorithm 4 describes the dot product. As mentioned pre-
viously, the loop over the nodes excludes those belonging to
the set N I

bou,own of each subdomain.

Algorithm 4 The parallel dot product DOTPRO
for each subdomain I do

α = 0
for each n ∈ N I do

i = index I (n)

if n ∈ N I
int or n ∈ N I

bou,own then
α = α + x I (i) × y I (i)

end if
end for

end for
MPI_AllReduce of α

It must be emphasized that the functions PAREXC and
PARASM are used to compute many other arrays during
the execution the code, such as the construction of the mass
matrix and the diagonal of the stiffness matrix to construct
the inverse diagonal preconditioner.

4.5 Scalability test: shear stress of a milling cutter punch

This example, run in implicit, addresses the capability of
Alya to deal with structures composed of millions of ele-
ments, while maintaining optimal scalability. The test con-
sists in a linear elastic drill (with arbitrary mechanical prop-
erties) grasped in a shank. Gravity force and a punctual force
along one of its lips are applied. The computational mesh is
a regular mesh of 8.5 million tetrahedra, see Fig. 8. The tests
have been run on MareNostrum cluster. The machine consists
of 3,056 nodes, two 8-core processors (Inter Xeon E5-2670
cores at 2.6 GHz) per node and 32 GBytes of memory per
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Fig. 10 Scalability test: scalability for a fixed number of iterations with
a mesh of 8.5 million elements

node. Figure 9 shows the displacement (left figure) and the
maximum and minimum shear stress after 20 time steps. Fig-
ure 10 shows the scalability obtained up to 1,024 CPUs. Note
that the curve looses its optimallity at 1,024 CPUs, due to the
small number of elements per CPU. In the next section the
scalability with a finer mesh is studied.

5 Hybrid Based Strategy for Parallelization

The most important trends in contemporary computer archi-
tecture are currently leaning towards processors with multi-
ple cores per socket with access to the same memory bank.
This approach allows to run at lower frequencies with better
overall performance than a single core processor. The par-
allelization strategy for this architecture is multithreading:
a Master thread forks a number of Worker threads, and the
computation is divided among them. The data communica-
tion and the synchronization between threads are done using
the shared memory inside the multiprocessor. This strategy
is known as parallelism at thread level and OpenMP is the
standard interface for this model [11].

As detailed in the previous section, parallelization in Alya
is mainly done via MPI. The domain decomposition strat-
egy implemented only uses parallelism at task level, which

Fig. 9 Scalability test:
displacement field (left) and
maximum and minimum shear
stress field (right). The
minimum value is shown in blue
and the maximum in red. (Color
figure online)
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Fig. 11 Multicore architecture for an hybrid openMP/MPI framework

is provided by MPI. For that reason, a hybrid code with
OpenMP/MPI is developed in order to take advantage of all
levels of parallelism that a multicore architecture offers and
also to enable one MPI task to access all the memory of a
node. The main feature of this multicore-architecture relies
on the fact that both the shared memory inside the processor
and the message passing between nodes are leveraged. The
structure consists of two steps: first, it assigns one task to
each node and secondly, the node creates a thread per core,
see Fig. 11. An important reduction of the communication
cost between cores is then expected.

5.1 Introducing OpenMP into the MPI Parallel Code

To exploit the thread-level parallelism of a multicore archi-
tecture, OpenMP directives are added to the MPI parallel
code. The first step consists in selecting the most-time con-
suming routines of the code in total execution time. Among
these routines, not all of them are susceptible to be paral-
lelized at thread-level: they must contain a loop structure
with independent iterations. The targeted loops must con-
tain a large body of code, since a considerable amount of
computational work hides behind the overhead of thread-
management.

Table 1 depicts the most time-consuming routines of Alya
in terms of the total execution time in the explicit case. Note
that the cost refers to the percentage of the total execution
time spent, also including the call to other subroutines. In
order to select the proper subroutine to be optimized by the
parallelization with OpenMP, it is important to identify the
calls between them. For instance, the routine that computes
the matrix costs the same as the assembly one, which means
that the time spent by the matrix construction routine itself

Table 1 Routines costs in terms of the sum of time of the function,
including the time of the called subfunctions with respect to the total
execution time in the explicit case

Cost (%) Routine Description

… …

93,6 Iterative scheme Controlling the internal
loop of the equations

93,6 Explicit time integration Explicit time stepping
scheme (Newmark)

93,5 Iterative solution Solving an iteration of the
equations

93,5 Matrix Computing the elemental
matrix and RHS

93,5 Assembly Assembling the matrix
and RHS

36,4 Finite element computations Computing derivatives at
gauss points

… …

is minimum, since it has a call to the assembly subroutine.
Hence, the assembly routine is the one that has to be opti-
mized. In the FE matrix and RHS assembly routine, the dis-
crete system to be solved is formed by looping over all the
elements of the mesh, adding the contributions from that ele-
ment to the global matrix and RHS. This routine is expen-
sive for a number of reasons: significant loop nesting, many
matrices assembling and several calls to other subroutines
(for instance, to constitutive models).

