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Model-Based Control for a Three-Phase Shunt
Active Power Filter

Ramon Guzman, Luis Garcia de Vicuña, Javier Morales, Miguel Castilla and Jaume Miret

Abstract—This paper presents a robust model-based control
in natural frame for a three-phase shunt active power filter.
For the proposed control method a linear converter model is
deduced. Then, this model is used in a Kalman filter in order
to estimate the system state-space variables. Even though the
states estimation do not match the variables of the real system,
it has allowed to design three sliding mode controllers providing
the following features to the closed loop system: a) robustness
due to the fact that control specifications are met independently
of any variation in the system parameters; b) noise immunity,
since a Kalman filter is applied; c) a lower THD of the current
delivered by the grid compared with the standard solution using
measured variables; d) the fundamental component of the voltage
at point of common coupling is estimated even in the case of
a distorted grid; and e) a reduction in the number of sensors.
Thanks to this solution the sliding surfaces for each controller are
independent. This decoupling property of the three controllers
allows using a fixed switching frequency algorithm that ensures
a perfect current control. Finally, experimental results validate
the proposed control strategy and illustrate all its interesting
features.

Index Terms—current control, LCL filter, sliding mode control,
Kalman filter, voltage sensorless control.

I. I NTRODUCTION

T HE use of nonlinear loads is a cause of current harmon-
ics generation which degrade the quality of the power

delivered by the grid. This fact causes non desirable effects
on the power supply system. Ordinarily, passive power filters
are used to suppress current harmonics due to their low cost
[1], [2]. However, this kind of filters is sensitive to parameters
variation and it may even produce a resonance problem. This
resonance may lead to an over-current or over-voltage in the
inductor and capacitor filter damaging the passive power filter.

As an alternative, shunt active power filters (SAPFs) have
been used to avoid the aforementioned problems [3], [4]. In
contrast to passive power filters, SAPFs are a flexible solution
to compensate current harmonics generated by different types
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of nonlinear loads, providing as well as a fast response to load
variations.

In addition, the hybrid topology of SAPFs has been sug-
gested in order to improve the filtering process. These kind of
active filters incorporate an LC tank with the SAPF in order
to reduce the effort of the control algorithm [5]–[7].

It is well known that the main purpose of a SAPF is to
generate the harmonics caused by nonlinear loads, with the
objective of providing a grid current with a low-harmonic
content. Bearing this objective in mind, SAPF control has been
widely studied, while considering two different control loops
[3]–[5]:an outer voltage loop is designed in order to keep the
voltage constant at the output capacitor filter, while the inner
current loop is used to track the reference current, which can
be generated by means of two different methods. The first
method, the direct one, is based on extracting the harmonic
content of the load current. Then, the filter current is used
in the inner current loop in order to track the load current
harmonics [8], [9]. The second method, the indirect one, is
based on generating a sinusoidal reference current from the
grid-voltage measurement. Then, the grid current is forcedto
track this sinusoidal current reference and the load current
harmonics are provided by the filter inductor current in an in-
direct way [10]. The main advantages of this second approach
are that only one low-bandwidth current sensor is required
and a faster transient response is obtained. However, sincethe
reference current is generated from measured voltages at the
point of common coupling (PCC), when the grid is distorted,
the reference current is not generated correctly. This issue is
treated in detail in [11]. A selective harmonic-compensation
control is used in order to mitigate the grid voltage harmonics,
but with the inevitable trade-off between filtering performance
and system stability, specially for the compensation of higher
order harmonics [12].

