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ABSTRACT 

An interactive personal-computer program to 
optimize the frequency response of linear lumped 
circuits (CiOpt) is presented. 

CiOpt has proved to be an efficient tool in 
improving designs where the inclusion of more accurate 
device models distorts the desired frequency response 
and also in device modelling. The output of CiOpt are 
the element values which best match the obtained and 
the desired frequency response. 

The optimization algorithms used (Fletcher-Powell 
and Newton's method, which, respectively, make use of 
approximate and exact second order sensitivities) are 
fully described in DFD form. 

Analysis is carried out by obtaining the symbolic 
form of the transfer function H(s). 

This paper includes an application example. 

INTRODUCTION 

Optimization has proven to be an important stage 
in circuit design. Application fields where 
optimization techniques are used are nominal circuit 
design, design centering, worst-case design, device 
modelling, fault analysis, post production tuning . . .  

In this paper we describe a computer program 
(CiOpt), developed to optimize the frequency response 
of linear lumped circuits, that is able to effectively 
help the designer in nominal circuit design and device 
modelling. Starting with a suitable circuit structure 
and initial element values, CiOpt computes the values 
of the elements chosen to be trimmed that best match 
the obtained and the desired frequency response. 

DESCRIPTION 

A graphical interface allows the user to enter 
the circuit description (Fig. 4). Circuits may contain 
all types of circuit elements (R, L. C, controlled 
sources). Ideal and finite GB OpAmp models along with 
different macromodels for BJT and FET are also 
available. 

As a part of the description process, the user 
may select appropriate frequency and impedance scaling 
values in order to minimize the inherent errors of any 
numerical procedure. 

After this steps, a file containing a symbolic 
form of the equations resulting from the Modified 
Nodal Approach E11 is generated. 

After the circuit is described, the symbolic 
transfer function H(s) is obtained by interpolation on 
the unity circle [61. 

As a first step in the optimization process, the 
user may choose to get a plot of the magnitude of the 
frequency response over a specified range of 
frequencies. At this point, markers allow graphical 
input of samples of the desired response -along with 
their relative weights (Fig. 5 ) .  This data will be 
used to compute the error function defined as 
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where qi is the weight of sample i ,  Ai is the desired 
and IH(joi)I the real value of the gain at the 
frequency wi. Ns is the number of samples. 

Before starting optimization the designer may 
select up to 16 elements to be trimmed simultaniously. 

CiOpt uses the following convergence criterion: 

where n is the number of elements beingtrimmed. The 
parameters Eq and EV may also be changed by the user. 
Default values are 

Once the optimization procedure is started, at 
each optimization step a window displays information 
about qbjective function value, element values and 
first-order derivatives. 

To increase flexibility, the values of the 
variable elements may be restarted or modified 
manually at any moment. It is also possible (and often 
necessary) to modify the objective function after a 
number of iterations, adding / deleting samples or 
changing their relative weight. 

After convergence is achieved -or optimization is 
stopped manually- the new transfer function is 
obtained and a graphical superposition of the previous 
and the optimized response is showed, allowing to view 
the achieved improvement. It is also always possible 
to view the present element values. 

OPT I MI Z AT 1 ON PROCEDURES 
Since using the transpose system method [61 it is 

not too expensive to find exact first and second 
derivatives, we can use first and second-order 
multidimensional optimization algorithms [41 without 
dramatically increasing the computational cost. 

In CiOpt. we have implemented different 
optimization routines. A Quasi-Newton algorithm 
(Fletcher-Powell) and a modification of Newton's 
met hod. 

Linear search 
It is well-known that almost all multidimensional 

optimization algorithms have to face the 
one-dimensional minimizing problem. Stated more 
precisely, our problem is to find the minimum of a 
multidimensional function, when moving along a search 
direction s in the variable space. 

At each iteration step we will know, at least, 
the objective function value and the gradient g. This 
meang that at each point and for a given search 
direction s we have information about the function 
value (FO) and its slope: the directional derivative 
(DDO) computed as DDO = sT g. 

