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An aortic dissection (AD) is a serious condition defined by the splitting of the arterial wall, thus generating a secondary
lumen [the false lumen (FL)]. Its management, treatment and follow-up are clinical challenges due to the progressive aortic
dilatation and potentially severe complications during follow-up. It is well known that the direction and rate of dilatation of
the artery wall depend on haemodynamic parameters such as the local velocity profiles, intra-luminal pressures and resultant
wall stresses. These factors act on the FL and true lumen, triggering remodelling and clinical worsening. In this study, we
aimed to validate a computational fluid dynamic (CFD) tool for the haemodynamic characterisation of chronic (type B)
ADs. We validated the numerical results, for several dissection geometries, with experimental data obtained from a previous
in vitro study performed on idealised dissected physical models. We found a good correlation between CFD simulations and
experimental measurements as long as the tear size was large enough so that the effect of the wall compliance was negligible.
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1. Introduction

Aortic dissections (ADs) represent an important subgroup

within the aortic diseases and are associated with a high

morbidity and mortality (more than 50% in the acute

phase) (Hagan et al. 2000). In particular, during the

chronic phase, descending ADs (type B) result in a high

long-term morbidity and mortality because of dissection

recurrence, progressive lumen dilatation [particularly of

the false lumen (FL)] and aortic rupture (Fattori et al.

2011).

The haemodynamics within the lumina is one of the

underlying factors associated with the progression of

chronic ADs (Gimbrone et al. 2000; Davies et al. 2005).

The intra-luminal pressure has a direct effect on the aortic

wall, determining local tissue mechanical stress. High

pressures are therefore important risk factors for worse

prognosis. Clinical observations show that the presence of

large proximal tears (Evangelista et al. 2012) and a patent

FL (Erbel et al. 1993) show a worse prognosis, which may

be due to the high resultant FL pressures (Rudenick et al.

2013) and the associated wall stress. However, in clinical

practice, intraluminal pressures cannot be measured non-

invasively.

Currently, the use of numerical tools to simulate and

characterise blood dynamics in the cardiovascular system

is becoming more easily available. Especially, the

application of computational fluid dynamic (CFD)

simulations is emerging in the biomedical field and is

presented as a reliable methodology to study cardiovas-

cular diseases based on simulated haemodynamic

parameters, such as pressures and wall shear stress.

However, validation of these numerical results is of

particular interest, and although there are some CFD

studies oriented to the assessment of haemodynamics in

type B ADs (Karmonik et al. 2011, 2012), in none of them

a quantitative validation of the computational solutions

has been performed.

Therefore, this study was aimed at applying a CFD

methodology to the characterisation of haemodynamics in

chronic ADs (through the assessment of pressures in the

lumina) for four different (idealised) dissection geometries

and validating it with the in vitro results from a previous

study (Rudenick et al. 2013).

2. Methodology

The idealised geometric characteristics of the compu-

tational models, rheological data of the test fluid and the

inflow and outflow boundary conditions for the numerical

finite element method (FEM) simulations were based on

the results from a previous in vitro study (Rudenick et al.

2013). We used the experimentally measured in vitro

pressures, at different sites of the dissected segment, to

validate the values predicted by the numerical model.

q 2013 Taylor & Francis
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2.1 Computational models

Based on the geometry and dimensions of the physical

phantoms, used in the in vitro study (Rudenick et al. 2013),

the computational three-dimensional (3D) finite element

models and fluid meshes were constructed with GiD

(CIMNE, Barcelona, Spain) (Figure 1) (CIMNE 2006;

Bordone et al. 2010). The generic geometry consisted of

two channels, the true lumen (TL) and the FL (surrounding

the TL), connected by circular holes, representing the

proximal and distal tears (Figure 2). The dimensions of

the computational model were as follows: TL diameter,

14mm; dissected segment diameter, 40mm; FL length,

160mm; dissection flap thickness, 2mm and TL length,

390mm. The centres of the proximal and distal tears were

located at 175.5 and 320.5mm, respectively, from the inlet

of the model.

Four typical dissection geometries (Table 1), found in

clinical practice, were numerically validated. These

geometries represent different anatomic configurations,

varying tear size (with a diameter of 4mm ¼ a ‘clinically’

small tear or 10mm ¼ a ‘clinically’ large tear), location

(distal/proximal) and number (1/2).

The computational meshes consisted of ,1.5–2

million tetrahedral elements with a size range of 0.5–

1.0mm. A mesh sensitivity analysis was performed to

ensure a smooth element with a tetrahedral element aspect

ratio above 0.9 (ideal ratio ¼ 1 for an equilateral triangle).

2.2 Numerical simulations

CFD simulations were performed using the CFD code

Tdyn [CompassIS, Barcelona, Spain (Compass website)].