Different control strategies for active power filters have been
reported in the literature, such as linear feedback control[13],
nonlinear control [14], repetitive control [15], neural network
approach [16], [17], and adaptive fuzzy control [18], [19].Any
of the aforementioned control methods for three-phase SAPFs
have been implemented indq or αβ frames. These control
techniques have been widely accepted and used by researchers.
Despite this, and with the aim of increasing robustness witha
fast dynamic response, sliding mode control (SMC) is the best
alternative to be used [20]. Here there is a lack of research
using this technique due to the following drawbacks: a) the
cross-coupling between controllers through the neutral point
voltage which causes severe interferences between controllers
[21] and b) the variable switching frequency of the SMC which
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Fig. 1. Circuit diagram of three-phase SAPF

is unwanted in most industrial applications [22].
Some authors have reported several alternatives to fix the

switching frequency, being the digital hysteretic modulators
the most common solution [23], [24]. However, a high sam-
pling frequency is needed for the correct implementation of
these digital hysteretic modulators to increase the effectiveness
of the control algorithm. This problem can be solved by using
analog hysteretic comparators but at the expense of increasing
the hardware [25]. Other solutions are adopted by using pre-
dictive control and DSP timers in order to decide the switching
time [22]. It is worth to mention that the fixed switching
frequency algorithms generally assume a decoupling between
controllers, which is usually obtained by removing the neutral
point voltage influence from the dynamics of the controllers.
Some researchers have studied this issue but generally, their
proposals have been based on a pure cancellation. At this
point, it is important to highlight that the effectiveness of this
cancellation has a clear dependence on the deviation of system
parameters, and a high sensitivity to the system noise.

In order to avoid the aforementioned problems, a new
model-based control solution is presented in this paper that
uses SMC with estimated states. This solution is not usually
applied to control power converters and, to our knowledge,
it has been only applied to control a unity power factor
rectifier [26]. Following a similar idea, this technique canbe
applied to control a SAPF. The proposed method is based on
simple current sliding-mode controllers which use estimated
variables. A lineal converter model is used in a Kalman filter
(KF) in order to obtain the estimated states. This model allows
a state estimation without the influence of the neutral point
voltage, thus eliminating any interference between controllers
in a simple and effective way. Then, these estimated states are
used to obtain three independent sliding surfaces with a high
robustness against variations of system parameters and noise
immunity due to the application of the KF. With the proposed
control method, the THD of the current delivered by the grid
is improved compared with the standard SMC using measured
variables. In addition, a variable hysteresis band comparator
combined with a switching decision algorithm are used to

concentrate the switching spectrum, allowing to operate at
fixed switching frequency.

The main advantage of this control method applied to a
SAPF lies in the fact that the current reference is obtained from
the fundamental component of the PCC voltage. This voltage
is computed using the proposed model in a KF algorithm. With
this procedure, the reference current is obtained without any
distortion, even in the case of a highly distorted grid, without
using any specific harmonic filters. An interesting side effect
of the proposed control scheme is that in the case of voltage
sags, the PCC voltage and its quadrature can be obtained,
and positive and negative sequences can be derived directly
without using a specific PLL algorithm for voltage sequence
extraction, such as the algorithm presented in [27]. As shown
in the experimental results section, very satisfactory results
have been obtained using this control technique.

The main contributions of this paper are: 1) a linear con-
verter model is derived, 2) a model-based control is used for
the SAPF using the proposed linear converter model, which
allows to estimate the fundamental component of the voltage
at the PCC even in case of distortion in the grid, and also to
remove the neutral point voltage influence from the dynamics
of the controllers, and 3) an improvement in the THD of the
currents delivered by the grid is achieved, compared with the
THD obtained when the conventional SMC is applied.

The paper is organized as follows. In section II the non-
linear model of the SAPF is presented. In section III the
problem formulation is introduced. Section IV presents the
control proposal. The experimental results are presented in
section V. Finally, section VI draws some conclusions.

II. N ON-L INEAR MODEL OF THE SAPF

Fig.1 shows a circuit scheme of the SAPF. From this circuit
the converter differential equations can be written as follows:
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wherevn is the neutral point voltage,iF = [iFa iFb iFc]
T

is the inductor filter current vector,v = [va vb vc]
T is the

voltage at the PCCu = [ua ub uc]
T is the control variables

vector withua,b,c ∈ {±1}, vdc is the dc voltage at the SAPF
capacitor and1 is defined as[1 1 1]T .

