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Abstract  

 

Aryl-alcohol oxidase (AAO) generates H2O2 for lignin degradation at expenses of benzylic 

(and other π-system-containing) primary alcohols, which are oxidized to the corresponding 

aldehydes. Ligand diffusion on Pleurotus eryngii AAO showed a T-shaped stacking 

interaction between Tyr92 side-chain and the alcohol substrate at the catalytically-competent 
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position for concerted hydride/proton transfer. Bi-substrate kinetics revealed that reactions 

with 3-chloro- or 3-fluorobenzyl alcohols (halogen substituents) proceed via a ping-pong 

mechanism. However, mono- and dimethoxylated substituents (in 4-methoxybenzyl and 3,4-

dimethoxybenzyl alcohols) switched the mechanism and a ternary complex is formed. This 

correlated with fully-oxidized AAO during turnover with the above halogenated alcohols, 

while a reduced fraction (up to ~40%) was found for other substrates. Tyr92 contribution to 

AAO reaction mechanism was investigated by calculation of stacking interaction energies and 

site-directed mutagenesis. Electron-withdrawing substituents resulted in lower QM stacking-

energies between aldehyde and tyrosine side-chain, which would contribute to product 

release, in agreement with the ping-pong mechanism observed in 3-chloro- and 3-

fluorobenzyl alcohol kinetics. In contrast, the higher stacking-energies when electron-donor 

substituents are present would result in O2 reaction with the flavin through a ternary complex, 

in agreement with the kinetics of methoxylated alcohols. Tyr92 replacement by phenylalanine 

does not alter the AAO kinetic constants (on 4-methoxybenzyl alcohol), most probably 

because the stacking interaction is still possible. However, introduction of a tryptophan 

residue at this position strongly hinders the affinity for the substrate (pre-steady state Kd and 

steady-state Km increase by 150-fold and 75-fold, respectively) and, therefore the steady-state 

catalytic efficiency, suggesting that proper stacking is impossible with this bulky residue. The 

above results confirm the role of Tyr92 in substrate binding, governing the kinetic mechanism 

in AAO. 

 

Introduction 

Aryl-alcohol oxidases (AAO, EC 1.1.3.7) are extracellular flavoproteins that typically 

catalyze the oxidative dehydrogenation of polyunsaturated alcohols using molecular oxygen 

as final electron acceptor and producing hydrogen peroxide [1]. This activity was first 

reported in Trametes versicolor [2] and has been later described in other white-rot 

basidiomycetes, mainly responsible for lignin degradation in nature, such as Pleurotus 

eryngii, Bjerkandera adusta and Phanerochaete chrysosporium [3-7]. Lignin removal is a 

rate-limiting step for carbon recycling in land ecosystems, playing also a central role in paper 

pulp manufacture and in the production of chemicals and biofuels from renewable 

lignocellulosic biomass [8]. The physiological role of AAO in wood-rotting basidiomycetes is 

to provide a continuous supply of extracellular H2O2, required as substrate for ligninolytic 

peroxidases (in white-rot fungi) and as precursor of hydroxyl radical depolymerizing plant 

polysaccharides (in brown-rot fungi) [1, 9]. 

 AAO from Pleurotus eryngii has been intensively investigated [10-14]. This enzyme 

contains one molecule of non-covanlently bound FAD which acts as two-electron acceptor 

during the oxidation of a wide range of benzylic and other aromatic and aliphatic 

polyunsaturated primary alcohols (reductive half-reaction). The oxidative half-reaction, where 

the FAD hydroquinone is oxidized by O2, closes the catalytic cycle [13-15]. AAO also 

oxidizes some aromatic aldehydes via their hydrated (gem-diol) forms, suggesting similar 

mechanisms for alcohol and aldehyde oxidation [16]. 