This code solves the Navier–Stokes equations for an

incompressible and homogeneous Newtonian fluid using a

stabilised FEM.

We used water at 258C as perfusion fluid, with a density

of 996 kg/m3 and a viscosity of 0.86 £ e23 kg/(m s).

We assumed it to be incompressible, homogeneous and

Newtonian, with no external forces applied on it.

The no-slip wall of the dissection model was assumed

to be rigid (1a). Since in chronic dissections there is

reduced flap motion, a rigid flap is a good first

approximation. In addition, Leung et al. (2006) suggested

that the difference in flow-induced pressure variations and

consequent wall stress between rigid and elastic aortic

models is negligible.

Time-dependent flow and pressure waveforms,

obtained from the in vitro experiments, were applied at

the inlet and outlet of the fluid domain, respectively.

A fully developed parabolic velocity profile was applied at

the inlet (1b), and a time-dependent normal traction,

according to the luminal pressure profile, is imposed at the

outlet (1c). Mathematically, these boundary conditions can

be expressed as follows:

V ¼ 0jwall; ð1aÞ

uz ¼ 2ðuðtÞÞ 12
2r

dr

� �2
 !

; ur ¼ 0jz¼0; ð1bÞ

tnn ¼ n̂·pðtÞI·n̂; ð1cÞ
where dr is the inner radius of the TL, ur is the Cartesian

components of the velocity vector in the Z-direction and

u(t) and p(t) are the time-dependent velocity and pressure

waveforms taken from the in vitro experiments. Pressure

boundary conditions are given by (1c), where tnn is the

normal traction at the outlet, I is the standard identity

matrix and n̂ represents the normal vector of the

respective boundary.

Due to the high Re number within the tear areas, a

turbulencemodel is included. The turbulencemodel chosen

was the Spalart–Allmaras model (Spalart 2000). The aim

Figure 1. Reproduction of the FEM geometry.

Figure 2. Generic geometry of a type B AD.

Table 1. Scenarios validated in the study.

Case Proximal tear (mm) Distal tear (mm)

A 4 –
B – 4
C 10 4
D 10 10

E. Soudah et al.2
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of this model is to improve the predictions obtained from

algebraic mixing-length models to develop a local model

for complex flows and to provide a simpler alternative to

two-equation turbulence models. The model uses the

distance to the nearest wall in its formulation and provides

smooth laminar–turbulent transition capabilities. It does

not require a grid resolution in wall-bounded flows as fine

as the two-equation turbulence models, and it shows good

convergence for simpler flows. The empirical results used

in the development of the model were mixing layers, wakes

and flat-plate boundary layer flows. The model gives very

accurate predictions of complex turbulent flows. It also

shows improvements in the prediction of flowswith adverse

pressure gradients compared to k–e and k–v models.

The CFD simulations were performed over a time

period of 1.8 s (representing two cardiac cycles). The time

integration method chosen was a backward Euler, using

a biconjugate gradient non-symmetric solver (Barrett et al.

1994) in order to accelerate the calculation time

performance. We used a pressure stabilisation of fourth

order and automatic velocity advection stabilisation. The

total CPU time for a single CFD analysis in a standard PC

with Microsoft Windows XP, 32-bit, 4GB RAM and dual-

core 2.83GHz CPU was about 10 h depending on the case.

For each simulation analysis, we assessed the intra-

luminal pressures in the FL and TL at the distal and

proximal sites of the dissected model, where appropriate

(Figure 2).

Figure 3. Schema of the dynamic flow circuit used for the
in vitro experiments.

Figure 4. In silico FEM geometries (right) and schematic representation (left) for the four in vitro type B AD scenarios. From top to
bottom: Case A, Case B, Case C and Case D.

Computer Methods in Biomechanics and Biomedical Engineering 3
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2.3 In vitro data

For validation of the numerical simulations, we used the

set-up and experimental data from a previous in vitro study

(Rudenick et al. 2013).

The in vitro set-up consisted of a dynamic flow circuit

mimicking the cardiovascular system, where a pulsatile

pump, a compliance chamber, a dissection phantom and a

collecting system were connected in series (Figure 3).

The phantom was a compliant model made of latex and

silicone to recreate a simplified typical AD, where FL and

TL are connected by circular holes resembling the tears in

the dissection flap.

Pressures were measured, using retrograde catheter-

isation, within the FL and TL of the model at a proximal

and distal site, using a pressure transducer (SPC-350 5F,

Millar Instruments, Texas, USA). Only for Case A, the FL

distal pressure could not be measured using this approach,

since the catheter could not be bended 1808. Flow traces

were measured at the inlet of the model, 15 cm before the

dissected segment, with an ultrasonic flow meter

(Transonic Systems, Inc., Ithaca, NY, USA). Pressure

and flow measurements were registered/digitised using

a PowerLab 16/30 with LabChat Pro acquisition and

analysis software (ADInstruments, Colorado Springs, CO,

USA). A more detailed description of the in vitro set-up

can be found in Rudenick et al. (2013).