In order to obtain the state-space model the equations
mentioned above can be rewritten as follows:
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dt
= f(x,u) +E(v + vn) (4)
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and the output matrix is given byh where is accomplished
that
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III. PROBLEM FORMULATION

The main control objective in a SAPF is to guarantee
sinusoidal grid currents in phase with the grid voltages in
presence of nonlinear loads. As a first approach, the sliding
surfaces can be generated using the grid currents vector in
order to obtain a grid current in phase with the voltage source:

S = i∗s − is (10)

where i∗s = kv = [i∗sa i∗sb i∗sc]
T , is the reference current

vector andis = iF + iL being iL = [iLa iLb iLc]
T the load

current vector.
Using (1), (3) and (10) the dynamics for each sliding surface

is represented by the following expressions:
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The aforementioned expressions show two different issues
to take into account: 1) a cross-coupling term introduced by
the neutral point voltage (3) which is expressed as a linear
combination of the control signals,ua,b,c, in each sliding
surface dynamics. This term can produce severe irregularities
in the ordinary hysteresis operation since each phase-leg can
not be controlled independently [26], and 2) the reference
currents are generated using the measured PCC voltages,
i∗sa,sb,sc = kva,b,c, and for this reason the distortion in the
grid will involve grid currents with higher harmonic content.

As a solution, this paper suggest a model-based method
in which three independent sliding mode controllers will be
designed while obviating the neutral point voltage in the
converter model used in a KF. This fact has a negligible
effect in the average dynamics of the closed loop system. In
addition, the fundamental component of the voltage at the PCC
is estimated in order to generate the reference currents, even
in the case of a distorted grid.

An interesting side effect of the proposed control scheme
is the fact that the sliding surfaces for each controller will
be designed independently. This decoupling property between
the three current controllers allows using a fixed switching
frequency algorithm. The proposed model to achieve all this
aims will be introduced in the next section.
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Fig. 2. Proposed control system for phase-lega of the SAPF

IV. PROPOSEDCONTROL SYSTEM

The control diagram for phase-lega is depicted in Fig.2.
Phase-legsb andc have the same control scheme. A KF is used
together with the proposed converter model, as explained inthe
next subsection, in order to estimate the states. A PI controller
is used to regulate the filter output voltage and to obtain the
value of the gaink. This gain and the state estimation are the
inputs of a sliding surface which computes the error between
the estimated grid current and its reference, obtained asi∗sa =
kv̂sa. Finally this error is considered in a variable hysteresis
comparator, which is used together with a switching decision
algorithm. This combination allows to obtain a fixed switching
frequency with an improved switching spectrum.

A. Proposed state-space model of the converter

The objective of this section is to obtain a linear simplified
model for the SAPF in order to use it in the KF algorithm.
This model will be designed with the aim of solving the
problems exposed in section III. The first problem was related
to the axis-decoupling and it can be solved by eliminating the
dependence of the neutral point voltage from the controller
dynamics (11)-(13). This is also an opportunity to reduce the
number of sensors by adding two additional states, the voltage
at the PCCvi and its quadratureviq, in order to estimate
the fundamental component of this voltage. Due to the grid
inductance and grid voltage harmonics, the measured voltage
at the PCC can be distorted. Thus, this estimation will improve
the quality in the generation of reference currents, leading
to a reduction in the THD of the grid currents. With this
approach the second problem can be solved. In addition, the
estimated PCC voltage can also be used in the hysteresis band
expressions explained in section V-D.

Hence, in order to derive the adequate SAPF model, some
considerations must be taken into account. Firstly, is to ensure
that the model is a decoupled model (i.e. each phase only
depends on its own control variable) and secondly, the model
must be linear, accurate, and simple to reduce the computa-
tional time. For these reasons the following assumptions are
made:

1) The neutral point voltage,vn in the filter current equation
(1) is not used in the proposed model, since it is a high
frequency signal (it depends on the control actionsua, ub,
uc), and it only affects current inductors ripples. Thus, this
approximation has a negligible effect on the average dynamics
of the closed-loop system.