 The AAO crystal structure (PDB entry 3FIM) confirmed that it shares similar fold 

topology with other members of the glucose-methanol-choline oxidase (GMC) 

oxidoreductase superfamily [17], and the role in catalysis of two conserved active-site 

residues (His502 and His546 in Pleurotus eryngii AAO) was postulated [18]. Reducing 

substrate diffusion simulations towards AAO active site, previously identified in the crystal 

structure, suggested an entrance channel next to the Gln395-Thr406 loop [19]. These studies 

additionally suggested that the enzyme-substrate complex formation, on its catalytically 

competent form, requires significant displacements of side-chains in the active site 

environment (including Phe397), as well as the substrate π-π stacking interaction with Tyr92 
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(Fig. 1) [19]. On the contrary, the oxidative substrate migration did not require the above 

structure reorganization, despite Phe501 was shown to be essential for correct O2 positioning 

[13]. 

 A hydride transfer reaction assisted by a conserved active site base is the consensus 

catalytic mechanism in the GMC superfamily [20-26]. An initial mechanistic study on AAO, 

including analysis of substrate and solvent kinetic isotope effects (KIE), suggested a 

concerted proton abstraction from the alcohol hydroxyl and hydride transfer from the alcohol 

α-carbon to FAD, without formation of a stable alkoxide intermediate [14]. Later research 

combining site-directed mutagenesis and quantum mechanics/molecular mechanics 

(QM/MM) calculations, confirmed the role of His502 as AAO catalytic base [19]. Moreover, 

the combination of QM/MM profiles and solvent KIE data showed that the O-H bond 

cleavage for proton abstraction from the alcohol hydroxyl precedes the Cα-H bond cleavage 

for hydride transfer, although both processes are highly coupled. These observations revealed 

a non-synchronous concerted mechanism for alcohol oxidation by AAO [19]. This finding 

contrasts with the non-concerted mechanism previously reported for choline and methanol 

oxidases, which include a stable alkoxide intermediate, and provides an alternative 

mechanism for alcohol oxidation in the GMC superfamily [27, 28]. 

 In the present study, different aromatic alcohol substrates have been use to complete the 

description of the AAO overall catalytic cycle and to evaluate the influence of the aromatic-

stacking interactions on catalysis. This later aim has also been addressed by using some 

mutants at position Tyr92 to investigate its contribution to the AAO reaction mechanism. 

 

 

 

Results 

Influence of alcohol type on AAO kinetic mechanism: Steady-state results 

Double reciprocal plots of the initial rates of AAO reaction with different types of substituted 

benzyl alcohol substrates at different O2 concentrations yielded two different kinetic patterns. 

For 3,4-dimethoxybenzyl and 3-chloro-4-methoxybenzyl alcohols, plots were linear and 

intersected to the left of the Y-axis (below zero with respect to X-axis) (Fig. 2A), as 

previously reported for 4-methoxybenzyl alcohol and 2-4-hexadien-1-ol [14]. This is 

indicative of a sequential reaction mechanism involving a ternary complex between AAO and 

its reducing/oxidizing substrates (Scheme 1, top). On the contrary, a parallel line pattern was 

obtained for the two other substrates investigated, 3-chlorobenzyl and 3-fluorobenzyl alcohols 

(Fig. 2B), indicating a ping-pong mechanism (Scheme 1, bottom). 

The steady-state kinetic parameters obtained by fitting the experimental data of bi-

substrate kinetics to either Eq. 1 or Eq. 2 (describing ternary or ping-pong mechanisms, 

respectively; see Materials and Methods), are summarized in Table 1. Turnover numbers 

(kcat) calculated under substrate (alcohol and O2) saturation conditions showed a similar 

dependence on the electronic nature of the substituents on the benzenic ring to those 

previously reported under air atmosphere [15]. The highest (129 s
-1 

for 4-methoxybenzyl 

alcohol) and lowest (13 s
-1

 for 3-fluorobenzyl alcohol) kcat values were observed in the 

presence of electron donor and withdrawing substituents, respectively. However, the type of 

alcohol substrate also had a marked influence on Km(O2), therefore on the AAO affinity for O2. 