As we will see next, there are multidimensional 
optimization methods that only provide information on 
the direction of the minimum. In this case it is 
necessary to have a method to find the magnitude of 
the first step to be taken in that search direction. 
Ciopt implements the following idea [21 

for the first step and = -0.2 E(O) 
T 

s g  
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A -2 (E i -1 -Ei )  a =  ( 2 )  
g 

for successive iterations. 
Once a first step Ai is taken, we compute the new 

values of objective function ( F l ) ,  gradient and 
directional derivative (DD1). With this new 
information, we are able to decide (fig. 1 )  if the 
step was [21: 
8 Good enough : if the objective function has 
decreased and the magnitude of the slope has decreased 
by a factor greater than 10. 
a Too short. In this case, we linearly extrapolate to 
zero the slope of the function -assuming implicitly 
quadratic behaviour. The increase beyond the step just 
taken. A-hi is: 

( 3 )  
DD 1 h - hi = X I  z , where z = DDO-DD1 - 

This extrapolation factor is limited to 4 to avoid 
excessively long steps. 
8 Too long. This means that the minimum lies between 
the two points. As we have four data items (FO, DDO, 
F1 and DD1 ) we are able to fit a cubic function and 
find analytically the minimum between the data points. 
The cubic interpolation step can be shown to be: 

z = l -  D D l + w - v  
2w + DD1-DDO ( 4 )  

where 

v = 3 s  + DD1 + DDO and w = J v2- DDO.DD1 
A 1  

This algorithm is described in DFD form in fig. 1. 
Please note that the description of all 

algorithms has been done to allow easy understanding 
of the substantial ideas. The real coding has been 
done slightly different in order to minimize 
computation time. 

The Fletcher-Powell algorithm 

This algorithm belongs to the class of 
quasi-Newton methods. It is known (41 that for 
quadratic functions 

f(x) = a + gTx + 0.5~" x (5) 

the step a that takes us to the global minimum when 
starting at an arbitrary point is obtained solving: 

Ha = -g (6 1 

This expression turns out to be also a good 
approximation of any function if we are in the 
neighbourhood of a minimum. In this case H is the 
-positive definite- Hessian matrix. 

There are several methods which avoid the 
explicit computation of second order derivatives 
(necessary to build the Hessian matrix) and the 
resolution of ( 6 ) .  The idea _byhind this methods is to 
generate approximations of H based on the knowledge 
of the successive gradient vectors. The 
Fletcher-Powell update formula is 141: 

where qi = gi- gi-1. 
The complete algorith!nl is described in figure 2. 

Initially we start with H = I. It follows that the 
first search direction used is steepest descent. All 
subsequent directions are tested to be descent 
directions. If not, the whole procedure is restarted 

by taking H-' = I. Note that DeltaF is computed to 
obtain the first step for the linear search -according 
to (2)- since the computed vector a is used as a 
search direction, instead of being used as the real 
step. 

Tests performed on Rosenbrock's banana function 
show that restarting H-' = I every 3n iterations, 
where n is the number of parameters that are optimized 
simultaniously, improves the overall performance. 

Modified Newton method (Levenberg-Marquard) 

When optimizing the frequency response of linear 
circuits, it is possible to evaluate exact second 
order sensitivities by using the transpose system 
method without dramatically increasing the computation 
time [51, [61. We have implemented a procedure 
(HEval), which returns objective function value, 
gradient vector and Hessian matrix for a given 
parameter value. 

With this exact values of first and second order 
sensitivities, the step to be taken a is computed 
-following the idea of the Levenberg-Marquard method- 
solving 

(H + V I )  S = -g (8) 

where v is a positive real parameter. Clearly if v=O, 
equation ( 8 )  reduces to Newton's method and taking 
v > > l  we obtain an infinitesimal steepest descent step. 
When se.lecting an itermediate value, we obtain an 
interpolating vector between these extreme steps [31. 

This method avoids the problems related to non 
positive definite Hessian matrix. In such cases, the 
search directions obtained by applying Newton's method 
may be ascent directions. When this happens, it is 
necessary to compute a new descent direction (the 
easiest one is steepest descent). If this situation 
appears repeatedly, the whole procedure converges as 
slow as a simple steepest descent strategy. By 
selecting an appropriate value of v we can force the 
eigenvalues of (H + VI) to be positive, avoiding the 
outlined difficulties. 

In our implementation, the directional derivative 
of the objective function along a computed direction s 
is computed. If it turns to be positive, the value of 
v is repeatedly multiplied by DeltaV until a descent 
direction is obtained from ( 8 ) .  In this way a descent 
direction which is nearest to the -theoretically best- 
Newton step is obtained. At each iteration where ( 8 )  
already gives a descent direction, v is divided by the 
factor DeltaV. As we get closer to  the minimum, where 
the Hessian becomes positive definite, the value of v 
tends to zero as it is repeatedly divided by DeltaV, 
and applying ( 8 )  the optimum Newton step is taken. 