In order to introduce thread parallelism in the assembly
loop, two main OpenMP directives are used to indicate the
compiler how to parallelize appropriately:

– Guided scheduling: since the workload within each iter-
ation is not the same, iterations are assigned to threads in
blocks. In a guided scheduling the block size decreases
within each iteration (in contrast with the dynamic
scheduling), thus obtaining a better relation between the
thread management time and the balanced workload.

– Data scope: the variables that are shared among the iter-
ations are visible to all threads, while the ones that have
an independent value among iterations have a different
copy per thread.

A critical point on the thread parallelism relies on the so
called race conditions, which might lead to non-deterministic
results. Race conditions arise when different threads try to
update the same state or array at the same time. Code paths
accessing and manipulating shared data simultaneously are
known as critical regions. It is clear that both the operation
to assemble an element into a local matrix and the addition
of that local matrix into the global matrix must be thread
safe. Even though these regions cannot be fully avoided it is
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Fig. 12 Scalability of the assembly routine parallelized with OpenMP
in Alya-solidz

important to minimize their occurrence, because their abuse
can serialize the execution, hence losing the optimal parallel
architecture of the code. One possible solution is to spec-
ify different region names, combined with the use of atomic
clauses (uninterruptible instructions) for a single memory
location.

Such scheme was implemented in Alya, paying particu-
lar attention to the specificities of solid mechanics codes. In
order to evaluate the gain in terms of time execution that
OpenMP architectures provides, a reduced case was com-
puted. As an illustration of the strategy used here for all iden-
tified subroutines, Fig. 12 depicts the speedup analysis of the
assembly routine for both explicit and implicit schemes. The
performance with one thread is the same as the one for the
sequential version and, the thread version for both schemes
is speeding up quasi-optimally up to at least 16 cores.

6 Numerical Examples

This section presents several examples of different nature
with the purpose of showing the applicability, scalability,
performance and flexibility of Alya when solving a solid
mechanics problems.

6.1 Example 1: Mesh Multiplication

In petascale applications, the pre- and post-process tasks
are becoming a bottleneck in the complete simulation cycle.
Techniques such as parallel I/O have been introduced to miti-
gate these effects in post-processing, but these are only effec-
tive within a limited range. Mesh Multiplication (MM) was
introduced as an alternative [47]. This technique consists in
refining the mesh uniformly, recursively, on-the-fly and in
parallel. For tetrahedra, hexahedra and prisms, each level

Fig. 13 Example 1: Mesh multiplication algorithm

multiplies the number of elements by eight, while a pyramid
is divided into ten new elements. Apart from generating a
fine mesh in parallel, the MM strategy enables to carry out
the simulation on this fine mesh without having to perma-
nently store it at anytime during the simulation process.This
technique is also very useful for studying mesh convergence
as well as weak or strong scalability [47]. Figure 13 shows
the recursive MM algorithm.

The example consists of a linear elastic large structure
with arbitrary mechanical properties under its own weight
and magnetic load. The initial mesh is composed of a mesh of
491,415 tetrahedral elements. As an example of the efficiency
of the algorithm, a mesh of 250 million elements was also
obtained in just 1 second on 8,000 CPUs. Figure 14 shows the
original mesh and the obtained after MM. Figure 15 depicts
the displacement field after 200 iterations using an implicit
scheme and the hybrid version of Alya.

Figure 16 shows the speedup obtained with a mesh of
32 million elements (2-level mesh) from 64 to 2,048 CPUs.
The code shows optimal scalability when solving mechanical
problems. Note that in contrast with the drill problem, the
amount of elements per core is significatively larger.

6.2 Example 2: The Chimera Method—Two-Material Cube

As an illustration of the flexibility of the Alya-solidz module,
the Chimera method is applied to the solid mechanics equa-
tions described in Sect. 2.1. This family of methods allows to
handle non-conforming and overlapping meshes, thus simpli-
fying the construction of computational meshes of complex
geometries.