In this way, the enzyme exhibits a considerably higher affinity for O2 when the reaction takes 

place with alcohols showing a ping-pong mechanism in comparison with those forming a 

ternary complex: Km(O2) for 3-chlorobenzyl and 3-fluorobenzyl alcohols are up 35 times lower 

than for 4-methoxybenzyl alcohol. As a consequence, the catalytic efficiency for O2, 

kcat/Km(O2), is 3 times higher in the presence of alcohol substrates leading to a ping-pong 
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mechanism. Nevertheless, the catalytic efficiency regarding the alcohol substrate, kcat/Km(Al), is 

considerably decreased in the ping-pong mechanism due to both a reduction in kcat and an 

increase in Km(Al) values (Table 1).  

 

AAO redox state during turnover 

To further investigate the rate-limiting step during oxidation of the different alcohol 

substrates, we analyzed the redox state of the FAD cofactor during the steady-state turnover 

of AAO. Fig. 3 compares the time course of absorbance changes at the 462 nm maximum 

during AAO reaction after mixing with an equal volume of each alcohol at saturation 

concentration under air atmosphere conditions in the stopped-flow equipment. The flavin 

redox state during the initial steady-state phase, whose time duration varies with the different 

alcohol substrates, shows the relative rates of AAO reduction (by each alcohol substrate) and 

its oxidation (by O2). For all the assayed substrates AAO is predominantly in the oxidized 

form during turnover, and the reduced fraction percentage depends on the alcohol type. For 3-

chloro-4-methoxybenzyl, 3-chlorobenzyl and 3-fluoro-benzyl alcohols, the AAO oxidized 

form is highly predominant (100-95 %) at the onset of the steady state, indicating that the 

oxidative-half reaction is much faster than the reductive one. Similar results have been 

previously observed for 4-methoxybenzyl alcohol (~80 % of oxidized form) [14]. By contrast, 

when 3,4-dimethoxybenzyl alcohol was assayed, the percentage of reduced AAO during 

turnover increased, up to ~40%, indicating that the rates for the reductive and oxidative half-

reactions are in this case almost balanced, in agreement with the similar values observed for 

alcohol and O2 catalytic efficiencies (Table 1).  

 Regarding the spectral changes during AAO turnover, the first spectra obtained after 

mixing showed a displacement of the main flavin band (462 nm) and an absorbance increase, 

reflecting the formation of the oxidized enzyme complex with the alcohol substrate (AAOox-

Alc). After this initial kinetic event, the results with 3-chloro-4-methoxybenzyl, 4-

methoxybenzyl and 3,4-dimethoxybenzyl alcohols best fitted a two-step process (Fig. 4A). 

The first step observed reflects the flavin reduction with concomitant formation of a charge-

transfer complex (CTC) between the reduced enzyme and the aldehyde product of the reaction 

(AAOred-Ald), characterized by a broad band centered at ~550-650 nm. The second observed 

step involves the spectral perturbation in the initially formed AAOred-Ald complex with the 

appearance of a new peak at 490 nm. These events (CTC formation and spectral 

perturbations) can be related with the presence of O2, since AAO anaerobic reduction by these 

substrates  prevents its formation, as described below (Fig. 5). However, a one-step process is 

observed with 3-chlorobenzyl and 3-fluorobenzyl alcohols, leading directly from oxidized to 

fully reduced flavin without stabilizations of any CTC intermediate (Fig. 4B). These turnover 

results using different substrates, together with the obtained steady-state kinetic constants, 

provide valuable mechanistic information, which can be correlated with the pre-steady-state 

studies as described below.  

 

Influence of alcohol type on AAO reductive and oxidative half-reactions  

The time course of AAO reduction by the five alcohol substrates studied was monitored using 

a stopped-flow spectrophotometer in the 350-900 nm range under anaerobic conditions. All 

assayed substrates fully reduced AAO without appearance of any FAD semiquinone 

intermediate (Fig. 5), consistent with a hydride transfer mechanism as previously reported for 

4-methoxybenzyl alcohol and 2,4-hexadien-1-ol [14]. 

