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Abstract

CFD modeling of turbulent free surface flows has become an important tool in the design of ship hulls. A two-fluid flow
solver that can predict the flow pattern, free surface shape and the forces on the ship hull is presented. The discretization
is based on unstructured linear finite elements, tetrahedras and prisms. A Variational Multiscale Stabilization technique
known as Algebraic Sub Grid Scale Stabilization (ASGS) is used to deal with convection dominated flows and allow for
equal order velocity-pressure interpolations. A fixed grid method that captures the position of the interface with the
Level Set technique is used to simulate the two-phase flow. The jump in the fluid properties is smoothed in a region
close to the interface. Spalart Allmaras and SST k-w turbulence models have been tested without showing significant
differences. The need to accurately predict the viscous forces on the ship hull has motivated the use of anisotropically
refined prism elements close the hull. Such meshes have challenged the capabilities of the equation based reinitialization

techniques that we had previously used for the Level Set method.
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1. Introduction

Ship design currently depends more heavily on the CFD
modeling of turbulent free surface flows than on tank and
wind tunnel testing as indicated by the results of the two
most competitive boat races, America’s Cup and Volvo
Ocean Race [1]. Simulations are cheaper, faster and more
reliable than traditional test for boat design. Moreover,
thanks to the constant increase in computer memory and
speed, together with improvements in the numerical algo-
rithms, the costs are constantly decreasing. Simulations
are run at full scale avoiding errors due to scaled test. If
scaled experimental results exist, running simulation with
both the scaled and real sizes can indicate errors due to
the scaling process. Enhanced flow visualization and force
decomposition, provides much richer information than the
one measurable in tank tests leading to a much better un-
derstanding of the flow phenomena.

CFD approaches for free surface and two-fluid prob-
lems can be categorized into two main groups: Fixed mesh
interface capturing techniques and moving mesh interface
tracking techniques. For complex problems the interface
capturing approach is usually preferred. Alya code uses
a Level Set technique [2, 3] to capture the position of the
interface. Fixed mesh methods generally share two basic
steps, one where the motion in both phases is found as
the solution of the Navier—Stokes equations with variable
properties and the other one, where an equation for an
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interface function that allows to determine the position of
the interface, and thus the properties to be assigned in the
Navier—Stokes step, is solved.

The numerical formulation presented here to solve the
incompressible Navier—Stokes equations uses a time dis-
cretization based on the standard trapezoidal rule and
a stabilized finite element method referred to as Alge-
braic Sub-Grid Scales (ASGS) [4]. Tt is designed to allow
both equal velocity—pressure interpolations (thus avoiding
the need to satisfy the classical inf-sup condition) and to
deal with convection—dominated flows, that is, situations
in which the cell Reynolds number is greater than unity.

The Level Set method leads to a transport partial dif-
ferential equation the solution of which determines the po-
sition of the free surface as an isovalue of the unknown of
this equation, which we will call ¥. This equation is hyper-
bolic and therefore it is also necessary to use a stabilized
finite element method to solve it. The proper function-
ing of the Level Set technique requires that the module
of the gradient of the Level Set function is close to one.
As the flow evolves it deviates from this value and there-
fore the Level Set function needs to be reinitialized. The
reinitialization of the Level Set function consists in find-
ing a new Level Set function with module of its gradient
close to one and that minimizes the displacement of the
interface during the reinitialization. In ship hydrodynam-
ics the need for reinitialization is particularly noticeable in
the bow and stern. The use of anisotropic refined meshes
close to the ship hull to accurately model the viscous forces
poses important difficulties to differential equation based
reinitialization techniques.

Accurate viscous solutions require refined meshes close
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to the wall. In order to simulate flows at high Reynolds
numbers the use of turbulence models is mandatory. In
ship hydrodynamics, the usual approach is to use a fam-
ily of models known as Reynolds averaged Navier Stokes
(RANS). The two most popular approaches are Spalart
Allmaras [5] and SST k-w [6]. Our numerical experiments
indicate that for the problems we have tested there is no
significant difference between the results they provide. For
the examples presented in this paper we use SST k-w.