The origin of the Chimera Method is found in the con-
text of Computational Fluid Dynamics. It was originally
developed by Steger and coworkers [22,75,76]. It consists
in superimposing an independent mesh referred to as the
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Fig. 14 Example 1: Initial mesh of the structure (left) and detail of the
mesh after mesh multiplication (right). Fusion reactor vacuum vessel.
Geometry and mesh property of F4E

Fig. 15 Example 1: Displacement field after 200 iterations using and
implicit scheme

patch mesh on a larger mesh covering the overall compu-
tational domain and called the background mesh. In Alya,
the patch mesh and its corresponding constitutive proper-
ties are responsible for the mechanical deformation of the
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Fig. 16 Example 1: Scalability of the fusion reactor problem with a
mesh of 32 million elements

Fig. 17 Example 2: Extension elements and hole (left) and boundary
conditions (right)

body it covers, while the mechanics of the rest of the body
is defined by the part of the background mesh not covered
by the patch mesh. The coupling between the boundary of
the patch mesh and the background mesh is then enforced
by additional transmission conditions. In the framework of
solid mechanics, this non-local approach allows for the inde-
pendent meshing of complex intertwined geometries without
being constrained by mesh conformity conditions at their
boundaries. See Ref. [29] for more details.

The Chimera method is applied here to the solution of a
3D example shown in Fig. 17. The geometry is composed
of two different Neo-Hookean materials, one of which cor-
responds to the spherical patch mesh enclosed in a second
material. In this example arbitrary constitutive parameters
have been considered for both material, but material 2 (within
the sphere) is stiffer than material 1. The cube is submitted
to an increasing y-displacement on the top face, the bottom
face being constrained in the y-direction. Additional lateral
boundary conditions are applied to avoid rigid body motion
(not shown for clarity).
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Table 2 Example 2: Number of
elements and mesh size Elements total Elements extension Elements hole Elements size

Mesh 1 374,848 14,848 17,120 0.0029

Mesh 2 2,939,664 59,664 151,448 0.00036

Reference mesh 10,790,400 0.000093

Fig. 18 Example 2: Solution
on mid yz-plane for the three
meshes: y-displacement (top)
and stress along the y-direction
(middle) and computational
mesh (bottom)

σ
m

es
h

The problem was solved on two different meshes with the
Chimera method: a coarse one of 400,000 elements and a
fine one of 3 million elements. A reference solution without
the Chimera method was also computed in a refined mesh of
10 million elements. Table 2 shows the geometrical details
of the three different meshes. Figure 18 shows the displace-
ment and stress in the y direction as well as the corresponding
mesh obtained on the mid yz-plane for the coarse and fine
meshes of the Chimera method. For the Chimera meshes, the
extension elements used to couple the patch and background
mesh are delimited in red. Figure 19 shows the solution for an
additional cut along the vertical displacement and stress. The
solution on both meshes with the Chimera method is com-
pared with the reference one. A good qualitative agreement is
observed for the displacement even for the larger mesh. The
stress exhibits a lower convergence, but this should be tem-
pered by the fact that the meshes are only first order for the
solution derivatives. In the overlapping zone, covered by the
extension elements, two solutions coexist: the one obtained

on the patch and the one obtained on the background. The dis-
continuity in the stress inside the overlapping zone is appre-
ciable for the coarsest mesh, but this jump decreases when
refining the mesh. Nevertheless, the maximum error between
the solution with Chimera computed with the fine mesh and
the reference solution is of order less than 10−4.

6.3 Example 3: Coupled Electro-mechanical Model of the
Heart

In this case, Alya is used to simulate the cardiac ventricu-
lar contraction, showing the potential for simulating coupled
problems. See Ref. [56,80] for a complete discussion of the
methodology. The heart is made of elongated cells called
myocites arranged as a compact fibered helicoidal structure.
As an electrical impulse propagates, the fibers contract longi-
tudinally making the heart pump the blood out of its cavities
thanks to the fiber arrangement. At organ level, tissue is con-
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Fig. 19 Example 2: Solution
along mid line of mid yz-plane
for the three meshes:
y-displacement (left) and stress
along the y-direction (right)

sidered as a continuum composite material with anisotropic
behaviour.

The cardiac computational model can be decomposed into
three parts:

– Electrophysiology: Action potential propagation φ(xi , t)
is modelled through a transient anisotropic diffusion
equation with a non-linear reaction term:

∂φ

∂t
= ∂

∂xi

(
Di j

∂φ

∂x j

)
+ L(φ) (19)

Diffusion is governed by the tensor Di j , which represents
the fiber orientation at each physical point. Its diagonal
components are the axial and crosswise fibre diffusion.
The crosswise diffusion is around one third of the axial
diffusion. Finally, L(φα) is the non-linear reaction term
corresponding to the cell model. Depending on the model
used, this term ranges from a simple cubic equation to
an ordinary differential equation system of one hundred
equations coupled and solved simultaneously. This term
models the ionic currents interaction behind the muscular
cellular mechanisms.