2.4 In silico configurations and imposed boundary
conditions

Figure 4 shows the four configurations of ADs modelled

together with the sites where in vitro pressures were

available and in silico pressures were validated.

Figure 5 (top) shows the in vitro pressure profiles

measured at the outlet in the hydraulic model for the four

dissection configurations. Note that the pressure waveform

was realistic, representing normal haemodynamic con-

ditions in this area of the human aorta, with a peak pressure

occurring at an interval 0.27–0.3 s and a biphasic diastolic

period. Figure 5 (bottom) shows the velocity profiles

Figure 5. Pressure profiles measured at the outlet (top) and velocity profiles computed from the flows measured at the inlet (bottom) of
the in vitro models for the four dissection scenarios.

E. Soudah et al.4
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computed from the flows measured at the inlet for the four

configurations in the hydraulic model. The cycle period

has a duration included between 0.88 and 0.95 s, with a

peak flow occurring at 0.18–0.2 s.

3. Results

In this section, we compare the in vitro pressure

waveforms with the numerical predictions. It is important

to stress that none of the parameters involved in the

simulation have been tuned, except for phase matching of

the onset of the experimental and numerical systolic

ejections during data post-processing.

3.1 Comparison between experimental and numerical
results

Figures 6–9 show the comparison between the exper-

imental and numerical pressure waveforms at four

representative points for each of the dissected models.

For each model, the inlet pressures together with relevant

points in the TL and FL are presented. Table 2 provides the

numerical values for the difference between measured and

simulated cases.

In all cases, the inlet and TL pressures are very similar

for the measured and simulated traces. Since the outlet

pressure was used as a boundary condition, the further

away from it towards the inlet, the more different the

pressure curve, but differences are within acceptable

levels. This can be caused by differences between the

numerical and experimental models (rigid/elastic wall)

and some uncertainties in the experimental set-up (e.g. the

exact location and position of the catheter inside the aorta),

which makes it more difficult to exactly compare the

in vitro and in silico measurements.

For cases with at least one large hole (Cases C and D),

the FL pressures are also very comparable between

measurements and simulations.

Figure 6. Case A: pressure comparison between in vitro (red dotted line) and FEM results (blue line) in proximal and distal TL sites.

Computer Methods in Biomechanics and Biomedical Engineering 5
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Only for cases with only one small hole (Cases A and B),

the FL measured pressures are clearly different from the

simulated pressures, while the shapes and values of the

profiles at the TL positions are quite similar. Since the

measured values aremuch lower and seem to have been low-

pass filters, the difference can be explained to a large extent

by the difficulty to reproduce theexperimentalmeasurements

in an elastic model with the numerical, rigid wall model.

In addition, all the pressure measurements were done

using retrograde catheterisation (Evangelista et al. 2012),

Figure 7. Case B: pressure comparison between in vitro (red dotted line) and FEM results (blue line) in proximal and distal TL sites.

E. Soudah et al.6
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which may have caused partial obstruction of the tears,

thus reducing their effective size and altering the pressure

measurements at the proximal and distal FL (especially for

small holes as in Cases A and B).

Quantitatively, there are modest relative errors

between the numerical and experimental waveforms

(Table 2) for most of the measurements. Except for the

FL with only small holes, these errors, depending of the

point studied, are ,10% for the pressure profile. In Case

A, the TL error at the proximal section is ,9% and at the

distal section it is 0.3%, showing a good approximation for

the TL in this configuration of AD. In Case B, pressure

profiles at the TL are even closer to the experimental

measurements and the mean error is around 2% at the

Figure 8. Case C: pressure comparison between in vitro (red dotted line) and FEM results (blue line) in the inlet, proximal and distal TL
sites, and distal FL site.

Computer Methods in Biomechanics and Biomedical Engineering 7
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proximal TL and 0.2% at the distal TL. In case C, in the

inlet the error is 7.3%; in the distal FL and proximal TL

points, the errors are around 5%; and in the proximal TL,

the error is 4.64%. For the TL, the mean error in Case D is

3.64% with a maximum value of ,9.4%.

Therefore, we can conclude that the CFD simulation

are able to capture the main features of pressure traces

observed in vitro, such as the diastolic decay and peaking

and steepening of pulse pressure for the different points

measured in the TL and FL. Only in case of the presence of

Figure 9. Case D: pressure comparison between in vitro (red dotted line) and FEM results (blue line) in the inlet, proximal and distal TL
sites, and distal FL site.