The remainder of the paper is organized as follows.
In Section 2 we describe the mathematical model used
to solve the Navier—Stokes equations and in Section 3 we
briefly describe the Level Set Method used. Finally in
Section 4 we present some numerical examples.

2. The two-fluid Navier Stokes equations

The velocity and pressure fields of two incompressible
fluids moving in the domain 2 = 2 U Q5 during the time
interval (to,tr) can be described by the incompressible
two—fluid Navier—Stokes equations [7]:

p[@tu+(u~V)u Vo (—pLt2us () =£, (1)
V-u=0, (2

where p is the density, u the velocity field, u the dynamic
viscosity, p the pressure, e(-) the symmetric gradient oper-
ator and f the vector external body forces, which includes
the gravity force pg and buoyancy forces, if required. The
density, velocity, dynamic viscosity and pressure are de-
fined as
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where €27 indicates the part of Q occupied by fluid number
1 and s indicates the part of  occupied by fluid num-
ber 2. The extent of €23 and {29 is given by the level set
function . To ensure stability the density and viscosity
jumps are smoothed at the interface [8] using a smoothed
Heaviside function.

Let o be the stress tensor and n the unit outward nor-
mal to the boundary 9. Denoting by an over-bar pre-
scribed values, the boundary conditions to be considered
are:

u=1u
n-o=ty,
n-o—n-o-n)n=ty,

on I'qy X (to,ﬁf),
on Fnu X (to,tf),
on qu X (to,tf).

(3)
Observe that I'g, is the part of the boundary with Dirich-
let velocity conditions, 'y, the part with Neumann con-
ditions (prescribed stress) and T'y,, the part with mixed
conditions. These three parts do not intersect and are a
partition of the whole boundary 0f). t, is the traction on
'y and ty, is the tangential component of the traction
on I'yy. In this work t,,, is calculated with a Reichardt’s

u-n=0,

wall law [9]. Initial conditions have to be appended to the
problem.

Let po be the initial density for a flat free surface and
f =p g. We can subtract pg g from both sides of equation
(1) and suppose gravity is in the z direction, g = ge., to
obtain

p|oru+ (u- V)u| = V- (2pe (W) + ¥ (p—po) = (0 —po) &

where pg is the initial hydrostatic pressure calculated as

z
po:/ po g dz,
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where z¢4o is the z coordinate of the initial flat free sur-
face and z is the z coordinate of any point in the domain.
Now we can define a new pressure, p*=p—pg, and a cor-
responding stress tensor o* = —p*I 4 2ue (u). This is
the approach we use in our code and the pressure we have
plotted for in the numerical examples is p*. The boundary
condition at the outlet in the normal direction is then sim-
ply n-o*n = 0. At the continuous level this is equivalent
to prescribing the normal traction, n - ¢ - n, equal to the
initial hydrostatic pressure.

The equations are discretized in space with the finite
element method. ASGS [4] stabilization is used to deal
with convection-dominated flows and to circumvent the
well known div-stability restriction for the velocity and
pressure finite element spaces [10], allowing in particular
equal interpolation for both unknowns. For the time dis-
cretization the generalized trapezoidal rule is used and the
convective term is linearized using a Picard scheme.

A straightforward way to solve the discretized Navier-
Stokes equations is to consider the monolithic scheme, that
is to solve the momentum and continuity equations in a
coupled way. This approach can lead to badly conditioned
systems that would require very robust preconditioners
such as ILU that have bad speedup properties, preclud-
ing their use on large scale computers. The most common
approach to avoid this bad conditioning is to use fractional
steps techniques [11, 12, 13, 14, 15] that uncouple veloc-
ity and pressure but introduce errors due the splitting.
In this work we use an Orthomin(1) solver [16] that con-
verges to the monolithic scheme and uses an approximate
Schur complement preconditioner similar to fractional step
schemes, thus leading to similarly well conditioned systems
[17, 18]. Tt has proved to be sequentially efficient and ca-
pable of scaling up to thousands of processors.