2) The SAPF capacitor is usually large and its voltage has a
slow dynamics. Hence, the state variablevdc can be assumed



to be constant between different sampling instants of the same
switching period. Besides, since this variable is measured, it
can be considered as a parameter and its dynamics can be
neglected. With this consideration, the new state-space model
for each phase-legi could be considered linear in a switching
period [28].

3) The voltage at the PCCvi and its quadratureviq are
added in the model in order to estimate the fundamental com-
ponent of the PCC voltages. With this solution the generation
of the reference currents does not rely on noise or harmonic
distortion in the grid, thus improving the system robustness
against grid disturbances.

The aforementioned considerations lead to redefine new
differential equations for each phase-legi:

diFi

dt
=

1

LF

vi −
vdc
2LF

ui (14)

dvi
dt

= ωoviq (15)

dviq
dt

= −ωovi. (16)

whereωo is the angular grid frequency.
The proposed linear converter model can be obtained from

these differential equations as follows:

dxi

dt
= Axi +Bvdcui (17)

yi = Cxi (18)

being

xi = [iFi vi viq]
T (19)

(20)

A =





0 1

LF
0

0 0 ωo

0 −ωo 0



 (21)

B =

[

−
1

2LF

0 0

]T

(22)

Using this model, a KF can be employed to estimate the filter
current without the effect of the neutral point voltage and
to extract the fundamental component and its quadrature of
the PCC voltages. This fact will allow to generate sinusoidal
reference currents even in case of a distorted grid [29].

Note that the control algorithm does not use grid voltage
sensors and the value of the output matrixC is:

C = [1 0 0] (23)

At this point it is important to prove the observability and
controllability of the proposed converter model. Taking into
account the aforementioned matrices, the following observ-
ability matrix is obtained

O = [C CA CA2]T . (24)

Moreover the controllability matrixΓ is given by

Γ = [B AB A2B] (25)

MatricesO and Γ are both of full-rank, (i.e.rank{O} =
rank{Γ} = 3), so that the system is controllable and can be
observed using only the measured filter currentiFi.

B. Kalman Filter

It is well known that in nonlinear system applications an
EKF is used in order to estimate the states, with the drawback
of the long computational time required by this algorithm. This
is the case of the SAPF which is clearly a nonlinear system
(4)-(5). However, the proposed converter model defined by
(17)-(18) is considered linear in a switching period, and itcan
be used for each phase-legi in order to estimate the states.
This fact allows to use a KF instead of an EKF, which reduces
the computational load. For the digital KF implementation,the
state-space model (17)-(18) is discretized, yielding

xi(k + 1) = Adxi(k) +Bdvdc(k)ui(k) + ηi(k) (26)

yi(k) = Cxi(k) +wi(k) (27)

whereηi(k) andwi(k) are the process and measurement noise
vectors respectively; their covariance matrices are givenby:

Ri(k) =E{wi(k)w
T
i (k)} (28)

Qi(k) =E{ηi(k)η
T
i (k)} (29)

and

Ad = eATs ∼= I+ATs =





1 Ts

L
0

0 1 ωoTs

0 −ωoTs 1



 (30)

Bd =

∫ Ts

0

BeAλdλ ∼= BTs =

[

−
Ts

2L
0 0

]T

(31)

beingI the identity matrix andTs the sampling time.
Here it is assumed thatvdc(k) is a constant between samples

of the same switching period, so thatvdc(k + 1) ∼= vdc(k),
and the discrete model can be considered linear over the same
switching period.