PROGRAM HIGHLIGHTS 
CiOpt has been written in Turbo-Pascal (V5.0). 

and runs on any IBM-PC or compatible with CGA, EGA o r  
VGA graphics card. A Math coprocessor may optionally 
be used to improve accuracy and speed. 

Program features are : 

User-friendly interface. (Graphical inputs, 
pull-down menus) 
All circuit elements are allowed. Up to 64 circuit 
elements may be entered. 

Ideal and finite-GB OpAmp-models along with 
different macromodels for BJT and FET are also 
available. 
Maximum circuit order is 20. 
16 elements may be trimmed simultaniously. 

and gradient) during progress. 
Continuous information (including element values 



- High resolution plots, allowing graphical 
superposition. 

- 32 objective function values may be entered by 
positioning markers on the plots. 

- Symbolic form of the transfer function H(s) is 
obtained. 

- Flexible optimization (two optimization algorithms, 
user-definable convergence criterion, modifiable 
objective function, element values may be changed 
manually), with trial-and-error features. 

EXAMPLE 

An active low-pass fifth order Chebychew filter 
with 40' dB gain, 0.5 dB ripple and 80 KHz cutoff 
frequency is designed using well-known methods. 
Simulation including the finite GB OpAmp model 
(GB=lMHz, Ao=100 dB) shows very important distortion 
in the passband (Fig. 51. 

Selecting four elements to be trimmed, CiOpt 
reconstructed the desired response in 14 iterations 
(Fig. 6). This took 3 minutes on a 80286 machine with 
coprocessor. 

A comparison between the implemented 
Levenberg-Marquard method and classical Newton's 
method is shown in figure 7. The evolution of 
Fletcher-Powell's method is also shown. 

OPTIMIZATION ALGORITHMS 
\ 

# Procedure Eva1 returns function value and gradient 
tl Procedure HEval returns objective function value r its gradient and exact Hessian 

PRC 
\ 
Linearsearch 
Fletcher-Powell 
Newton-L-M 

Linearsearch 
\ 
RES PAR 
\ \ 

# Best step : Lambda # Initial function value : FO 
# Minimum function # Initial slope : D W  
value : Fl f Search direction : s  

n DecrF.Decrs :flags 8 Initial step : Lambda 
ALG # Element values : vo 
\ 
LOC 

# TestedPoint : Record t o  keep info on tested points 
# Lambda0 : Auxlliar variable 

: Iteration counter 

# Initialization of local variables 
I # :  . 
\ 

f Increase iteration number : p:=p+l 
# Evaluate increment in elements : DeltaX :=Lambdas 
tt Evaluate new element values : vo:=vo+DeltaX 
# Function 8. gradient for new values : Fl,gl : =  Eval(vo1 
it Save Lambda and Fl in TestedPoint[pl 
# Compute Directional Derivative : DDl:=s g1 

' t  

CONCLUS I ON 

An efficient program for optimization of the 
frequency response of linear lumped circuits (CiOpt) 
has been described. Special emphasis has been put in 
the description of the implemented algorithms. An 
example. has showed one of the application fields of 
CiOpt. A comparison between algorithms has showed that 
the classical Newton method may converge very slowly 
while the Levenberg-Marquard strategy yields much 
better performance. 

REFERENCES 

[l] CHUNG-WEN HO, RUEHLI, A.E., BFENNAN, P.A. "The 
Modified Nodal Approach to Network Analysis". 
IEEE Trans. Circ. Sist., Vol. CAS-22, No.6, June 
1975 

[ Z ]  CUTHBERT. T . R .  "Circuit Design Using Personal 
Computers". Wiley-Interscience, 1983 

[3] CUTHBERT, D.R. "Optimization Using Personal 
Computers". Wiley-Interscience, 1987. 

[41 RAO, S.S. "Optimization : Theory and 
Applications. Wiley-Eastern, 1978 

[51 REWN, T . ,  VASILESCU, G. "Second- and 
Third-Order Sensitivities of Microwave Circuits". 
Electronics Letters, VOL 25, pp 607-609, 1989. 