3. Implementation of the level set method

The basic idea of the level set method is to define a
smooth scalar function, say ¢ (x,t), over the computa-
tional domain () that determines the extent of subdomains
Q; and €. For instance, we may assign positive values
to the points belonging to ©; and negative values to the
points belonging to 23. The position of the fluid front will



be defined by the iso-value contour ¢ (x, t) = 0. The evolu-
tion of the front v = 0 in any control volume V; C 2 which
is moving with a divergence free velocity field u leads to:

op+(u-V)p=0 (4)

Function 1 is the solution of the hyperbolic equation (4)
with the boundary conditions:

=19
$(x,0) = ho(x)

The initial condition v is chosen in order to define the ini-
tial position of the fluid front to be analyzed. The bound-
ary condition 1) determines which fluid enters through a
certain point of the inflow boundary.

Due to the pure convective type of the equation for 1,
we use the SUPG technique for the spatial discretization.
Again, the temporal evolution is treated via the standard
trapezoidal rule.

For the numerical solution of the level set equation
it is preferable to have a function without large gradi-
ents. Since the only requirement such a function must
meet is 1 = 0 at the interface, a signed distance function
(| V| =1)is used. Under the evolution of the level
set equation, ¥ will not remain a signed distance function
and thus needs to be reinitialized. This can be achieved
by redefining v for each node of the finite element mesh
according to the following expression:

¢ =sgn(v°)d

where 19 stands for the calculated value of v, d is the dis-
tance from the node under consideration to the front, and
sgn(-) is the signum of the value enclosed in the parenthe-
sis.

In Figure 1 we show the level set function on the sym-
metry plane of a race boat hull together with the velocity
field close to the bow and stern. Close to the bow the Level
Set contour lines close to the zero contour are spread out
as they are transported by the flow leading to low Level
Set gradients. On the contrary, close to the stern the Level
Set contour lines are clustered by the flow leading to high
gradients. Both situations are unfavorable and these are
the two regions were reinitialization is needed most.

In order to calculate the distance d we are currently us-
ing a geometrical method based on a skd-tree [19]. Com-
puting the distance from a point to a surface mesh is a
crucial issue in the implementation of the level set reini-
tialization. For each point where one wants to know the
distance, it involves searching among all the triangular
faces into which the surface is divided the one that gives
the minimum distance. This search can affect the perfor-
mance of the whole system in a negative way: the time
of simulation can grow considerably. To reduce the num-
ber of computations of this expensive task, we use geo-
metric search structures to define the surface mesh. Our
implementation uses a bounding volume hierarchy known

on I'jne X (to,tf),

Figure 1: Need for reinitialization on a race boat hull.

as skd-tree. In these binary trees each node has a set of
faces of the surface mesh and their corresponding asso-
ciated bounding volume. The implementation details for
building these structures are described in [19].

Reference [19] also describes a way to use the skd-trees
to determine the distance between a point and the surface
mesh. The idea is to minimize an upper bound on the
distance between the point and the surface mesh while
traversing the binary tree from the root node. This upper
bound is computed as the distance to the farthest point in
the bounding volume corresponding to the current node.

In our experience, better results are obtained if we first
visit the nodes whose bounding volumes are closest to the
point when we traverse the tree from the root node. In
our implementation, no list of candidate nodes is used.

We have also tested differential equation based reini-
tialization [2, 3]. Differential equation is efficient and has
good scalability. We have found it works fine with isotropic
meshes without boundary layer prism elements. Unfor-
tunately it shows poor robustness on anisotropic meshes,
such as the ones used in this work. This is the main reason
why we have preferred geometric reinitialization.