As mentioned above, the state-space model defined by (26)-
(27) is used in a KF, and the estimated states can be used
as inputs of the sliding surfaces providing three independent
controllers with a high noise immunity and an improved THD
of the currents injected to the grid. The main properties and
the implementation of the KF are well explained in [30] so
only the adaptive equation used in the estimation will be given
in this section.

Based on the KF algorithm implementation, the equation
for the state estimation can be expressed as follows:

x̂i(k + 1) = Adxi(k) +Bdvdc(k)ui(k)

+ Li(k)(xi(k)− x̂i(k))
(32)

where the Kalman gain is computed as:

Li(k) = Pi(k)C
T (CPi(k)C

T +Ri(k))
−1. (33)

beingPi the error covariance matrix for phase-legi, which is
computed following the KF algorithm explained in [26].

1) Considerations about the Kalman gain computation:
The high computational load is a major drawback in the KF
algorithm implementation. Particularly, the Kalman gain (33)
contains a matrix inversion which involves a long computa-
tional time. Using a KF for each phase-leg instead a single
KF for the whole three-phase system, the matrix inversion in
(33) can be reduced to a scalar inversion. Actually, according



to (23) and with the condition thatPi(k) is a square matrix,
the computation ofCPi(k)C

T in the Kalman gain expression
results in a scalar quantity. Then, to be consistent with the
matrix addition operation in (33), the noise covariance matrix
Ri(k) is considered as mean noise power in each phase leg,
Ri(k). In addition, considering that this noise is so similar in
each phase leg, the Kalman gain can be assumed identical for
all the phases (i.e.La(k) ∼= Lb(k) ∼= Lc(k)). Thanks to this
approximation,(33) is computed only for one phase and it
is used in all the phases. Following this approach a notably
reduction in the KF implementation is practically obtained.

2) Mean noise power estimation: The value ofRi(k) can
be estimated using the unbiased mean power estimator

Ri(k) =
1

NTs

N−1
∑

k=0

|wi(k)|
2 (34)

wherewi(k) is an additive white gaussian noise sample at
time k, in phase-legi, andN is the number of samples.

To obtainwi(k), the simplest way is to use a dc-voltage
with additive white gaussian noise. In this case a referencedc-
voltage used in the sensing systemVref has been employed.
This voltage is connected to one analog input of the DSP and
is contaminated by the switching noise when the inverter is
switching. The noise samples can be obtained by subtracting
from theVref measures, the real value,V ∗

ref (i.e. the measured
value when the inverter is not switching), yielding

Ri(k) =
1

NTs

N−1
∑

k=0

|Vref (k)− V ∗

ref (k)|
2 (35)

The last expression allows to estimate the mean noise power
in any of the three phases and it can be used to compute the
Kalman gain. Assuming the noise power level has no important
variations,Ri(k) is computed at the beginning, remaining
unchanged during all the time.

3) Process covariance matrix: Matrix Qi(k) is not found
so directly. It is generally derived intuitively, but thereare
some points that need to be regarded in its selection [30].
Unmodeled dynamics and parameter uncertainties are gener-
ally modeled as process noise. UsuallyQi(k) is taken as a
diagonal matrix, which is of dimension 3 in this application.
Its value has been obtained by means of simulations. In the
simulation results an approximate value ofQi(k) = 0.005I3
provides an adequate behaviour, whereI3 is a 3-dimensional
unity matrix.

C. Sliding-Mode Control

The conventional SAPF control scheme consists of a fast-
inner input-current loop which ensures sinusoidal input cur-
rents in phase with the PCC voltages,is = kv, and a slow-
outer loop, usually a PI controller, the main task of which
is to regulate the output voltage, modifying the input-current
amplitudes. In this proposal, the inner control loop is designed

using estimated variables as explained in previous sections.
With this aim the following switching surfaces are proposed:

Sa = î∗sa − îsa (36)

Sb = î∗sb − îsb (37)

Sc = î∗sc − îsc. (38)

It should be noticed that using our proposed model, the
dynamics of the aforementioned controllers only depends on
its control variablesua, ub anduc:

dSa
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dî∗sa
dt

−
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LF

(
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vdc
2
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)