 For 3,4-dimethoxybenzyl and 3-chloro-4-methoxybenzyl alcohols the evolution of spectral 

changes upon AAO reduction was consistent with a two-steps kinetic model (A→B→C) (Fig. 

5A), as previously reported for 4-methoxybenzyl alcohol [14]. The first process (A→B) was 

fast and hyperbolically dependent on substrate concentration, accounting more than the 80% 
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of the reaction amplitude. This step is assigned to substrate oxidation and formation of an 

AAOred-P complex. The second process (B→C) was concentration-independent and too slow 

(3-5 s
-1

) to be relevant for overall turnover (Table 1). This step might be related to a slow 

release of the aldehyde product from the reduced AAO active site in the absence of O2 (k3 in 

Scheme 1). Formation of such unstable enzyme-product complexes have also been reported in 

other flavin-dependent oxidases showing a biphasic reaction course [29, 30]. The observed 

reduction rates (kobs) exhibit a hyperbolic substrate dependence that upon fitting to Eq. 3 or 

Eq. 4 (see Materials and Methods) are consistent with an essentially irreversible flavin 

reduction (krev0). The calculated reduction constants (kred) for the AAO reduction by 3,4-

dimethoxybenzyl and 3-chloro-4-methoxybenzyl alcohols were up to 3-fold faster than their 

turnover rates, suggesting that the reductive half-reaction is not the limiting step when these 

alcohols are oxidized.  

 On the contrary, a one-step model (A→B) was the most satisfactory to describe the 

irreversible AAO reduction by 3-chlorobenzyl and 3-fluorobenzyl alcohols after the initial 

formation of the AAOox-Alc complex (Fig. 5B). The kred values for these two alcohols (8  1 

and 6  1 s
-1

, respectively) were similar to the above reported turnover rates (Table 1). Cleary 

indicating that for these substrates the reductive half-reaction is the limiting step in catalysis. 

 Similary AAO oxidative half-reaction was studied in this case by following the flavin 

absorbance increase at 462 nm after mixing the reduced enzyme with buffer containing 

known O2 concentrations. Independently of the method used to reduce AAO, the rates of 

flavin reoxidation were linearly dependent on O2 concentration (Fig. S1). When AAO was 

photo-reduced, the determined second-order rate constant (
app

kox of 1.9x10
4
 M

-1
 s

-1
) was much 

higher than the expected by reoxidation of free reduced flavins but clearly inconsistent with 

the AAO turnover rates. Therefore, we studied the AAO reoxidation reaction after its 

anaerobic reduction via incubation with a slight excess of different alcohol substrates. For all 

reducing substrates, the rates of flavin reoxidation were in the range of those reported for 

others oxidases. The values for second-order rate constants obtained were 7.0x10
5
, 8.0x10

5
 

and 8.4x10
5
 M

-1
 s

-1
 for 3-chlorobenzyl, 3-chloro-4-methoxybenzyl and 3,4-dimethoxybenzyl 

alcohol, respectively, similar to those previously reported for 4-methoxybenzyl alcohol 

(6.7x10
5
 M

-1
 s

-1
) [13]. Therefore rates of flavin reoxidation are neither dependent on the 

nature of the alcohol substrate or on the kinetic mechanism. However, the experimental 

conditions used do not guarantee the presence of the aldehyde product at the active site during 

flavin reoxidation (although a slow dissociation is suggested by previous reductive-half 

reaction experiments).  

 

Stacking stabilization of the substrate in the AAO active site  

AAO oxidizes mainly aromatic and other π-systems containing conjugated primary alcohols. 

The aromatic nature of the AAO alcohol substrates pointed to the importance of π-π stacking 

in substrate stabilization by AAO. Ligand migration studies showed a T-shaped interaction 

between Tyr92 and the alcohol substrate in the catalytically-active poses [19]. Starting from 

this active complex, the Tyr-substrate binding energy was evaluated using ab initio quantum 

chemistry.  