– Mechanical deformation: From a mechanical point of
view, cardiac tissue is a thick layered structure:
endo-, epi- and myocardium. The material is compress-
ible hyperelastic, with anisotropic behaviour ruled by the
fibre structure. The composite character of the material
is determined by the internal stress, which is developed
in two parts, active and passive:

σ = σ pas + σact (λ, [Ca2+]) f ⊗ f (20)

The passive part is governed by a transverse isotropic
exponential strain energy function W (b) that relates the
Cauchy stress σ to the right Cauchy-Green deformation
b [56]:

Jσ pas = (a eb(I1−3) − a)b + 2a f (I4 − 1)eb f (I4−1)2

f ⊗ f + K (J − 1)I (21)

The strain invariant I1 represents the non-collagenous
material while strain invariant I4 represents the stiffness
of the muscle fibers, and a, b, a f , b f are parameters to
be determined experimentally. K is the bulk modulus
and f defines the fibre direction. The active part comes
through the electro-mechanical coupling and is described
as follows.

– Electro-mechanical Coupling: The contracting electrical
component of the electro-mechanical coupling is initi-
ated almost simultaneously in several zones of the ven-
tricular epicardium. Cardiac mechanical deformation is
the result of the active tension generated by the myocytes.
The model assumes that the active stress is produced only
in the direction of the fibre and depends on the calcium
concentration of the cardiac cell:

σact = γ
[Ca2+]n

[Ca2+]n + Cn
50

σmax (1 + β(λ f − 1)). (22)

In this equation, Cn
50, σmax , λ f and 0 < γ < 1 are model

parameters.

Both electrophysiology and mechanical action is simu-
lated in Alya on the same mesh, as fine as the case demands.
The time integration scheme is a staggered, with both prob-
lems solved explicitly. The fibre fields can come either from
measurements (using a so-called Diffusion Tensor MRI tech-
nique) or from semi-empirical rule-based models [56].

Figure 20 shows several snapshots of a bi-ventricular
geometry during systole. Figure 21 shows the evolution of
the ejection rate, which represents the heart pumping action,
measuring the change in the ventricular cavities volume.

6.4 Example 4: Fluid–Structure Interactions—Wall’s
Problem

This problem [84] is proposed to demonstrate the ability
to solve FSI problems with complex flow-flexible structure
interactions exhibiting large deformations.

The problem consists of a thin elastic nonlinear shell
attached to a fixed square rigid body, which are submerged
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Fig. 20 Example 3: Bi-ventricular electrical activation propagation of a dog heart during systole
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Fig. 21 Example 3: Heart ejection rate

in an incompressible fluid flow. Both media have arbitrary
mechanical properties but such that the Reynolds number is
Re = 204 if the length of the square rigid body is taken
as the characteristic length. Inflow boundary conditions are
imposed on the left wall of the fluid domain, outflow on the
right wall and slip boundary conditions at the top and bottom

Fig. 22 Example 4: Boundary conditions

Fig. 23 Example 4: reference finite element mesh
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Fig. 24 Example 4: fluid velocity field for different times

wall, see Fig. 22. Non-slip boundary conditions are imposed
along the body and the structure. Again, both problems are
solved using Alya.

The finite element mesh is shown in Fig. 23. It consists
of a hybrid mesh of 6,919 elements, composed of tetrahedra
and quadrilateral elements. The fluid domain contains 6,695
elements, while the solid one has 224 elements.

A weak coupling scheme [15,78] was used to couple the
fluid with the structure. The key point of the strategy imple-
mented in Alya is to divide geometrically the problem in
non-overlapping fluid and solid zones, such that by properly
distributing the amount of processors working within each
zone, the amount of computations performed by the CPUs is
optimized.

Figure 24 shows the structural displacement at different
times t = 0, 3.58, 7.01 and 15.58s along with the fluid veloc-
ity. Note that the mesh is adapted to the solid structure dis-
placement, since the ALE formulation used here computes
the convective velocity of the fluid according to the differ-
ence between the material and mesh velocities. The results
can be compared to the ones obtained in Ref. [84].

7 Conclusion

This paper presents the solid mechanics module of Alya code
for solving linear and non-linear continua problems with
large deformations addressing also the potential for solving
complex coupled problems in parallel. The parallelization
strategy used in Alya is formally described in the context

of MPI communications. To enhance the massively parallel
performance of the code, OpenMP directives were added to
the current MPI Alya code. The code was tested success-
fully using thousands of CPUs to solve problems with up
to millions of elements. The flexibility of solid module in
Alya was demonstrated by using more complex preprocess-
ing techniques, such as a mesh multiplication algorithm and
the Chimera method. Those were successfully tested with
three-dimensional structural tests showing optimal results.
Examples of FSI and electro-mechanical coupling were also
shown, demonstrating the capability of the code for solving
multi-physic problems with high-performance computing.
Future work is aiming at implementing more complex FE
techniques and overcoming the barrier of more than 100,000
CPUs.
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