−
diLa

dt
(39)

dSb

dt
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dî∗sb
dt

−
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LF
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2
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)

−
diLb

dt
(40)

dSc

dt
=

dî∗sc
dt

−
1

LF

(

v̂c −
vdc
2

uc

)

−
diLc

dt
(41)

where î∗sa,sb,sc = kv̂a,b,c are the reference currents using
the estimated inductor filter currents,îsa,sb,sc = îFa,Fb,Fc +
iLa,Lb,Lc are the estimated grid currents andk is implemented
in the outer control loop in order to regulate the output
capacitor voltage using a PI controller [5], and expressed as:

k = kp(v
∗

dc − vdc) + ki

∫ t

−∞

(v∗dc − vdc)dτ (42)

being kp and ki the proportional and integral gains respec-
tively.

The main requirement in the design of the SMC is to satisfy
the reaching conditions, and also to guarantee the existence of
a sliding regime in the switching surfacesS = 0. The most
often used reaching conditions for each phase-legi are given
by

SiṠi < 0. (43)

Defining the control variableui as:

ui =

{

u+

i if Si > 0
u−

i if Si < 0
(44)

whereui ∈ {1,−1}, and taking into account (43), (14) and
(36)-(38) the following expression can be deduced:

vdc
2LF

(u+

i − u−

i ) < 0 (45)

which allows us to determine the switching action

ui =

{

u+

i = −1 if Si > 0
u−

i = 1 if Si < 0
(46)

D. Hysteresis Band Generator

This section deals with a fully digital hysteretic modulator
to fix switching frequency of the SAPF. Conventionally, the
expression for the hysteresis band is given by the following
equation [25]

hi =
vo

8LFfsw

[

1−

(

2v̂i
vdc

)2
]

(47)

wherefsw is the desired switching frequency.
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It is widely known that the finite sampling frequency can
cause deviations in the desired the switching frequency due
to the samples that appear out of the hysteresis limits. This
problem is shown in Fig.3 and it can be avoided by using a
simple switching decision algorithm presented in [26]. This
algorithm, which has been adopted for this application, can
decide the optimum switching instant and it concentrates
the switching spectrum. Using this algorithm, the number of
samples out of the hysteresis limits is drastically reduced.
Assuming a slow variation in the hysteretic band in a sampling
period,hi(tk) ≃ hi(tk+1), the algorithm can be implemented
as follows: 1) When a sample is acquired, the time between
the sample and the hysteresis band is calculated. If the sample
is in the increasing slope of the switching surface, (ui = 1)
the timetα can be computed as:

tα ∼= LF

hi − Si(tk)

vdc/2− v̂i
(48)

otherwise, if the sample is in the decreasing slope of the
switching surface (ui = −1), the timetβ can be approximated
by:

tβ ∼= LF

hi + Si(tk+j)

vdc/2 + v̂i
(49)

beingSi the switching surface for the phase-legi.
2) When the estimated timestα and tβ are known, the

switching decision is implemented as follows:
In the case of a positive slope:
- If tα < Ts

2
, the control signalui is changed from 1 to -1,

otherwise the control signalui is not changed.
In the case of a negative slope:
- If tβ < Ts

2
, the control signalui is changed from -1 to 1,

otherwise the control signalui is not changed.
This procedure is done for each sampling period.

V. EXPERIMENTAL RESULTS

Fig.4 shows the prototype of the SAPF built using a 4.5-
kVA SEMIKRON full-bridge as the power converter and a
TMS320F28M36 floating-point digital signal processor (DSP)
as the control platform. The grid voltages have been generated
using a PACIFIC 360-AMX source. Some experimental results
have been exported to MATLABc© for the final representation.
The system parameters are listed in Table I.