Table 2 shows the T-shaped interaction energies between a tyrosine side-chain and five 

AAO substrates: 4-methoxybenzyl, 3-chloro-4-methoxybenzyl, 3,4-dimethoxybenzyl, 3-

chlorobenzyl and 3-fluorobenzyl. For each substrate we modeled both the alcohol and the 

aldehyde forms. The first clear result is that all the interaction energies are stabilizing, with 

similar values to those obtained by others [31]. In all cases the stabilization energy is slightly 

higher for the alcohol reactants than for the aldehyde products. This difference will facilitate 

the release of the products. Furthermore, important differences are observed for 3-

chlorobenzyl and 3-fluorobenzyl alcohols. First we observe a lower stacking stabilization for 
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the alcoholic form and, second, a larger decrease in the interaction energy with the aldehyde. 

The significant lower stabilization for the aldehyde product for these two substrates, also 

establishes a direct correlation between lower π-π stacking stabilization energies and the ping-

pong mechanism.  

 

Kinetic properties for Tyr92 variants 

Several site-directed variants of AAO at Tyr92 were prepared to investigate its  role on 

catalysis. The Y92L, Y92F and Y92W variants were purified as oxidized holoproteins, 

showing an A280/A463 ratio (~10) similar to the native recombinant enzyme. The absorption 

spectra of Y92L and Y92F were basically similar to that of the native enzyme, with 

absorption maxima at 387 and 463 nm, while maxima for the Y92W variant were slightly 

displaced at 384 nm and 457 nm (Fig. S2).  

The catalytic properties of the Y92L, Y92F and Y92W AAO variants were determined 

using 4-methoxybenzyl alcohol as substrate (Table 3). While mutating the tyrosine to 

phenylalanine only causes a slight increase in Km(O2), its replacing with a leucine produces a 

decrease in catalityc efficiency for the alcohol substrate (2.6-fold lower) accompanied by ~2-

fold increases in both Km(Al) and Kd. Finally, the incorporation of a bulkier residue, by the 

Y92W mutation, causes a strong decrease in catalytic efficiencies for both O2 (6-fold lower) 

and, particularly, 4-methoxybenzyl alcohol (860-fold lower). Since for the Y92W variant the 

turnover rate was 10-fold lowered, we conclude that the main effect of the mutation concerns 

the availability of the alcohol substrate at the AAO active site (with 75-fold higher Km 

values). Likewise, the Y92W mutation prevents CTC formation during the enzyme turnover 

with 4-methoxybenzyl alcohol, also suggesting that substrate accommodation is affected by 

this mutation (Supplemental Fig. S3). 

Fast reaction of the tyrosine variants with 4-methoxybenzyl alcohol was also investigated 

by anaerobic stopped-flow techniques. The spectral evolution obtained for all of them 

indicated complete (two electron) enzyme reduction , in agreement with a hydride transfer 

reaction (Fig. 6). The calculated kred and Kd agreed with the steady-state kcat and Km values 

(Table 3), indicating that the reductive half-reaction is the rate limiting step in catalysis for 

these variants.  

 To investigate whether Tyr92, establishing a stacking interaction with the docked 4-

methoxybenzyl alcohol (Fig. 1), might contribute to the hydride transfer selectivity previously 

reported for  native AAO [19], we measured the KIE values on apparent steady-state kinetic 

constants for the Y92L variant using three different isotopically-labelled preparations of this 

alcohol: (R)-[α-
2
H]-, (S)-[α-

2
H]- and [α-

2
H2]-4-methoxybenzyl alcohol (Table 4). The KIE on 

the apparent turnover values, 
D
(
app

kcat), slightly decreased (~20%) for the (R) and dideuterated 

forms, being unaffected for the (S) form. However, the KIEs on the apparent catalytic 

efficiency, 
D
(
app

kcat/Km(Al)), for the (R) and, especially, for the dideuterated alcohols were 

significantly higher for the Y92L variant and, therefore, the 
D
(Km(Al)) values were significantly 

lower than those of the native AAO. In fact, the small KIE value for 
D
(Km(Al)) for native AAO 

(deuteration mainly affects the 
1
H

-
/
2
H

-
 abstraction ratio) was absent for the Y92L variant 

(despite the KIE on turnover was not modified) indicating that Tyr92 contributes to 4-

methoxybenzyl alcohol binding.  