E. Soudah et al.8

D
ow

nl
oa

de
d 

by
 [

U
ni

v 
Po

lit
ec

 C
at

] 
at

 0
7:

22
 2

8 
O

ct
ob

er
 2

01
3 



only small tears, the FL pressures are not reliable using

this approach.

4. Discussion

We have evaluated the use of a CFD methodology against

in vitro measurements in four idealised configurations of

chronic ADs. Following our previous findings (Rudenick

et al. 2010), on the complementarity of in vitro and in

silico approaches to assess haemodynamics in ADs of type

B, this is the first attempt, to our knowledge, to

quantitatively test the accuracy of a CFD model in the

prediction of intra-luminal pressures in different clinical

scenarios for this pathology.

Our results show the ability of the CFD model to

capture the main features of the experimental pressure

waveforms in the TL and also the FL, as long as the

connection between TL and FL is through large holes. The

average relative errors of the numerical predictions are

,10% for the pressure profile at all locations studied.

In general, relative errors are smaller at locations close to

the outlet boundary condition, where the pressure matches

its experimental counterpart. Discrepancies between

experimental and numerical results may arise from a

combination of the material properties of the in vitro and

in silico models, from the way that in vitro pressures are

measured and from the assumptions and simplifications of

the CFD model. We are comparing a flexible physical

phantom with a rigid computational model. Consequently,

the elasticity of the latex wall of the FL has an important

effect on damping the cyclic pressures and flows when

entering the FL through a small connection, thus resulting

in lower peak systolic pressures.

The pressures change along the geometry and it is

difficult to determine the exact position of the transducer

inside the phantoms and thus to exactly correlate the

in vitro measurements with the in silico predictions.

Despite the detected differences, in silico and in vitro

results show a similar behaviour, making them useful and

complementary to study the properties of ADs (which in

a lot of patients do have large communications). This

encourages the use of our CFD methodology to

characterise intra-luminal pressures in chronic ADs of

type B.

While our approach is not an in vivo validation, it has

the fundamental advantage of reducing the uncertainty

of the parameters involved in the numerical simulation.

While the phantom geometries are idealised models, their

dimensions are based on clinical and experimental

measurements, resulting in a generic model for parametric

studies. Indeed, although the experimental set-up is only

an approximation of a human AD of type B, it is able to

reproduce pressure and velocity waveforms clearly

representing those that can be expected physiologically

(Evangelista et al. 2012).T
ab
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AD is often associated with degeneration and

diminished compliance of the aortic wall. Independent of

the type of dissection (type A or B), most patients are

elderly (Mehta et al. 2004; Tsai et al. 2006), with an aortic

wall that has increased stiffness as a result of natural

fatigue failure in response to permanent cyclic stresses.

There are also other underlying factors in the clinical

history of these patients that may lead to vascular

remodelling and degradation of the aortic wall and thus

reduce its elasticity, such as hypertension, genetics

disorders as Marfan’s syndrome or atherosclerosis.

Under these considerations, a rigid-wall numerical model

was supposed to be appropriate for modelling ADs.

Nevertheless, it is not a good approximation when

communication between the lumina is not large enough,

in which the effects of wall compliance seem to play a key

role in intra-luminal haemodynamics. The inclusion of

wall compliance in the numerical simulations of these

cases and a detailed analysis of how it affects intra-luminal

haemodynamics are topics for further studies.

5. Conclusion

We have validated, in four different configurations of an

idealised chronic AD, the ability of our CFD methodology

to characterise intra-luminal pressures. The numerical

simulations were able to capture the main pressure wave

propagation observed in most phantom models, showing a

good correlation with the experimental TL intra-luminal

pressures as well with FL pressures in case of large

communications. From a clinical point of view, intra-

luminal pressure is one of the reported factors influencing

AD in the long-term evolution. Intra-luminal pressure has

a direct impact on the aortic wall, determining local tissue

mechanical stress, and that is why one of the preferred

treatments for patients with ADs of type B is an aggressive

blood pressure control. However, it has been shown that

the presence of large tears and patent FL is associated with

long-term complications and mortality (Evangelista et al.

2012). However, currently, intra-luminal pressures are

impossible to be measured in a non-invasive way and,

therefore, it is still not well understood how they are

affected by the communication between the lumina.

Hence, the CFD methodology presented could provide an

additional way for a better understanding of the

haemodynamic conditions and related clinical evolution

in patients with chronic ADs. Moreover, joining traditional

measurements, from imaging analysis, together with CFD

analysis, creating and using patient-specific or disease-

specific geometries with accurate boundary conditions,

might enable to obtain much more detailed information of

haemodynamic behaviour of the aorta. The fusion of these

approaches could offer improved information about wall

stress conditions in aortic diseases, in particular in ADs,

for predicting local remodelling induced by the same

physiological conditions as in a patient studied.
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