Using the approximations reported in section IV-B, the
computational load of the KF algorithm can be reduced from
12µs to 3µs. Note that in each phase-leg a different KF is used

TABLE I
SYSTEM PARAMETERS

Symbol Description Value
LF Filter input inductance 5 mH
C Output capacitor 1500µF
vdc dc voltage 400 V
fs Sampling frequency 40 kHz
fsw Switching frequency 4 kHz
fgrid Grid frequency 60 Hz
Vgrid Grid voltage 110 Vrms
Lg Grid inductance 0.5 mH
kp Proportional gain 0.03
ki Integral gain 0.5
RL Load resistor 48Ω− 24Ω
LL Load inductance 5mH
CL Load capacitor 100µF

Ri(k) Single phase system noise power 0.24V 2

Qi(k) Process covariance matrix 0.005I3

but the Kalman gain is the same for each phase-leg. This is an
important reduction in the total algorithm time, which now is
about 23µs. This fact allows a sampling frequencyfs=40kHz
and it makes possible the implementation of this proposal in
the DSP. The switching frequency,fsw, when a sliding mode
control is used can be chosen asfsw=fs/10 to ensure enough
samples for a proper performance of the variable hysteresis
comparator. This relation provides a good trade-off between
the use of the computational load in a switching period and
the switching frequency accuracy. The following figures show
the good performance of the proposed control system.

In Fig.5(a) the sliding surfaces with its corresponding
control signals in the case of coupled controllers (10) are
shown. In this case the three controllers are implemented
with measured variables instead of estimated ones. The figure
shows the effect of the neutral point voltage (3) in the
dynamics of the controllers. As it can be seen, the slope of
each sliding surface changes with any of the control signals
losing the synchronization and making impossible to designa
current control with variable hysteresis band operating atfixed
switching frequency.

In Fig.5(b) the sliding surfaces with its corresponding
control signals in the case of decoupled controllers (36)-(38)
are shown. In this case the sliding mode controllers use the
estimated estates provided by (32). As it can be seen, the axis-
decoupling is effective, and the slope of each sliding surface
only changes with its control variable. Using the proposed
model the three controllers are independent and the variable
hysteresis control can be performed ensuring a fixed switching
frequency.

A. Response of the SAPF to load variations

Fig.6 represents the main waveforms of the SAPF when a
sudden load step change occurs, from no load to full-load,
and from full-load to half-load. This figure shows from top to
bottom the grid currents, the non-linear load currents, thefilter
currents and the output voltage. Fig.6(a) shows the waveforms
when the conventional SMC is used, while the waveforms
in Fig.6(b) are obtained using the proposed control scheme.
Although in both figures the transient response is similar, it
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Fig. 5. Experimental control signalsua, ub anduc with their corresponding
sliding surfacesSa, Sb and Sc (a) with coupled controllers, (b) with
decoupled controllers operating at fixed switching frequency.

can be observed that when the proposed controller is used, the
THD of the grid currents is improved.

Fig.7 shows the harmonic spectrum of the grid current for
phase-lega. The spectrum before compensation is shown in
Fig.7(a), its THD is 28.45%. When the conventional SMC
(10) is used, the THD is reduced to 5.36% as shown in
Fig.7(b). In contrast, if the proposed controller (36)-(38) is
employed, the THD is reduced to 2.51% as shown in Fig.7(c).
A reduction of 46.8% in the THD is achieved with respect
to the conventional SMC, which proves the effectiveness of
the proposed control method. Note that in both cases the
fundamental component is not represented in order to have
a higher resolution in the rest of the harmonics.

B. SAPF performances under a distorted grid

Fig.8 compares the three-phase grid currents using a con-
ventional SMC and the proposed one, in the case of a distorted
grid. This figure illustrates from top to bottom: the distorted
PCC voltages, being the THD about 14%, the load currents,
and the grid currents. As it can be seen, when the conventional
SMC is used from 0 to 50 ms, the grid currents are distorted
since the reference current generation method uses distorted
PCC voltages. In contrast, when the proposed controller is
used from 50 ms to 100 ms, the grid currents are practically
sinusoidal since the reference current is generated by using
only the fundamental component of the PCC voltage obtained
from the KF.