 

Discussion 

Ping-pong vs ternary mechanism (in AAO and other flavooxidases) 

Comparison with other GMC oxidoreductases, which catalyze the oxidation of alcohol groups 

in relatively specific reactions, AAO reveals a broad electron donor substrate specificity of 

AAO oxidizing aromatic and other π-system substrates with conjugated primary alcohols 
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(including benzylic, naphthylic, and aliphatic polyunsaturated alcohols) [5, 15, 32]. These 

conjugated double bond systems increase the electron availability at the benzylic position 

enabling hydride abstraction by flavin N5. Moreover, the architecture of the AAO active site 

prevents the oxidation of secondary alcohols that cannot be accommodated at adequate 

distances of the catalytic histidine and the above-mentioned flavin N5 atom due to the 

presence of Phe501 [33].  

 Here we have performed a detailed study on AAO kinetic mechanism using different 

alcohol substrates. In all cases the AAO catalytic reaction can be divided into a reductive half-

reaction, in which two electrons are transferred via a hydride ion to the oxidized FAD, and an 

oxidative half-reaction, in which two electrons are transferred from the reduced flavin to O2 

yielding hydrogen peroxide. However, based on the results of bisubstrate kinetics analysis 

with different benzylic alcohols, the overall AAO catalytic cycle seems to be highly 

influenced by the chemical nature of the substituents in the substrate benzenic ring. For 

electron-withdrawing substituents (in 3-chloro- and 3-fluorobenzyl alcohols), both half-

reactions are independent, where the aldehyde product dissociation is taken place before the 

O2 (the second substrate) reaction, in a ping-pong steady-state kinetic mechanism (Scheme 1, 

bottom). On the contrary, a sequential mechanism operates for alcohols with electron-donor 

substituents (methoxylated benzyl alcohols) in which O2 reacts with the AAOred-Ald complex, 

forming a ternary complex prior to aldehyde product release (Scheme 1, top). 
Vainillyl alcohol oxidase, another versatile flavoenzyme which is able to oxidize aromatic 

alcohols as AAO, although belonging to a different superfamily, also exhibits a substrate-

dependent overall catalysis [34]. This behavior differs from other fungal GMC 

oxidoreductases, such as glucose oxidase, pyranose 2-oxidase, cholesterol oxidase and 

cellobiose dehydrogenase, where ping-pong was reported as the general mechanism [24, 35-

37]. Interestingly, detailed investigations on pyranose 2-oxidase recently indicated that its 

steady-state mechanism switches as a function of pH [38].  

 

Stacking interactions govern AAO catalytic mechanism 

Classical force fields semiquantitatively reproduce T-shape stacking dispersion forces [39] 

Moreover, high level quantum mechanistic studies pointed out at the importance of T-shaped 

interactions in molecular stacking, for example in benzene dimer [40]. In AAO, previous 

ligand migration simulations (using classical force fields) [19] suggested a T-shape substrate-

Tyr92 interaction. Our QM calculations (table 2) confirm such stabilizing interactions for the 

different substrate (Alc)/product (Ald) benzenic rings. In addition, stacking energies estimated 

for the different substrate/product correlate fairly well with their electron 

donating/withdrawing properties (to the ring π-cloud) of their different substituents. 