[ 6 ]  VLACH, J., SINGHAL, K. "Computer Methods for 
Circuit Analysis and Design. Van Nostrand, 1983 

4 Function value has decreased ? 

DecrF : =  F1 t FO 

DecrS :=  abs( DD1 / D W  1 < 0.1 

I \  
I\ 

I' 

# Has the slope magnitude decreased by a factor of 10 ? 

( # Stay in loop if progress is not good enough and 

I\not(DecrF and DecrS) and (ptMax-Iteration) 
? 

n the number of iterations is less than the maximum 

\ 
0 0 

( # Extrapolation is needed ? ( Else 
# Cubic interpolation 

DecrF and not DecrS and DDltO \ 
# Restore 

n Compute z ( 4 )  
element values # Compute z according t o  ( 3 )  

+I Continue from this point 
\ 
F0,DDO : =  Fl.DD1 
Lambda0 : =  Lambda0 + Lambda 

Lambda : =  Lambda z 

mbda:=LambdaO + Lambda 
? 
\ 

( # if loop was exited without good progress (else 
\ nul 
U Search in TestedPoint and return best value 
of Lambda and corresponding function value 

Fin. 1 Lineal Search Strategy 

1041 



\ 
0 0 
( # Function decreases [ Else 

# Restart 

H-: =I  
DeltaF:=O.l*FO 

DDO < 0 \ 

Lambda:=-2*DeltaF/DUO 
Lambda.Fl:=LinearSearch(FO.DDO.s.Lambda) 

r 
# Find best step along s 

Ij 
# New values : vo = vo + Lambda s 
# Compute : DeltaF:=FO-F1 

' #  Update H- according to (7) 

Newton-L-M 

PAR 
\ 

# Element values : vo 11 Problem 
description 

\ # v.deltaV 

ALG 17  

nl ! t er: =O 

LOC 

# Iteration counter : nlter 
# Search direction : s 
# Best step : Lambda 

# Increase counter : nlter:=nlter + 1 
FO, go. H : = HEval (vo 1 
# Perform convergence test 
[ # Stay in loop while not converged 
# Compute H : =  H + v I 
# Solve for s : H s = -go 
# Directional Derivative : DUO : =  sTgO 
7 

\ 
0 0 

[ # Increase along s [ Else 
v:=v/deltaV 

J\UDO > 0 

\ 
H:=H+(deJtaV-111 
v:=v*deltaV 
# Solve for s : H s = -go 
# Compute : DUO : =  sTgo 
( DUO > 0 

Fig. 3 Levenberg- 
Marquardt Algorithm 

I 
Lambda:=LineSearch(FO,UVO,s,1) 
vo:=vo + Lambda s 

\ 

___- ~ , ,  ~~~ ~~ 

H- = I 
DeJtaF = 0 l*FO 

( i l H )  

Fig. 2 Fletcher-Powell Algorithm 
5U 

R22 I R13 

Ideal design - 
\ -  " 

finite GB-. '1 ~ 

R11 = 38 SS3 KR A12 = 25 600 L? RI3 = 45 756 KR 111 

R21 = 1 742 KR R22 = 5 749 KG fi23 = 61 009 KG 
R31 = 50 782 KR R32 = 39 187 Kl7 fi33 = 183 027 KG 
A41 = 203 128 KR R42 = 156 748 Kl7 C13 = 120 pF 
C11 = 470 pF C12 = 470 pF I I  m u  o 400 u.600 o aoo I ooo 1 zu f / 8 0 K H z  

U - ~~- -- 
C21 = 120 pF C22 = 120 pF 

Fig. 5 Finite G3 OpAmps distort resDonse. Markers 
Fig. 4 Fifth-Order Lowpass Filter. Initial element values are placed on the desired resDonse. All weights 

-- 
(dB) 

44 

Design with 
ideal OpAm-os  

36 ~ I 

3c 

28 Ootimizeci response 
with finite GB OpAmps 

24 

\ ' C11 = 89 505 pF 
C21 = 25 611 pF 
R12 = 15 960 KR 

16 ' C12 = 217 085 pF 

30 

__ 12 15 
o 200 0.400 0.600 o 800 1 ono 120 f/80KHz 

Fig. 6 After 14 iterations the response has 
been improved allowing 4 e l e n e n t s  to chanpe 

are set to 1. 
1 iJ5~r rOr  I I 1 1 1 ' 1 1  

1 /Newton classic 

10-1 

1 oy2 1 
i terot ions lo2 100 10 '  1 

Fig. 7 A comparison between methods 
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