A detail of the distorted PCC voltage for phase-lega
together with the estimated fundamental component is shown
in Fig.9. Using the estimated voltage at the PCC the reference
current is sinusoidal. In addition, the estimated voltage is
perfectly in phase with the measured one showing a good
synchronization, at least as good as when using PLL.

C. SAPF performances under grid voltage sags

Fig.10 shows SAPF performances under grid voltage sags.
Two different sag types are analyzed in this test: a one-
phase fault and a two-phase fault which are represented
in Fig.10(a) and Fig.10(b), respectively. In both cases, the
reference currents are obtained using the positive sequence
of the PCC voltage usingi∗sa,sb,sc = kv+a,b,c. The positive
sequence is computed from the estimated PCC voltages and
their quadratures obtained from the KF. With this solution,the
use of a specific PLL algorithm for extracting the positive and
negative sequence grid voltage components is not necessary.
Even without using this algorithm, the quality of the grid
current waveforms are good both in normal and abnormal
(voltage sag) conditions. Due to the fact that the grid current
tracks only the positive sequence of the PCC voltage, a ripple
frequency component of2ωo appears in the output voltage as
expected.

D. Control signal frequency spectrum

The hysteresis band with its switching surface of phase-
leg a is shown in the following figures. If an hysteresis band
without the switching decision algorithm is used, an error



(a)

(b)

Fig. 6. A sudden load step change from no-load to full-load and full-load to
half-load. From top to bottom, grid currents (5A/div), loadcurrents (5A/div),
filter currents (5A/div), output voltage (50V/div): a) using conventional SMC,
and b) using proposed SMC.

on the desired switching frequency appears. In Fig.12(a) this
problem can be clearly seen, where several samples are out of
the hysteresis limits. The problem is solved using the switching
decision algorithm presented in section V-C. Fig.11(b) shows
how the number of samples that are out of the bounds of the
hysteresis limits have been reduced using this algorithm, and
the error has disappeared.

Finally, the spectrum of the switching frequency is shown in
the following figures. Fig.12(a) shows the switching spectrum
with hysteresis bands but without the switching decision algo-
rithm. The spectrum is concentrated around a fixed switching
frequency of 3kHz with an error around 1kHz, since the
desired switching frequency is 4kHz. This problem is solved
using the proposed algorithm. Its results are depicted on
Fig.12(b). Now the switching frequency is the desired one,
4kHz.

VI. CONCLUSIONS

This paper has presented a model-based control algorithm
for a three-phase SAPF. We have chosen a model-based solu-
tion using SMC in natural frame that is not usually employed
in the control of power converters. The control algorithm
works with a SMC which uses estimated variables from a KF
achieving a high PF and reducing the THD. Besides, the use
of a Kalman filter instead of a non-adaptive state observer
improves the quality of the estimated signals in presence
of noise, and increasing the noise immunity of the control
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Fig. 7. Grid current harmonics for phase-lega: (a) Before compensation, (b)
after compensation but using conventional SMC and (c) aftercompensation
but using the proposed control.

Fig. 8. From top to bottom: PCC voltages (50V/div) with THD=14%, load
current (5A/div) and grid currents (5A/div)
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Fig. 10. From top to bottom: grid voltages (50V/div), grid currents (5A/div),
load currents (5A/div) andvdc (50V/div) under unbalanced grid fault: a) one-
phase fault and b) two-phase fault.

loop. A useful approximation has been adopted to reduce
the computational time needed for the KF implementation,
reducing the total time employed for the control algorithm.
In addition, a fixed switching frequency algorithm has been
used to improve the switching spectrum of the controllers.
The corresponding experimental results show the validity of
this proposal. In the near future, this technique may be applied
to other converters using the most appropriate converter for
each model.
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