Methoxybenzene nucleophilicity is stronger than benzene due to resonance, increasing the 

electronic density in the ring. These effects explain why dimethoxylated alcohols/aldehydes 

have the largest stacking interaction energies. On the other side, for 3-chloro and 3-fluoro 

substituted alcohols/aldehydes, the halogen acts as an electron withdrawer (inductive effect), 

resulting in the lowest stabilization energies. Moreover, the slightly different interaction 

energies for these two halogenated compounds follow the expected trend for the increased 

electronegativity of the fluoride compared to chloride and thus, stronger inductive electron 

withdrawing effect. Thus, the lower interaction energies for the two halogenated compared 

with the methoxylated aldehydes, together with the higher alcohol-aldehyde differential 

interaction energies, should contribute to the release of the aldehyde product, favoring the 

ping-pong mechanism. The stacking interactions were intermediate for the 3-chloro-4-

methoxybenzyl alcohol/aldehyde due to the combination of electron donor and withdrawing 

substituents. 
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 Taking together the kinetic data, the stacking energy calculations and the available 

structural and computational information reported previously, the overall turnover of AAO is 

consistent with the proposed kinetic model of Scheme 1. Substrate diffusion studies had 

shown that alcohol and O2 molecules access the AAO active site through the same 

hydrophobic channel [13, 19]. The alcohol diffusion pathway requires, however, chain 

displacements and interaction with residues Phe397, Tyr92 and Phe501 to attain the AAO 

active site, while O2 diffusion does not need any rearrangement. This continuous O2 supply 

supports the fact that for the sequential mechanism, where the aldehyde product is still bound 

at the active site upon O2 arrival, some arrangement of the aldehyde product for flavin 

reoxidation must be required (for more detail see supplemental movie S1 in [13, 19]). 

However, the O2 affinity increases when the reaction takes place with alcohols leading to a 

ping-pong mechanism. This may be caused by prior dissociation of product aldehyde leaving 

more space at the active site for proper O2 binding.  

 

Rate-limiting step/s in AAO catalysis 

Rapid kinetic experiments provided separate information on the reductive and oxidative half-

reactions for each alcohol substrate. For 3-chlorobenzyl and 3-fluorobenzyl alcohols, the 

reductive half-reaction is the rate determining step in catalysis and responsible of the low 

efficiency in substrate oxidation. 

However, for 3,4-dimethoxybenzyl and 3-chloro-4-methoxybenzyl alcohols, flavin 

reduction rate is far from being the limiting state. In the first case, the apparent second-order 

constant estimated from pre-steady kinetic data (kred/Kd=156 ± 46 s
-1 

mM
-1

) is in agreement 

with the steady-state alcohol catalytic efficiency obtained (105  8 s
-1 

mM
-1

). In the ternary 

complex mechanism shown in Scheme 1 (top), kcat is a combination of catalytic steps in 

which the 3,4-dimethoxybenzyl alcohol is oxidized to 3,4-dimethoxybenzaldehyde (k2≈ kred) 

and the product is released (k5) (kcat=k2k5/(k2+k5)). The estimated value for k5 (101 s
-1

) would 

be indicative of a partially rate-limiting step for catalysis, suggesting that other kinetic step 

(after hydride transfer and before product release) also contributes to limiting the reaction 

rate. This step could be the flavin reoxidation, as suggested by the 40% AAO reduction 

during enzyme turnover when this substrate was assayed, showing similar values for alcohol 

and O2 catalytic efficiencies.Finally, for 3-chloro-4-methoxybenzyl alcohol oxidation, the 

estimated k5 value (42 s
-1

) suggests thatproduct release could be the rate-limiting step 

(Scheme 1, top). In fact, previous studies on 3-chloro-4-methoxybenzyl alcohol oxidation by 

AAO indicate that a fraction of the aldehyde formed was oxidized to the corresponding acid, 

rather than being released from the active site [16]. 

Regarding the oxidative half-reaction, reoxidation of AAO, previously reduced by different 

alcohols, yielded bimolecular rate constants (7.0x10
5
-8.4x10

5
 M

-1
 s

-1
) in the typical range 

described for other flavooxidases, ~3 orders of magnitude larger that the values reported for 

non-enzymatic reoxidation of free flavins (250 M
-1

 s
-1

), and ~40-fold faster than found for 

photo-reduced AAO [41, 42]. The latter observation is consistent with enhanced O2 reactivity 

of AAO when the conserved active site His502 is protonated during the oxidative half-

reaction, reducing the singlet/triplet energy gap [43]. The importance of a positively charged 

group for O2 activation has been reported for flavoprotein oxidases [41, 44]. 