Despite geometric reinitialization has been implemented
in parallel, the implementation must still be improved to
obtain an acceptable scalability. The results presented
in the next Section have been calculated using geometri-
cal reinitialization However, to show the scalability of the
method we have calculated 10 time steps without reini-
tialization on a mesh with 5 Melements (mesh B - next
Section). In Figure 2 we can see that the scaling is nearly
perfect up to 100 processors, that is 50000 elements per
processor.

4. Numerical Results

Numerical results for two different ship hulls are pre-
sented. The first one is the David Taylor Model Basin
(DTMB) model 5512, a 1:46.6 model scale of a modern
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Figure 2: Scalability results up to 500 processors on Marenostrum.

surface combatant. The second example is a full scale race
boat hull.

4.1. DTMB 5512

In order to benchmark our numerical results the flow
around the bare hull David Taylor Model Basin (DTMB)
model 5512, a 1:46.6 model scale of a modern surface com-
batant, is used. It has been tested in the towing tanks at
DTMB, ITHR (Iowa) [20] and INSEAN (Ttaly) [21]. It has
a sonar dome, which provides additional geometric com-
plexity. The DTMB 5512 model is L = 3.048 m long with
0.132 m draft. Results at Re = 4.85 x 10% and F'r = 0.28
will be shown.

Three different finite element meshes have been used.
The first one, that we shall call Mesh A, is formed by
8 Melements and 1.5 Mnodes. The second one, Mesh B, is
a slightly improved version of the previous one that takes
into account symmetry and therefore simulates only half
of the whole domain. It is formed by 5 Melements. Finally
Mesh C is obtained by dividing mesh B into elements with
half the size arriving to a total of 40 Melements. This
has been done automatically using the strategy presented
n [22]. All three meshes are formed mainly by tetrahedra
and include an anisotropic layer of prisms close to the hull.
Mesh B is shown in Figure 3 . It is refined close to the ship
hull and close to z = 0, the region where the free surface
is found. As we have said, the other two meshes are quite
similar.

In Figure 4 we compare the non-dimensional velocity
results at /L = 0.95 we have obtained with meshes B
and C against the experimental ones from [20] and [21].
Actually the results from [21] are for the same hull at a
bigger scale and Reynolds number but same Froude num-
ber and they are usually included in the comparisons (see
for example [23]). The results obtained with both meshes
reproduce the experimental results satisfactorily. Close to
the symmetry face the results with the divided mesh (C)

Figure 3: Mesh B and free surface.
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Figure 4: Non-dimensional velocity results at /L = 0.95 for the
5512 hull. Top: experimental data [20]and [21], bottom: numerical
results meshes B(left) and C(right).

show some improvements compared to the original mesh
(B).

Figure 5 presents the non-dimensional turbulent ki-
netic energy distribution at /L = 0.95. The experimental
results are from [20] and the numerical ones from meshes
B and C. The discrepancy between numerical an experi-
mental results is higher than for the velocity. Comparable
discrepancies can be observed in the literature. For exam-
ple, in [23], where several numerical and turbulence models
have been tested, the discrepancies in the turbulent kinetic
energy are even greater than ours and different scales have
been used to plot the different numerical and the exper-
imental results. Our numerical results with mesh B are
closer to the experimental ones than those obtained with
the divided mesh (C). No clear explanation can be found
for this behavior and it seems to be only a coincidence.
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Figure 5: Non-dimensional turbulent kinetic energy distribution at
/L = 0.95 for the 5512 hull. Top: experimental data [20], bottom:
numerical results meshes B(left) and C(right).

In Figure 6 we compare the wave elevation profiles ob-
tained with meshes B and C against the experimental re-
sults from [20]. The result with the original mesh are ac-
ceptable but, as one could expect, they are significantly
improved with the divided mesh. One wave that is not cap-
tured by the original mesh can be observed. It is marked
with an arrow in the numerical results corresponding to
mesh C in Figure 6.

An additional comparison between the wave elevation
profiles behind the ship hull obtained with meshes B and
C is presented in Figure 7. It reconfirms the improvements
in the shape of the free surface that can be obtained with
a finer mesh.

Table 1 presents the forces on the ship hull. The value
for the viscous force included in the experimental column is
actually not an experimental value but has been obtained
from the model-ship correlation line (ITTC 1957). The
agreement between numerical and experimental results is
very satisfactory. The improvements introduced in mesh
B compared to mesh A have had a very positive impact.
They have consisted in reducing the element sizes close the
bow and stern. Dividing mesh B into elements with half
the size has not improved the results for the force on the
ship hull. Instead it has worsen the pressure forces slightly.
It is important to note that if one is mainly interested on
the forces on the hull, very fine meshes do not seem to
introduce much improvements, at least with RANS turbu-
lence models.

FD (Longo et al. 200 *a.)
/ ’,r/:;?)'

J
5

Figure 6: Non dimensional wave elevation profiles for the 5512 hull.
Top: experimental data [20], middle: numerical results mesh C, bot-
tom: mesh B. Contours levels are from —5 x 103 to 5 x 10% with
intervals of 5 x 10%.

Figure 7: Non dimensional wave elevation profiles for the 5512 hull.
Top: mesh C, bottom: mesh B.

Exp Mesh A Mesh B Mesh C
T, [N|(fotal) 7432 7.67 741 7.30
Fy,[N] (viscous)  5.52 5.68 5.54 5.54
Fp,[N](pressure) 1.99 1.87 1.76

Table 1: Forces on the DTMB hull
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Figure 8: Density on race boat hull. Top: Original mesh, bottom:
Divided mesh.

4.2. Full scale race boat hull

The second numerical example involves simulating a
real race boat hull. Despite there are no experimental
results for this hull it is interesting to test the behavior
of our code at a real scale hull that results in a higher
Reynolds number flow. It is L = 10.85m long and moves
at 5.144m/s. This result in Re = ULp/p = 4.7 107 and
Fr=U/(vgL) = 0.4985.

Two finite element meshes have been used. The first
one is formed by 2.12 Melements and 0.36 Mnodes. The
second one is obtained by dividing the original mesh into
elements with half the size arriving to total of 16.9 Mele-
ments and 2.88 Mnodes. As in the DTMB case, they are
formed mainly by tetrahedra and include an anisotropic
prisms layer close to the hull.

The density obtained with both meshes is presented in
Figure 8. No significant differences can be observed. A
region with smoothed properties close to the interface as
can be observed as explained in Section 2.

The pressure on the ship hull is presented in Figure 9.
Once again very slight differences can be observed. The
tangential stress on the ship hull, Figure 9, show only mi-
nor differences in the central part of the hull close to the
bow.

The excellent agreement observed on the previous three
Figures results in a similar agreement for the forces on
the race boat hull as shown in Table 2. The differences
for total, viscous and pressure forces are less than 2%.
This indicates that the method is able to provide very

Dynamic Pressure (Pa)

Figure 9: Pressure on race boat hull. Top: Original mesh, bottom:
Divided mesh.
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Figure 10: Tangential Stress on race boat hull. Top: Original mesh,
bottom: Divided mesh.
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Figure 11: Boat hull Wave Elevation. Top: Original mesh, bottom:
Divided mesh.

acceptable results for the forces on the hull with relative
coarse mesh, a highly desirable feature.

the wave pattern accurately finer meshes are needed. Tur-
bulent kinetic energy seems to be the most difficult result
to calculate, but a similar behavior has been observed in
the literature.

The results in this work correspond to the simplest
case of a hull in a fixed position without incoming waves.
Future work should include incoming waves and a moving
hull. Moreover taking into account the high scalability of
the code, fleet interaction could be simulated. If improved
results are sought, turbulence modelling could be improved
restoring to more advanced models such as Detached Eddy
Simulation and its improved variants.
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