 

Tyr92 role in AAO catalysis  

Finally, the kinetic data obtained in the present work for the Tyr92 variants strongly suggest 

that this residue is involved in the alcohol substrate stabilization at AAO active site. The 

Y92F variant exhibits similar rates for 3-methoxybenzyl alcohol oxidation than the native 

enzyme, while the leucine and tryptophan substitutions mainly alter alcohol substrate affinity. 

In the case of the Y92W variant, substrate binding results significantly weakened with 76 and 
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150 fold higher Km and Kd, respectively, while the changes on the affinity constants for the 

Y92L variant were modest (suggesting that some stacking is still possible). In a previous 

study, Tyr92 substitution with alanine (fully removing the stacking interaction) did not yield 

active enzyme, supporting the involvement of the above-mentioned π-π interaction in AAO 

catalysis [18]. Interestingly is that Tyr92 is not conserved in the GMC oxidoreductase 

superfamily. However, tyrosine, phenylalanine and leucine residues are frequently found at 

this position in the putative AAO sequences from different basidiomycetes genomes (Fig. 7). 

This suggests that stacking might be a common catalytic strategy for alcohol substrate 

oxidation in AAO enzymes.  

In conclusion the study of the overall catalytic cycle of AAO presented herein shows that 

stacking stabilization interaction of the aromatic substrate/product by active-site Tyr92 

governs AAO catalysis, switching between the ping-pong and the ternary mechanism 

depending on the stacking stabilization energies. The importance of Tyr92 for alcohol 

substrate binding was also evidenced by site-directed mutagenesis, kinetics and KIE studies 

suggesting a common role in other AAO proteins where this residue is conserved or replaced 

by others which are able to stablish similar stacking interactions. 

 

Materials and methods 

Chemicals 

4-Methoxybenzyl, 3,4-dimethoxybenzyl (veratryl), 3-chlorobenzyl, and 3-fluorobenzyl 

alcohols were purchased from Sigma-Aldrich (St. Louis, MO, USA). 3-Chloro-4-

methoxybenzyl alcohol, (R)-[α-
2
H]-4-methoxybenzyl alcohol, (S)-[α-

2
H]-4-methoxybenzyl 

alcohol and [α-
2
H2]-4-methoxybenzyl alcohol were synthesized at the Instituto de Ciencia de 

Materiales de Aragón (CSIC-UZ, Zaragoza, Spain).  

 

Protein production and purification  

Native AAO from P. eryngii was obtained by expression in E. coli of the mature AAO cDNA 

(GenBank AF064069), followed by in vitro activation in the presence of the FAD cofactor, 

and purification by ion-exchange chromatography as described previously [45]. Mutated 

variants were prepared using the QuikChange site-directed mutagenesis kit (Stratagene). For 

the PCR reactions, the cDNA cloned into the pFLAG1 vector was used as template, and the 

following oligonucleotides (direct sequences) bearing mutations (italics) as primers: i) Y92L, 

5'- GGG TCT AGC TCT GTT CAC CTC ATG GTC ATG ATG CG-3'; ii) Y92F, 5'- GGG 

TCT AGC TCT GTT CAC TTC ATG GTC ATG ATG CG-3';and iii) Y92W, 5'-GGG TCT 

AGC TCT GTT CAC TGG ATG GTC ATG ATG CG-3'. Mutations were confirmed by 

sequencing (GS-FLX sequencer from Roche) and the mutated variants were obtained as 

described for recombinant AAO. Naturally-oxidized AAO concentration was determined 

using the molar absorbances of native AAO and of its Y92L, Y92F and Y92W variants (463 

11050 M
-1

 cm
-1

, 463 11240 M
-1

 cm
-1

, 463 10044 M
-1

 cm
-1

, 457 10693 M
-1

 cm
-1

, respectively) 

calculated by heat denaturation and estimation of the free FAD released (450 11300 M
-1

·cm
-1

) 

[45]. 

 

Steady-state kinetic measurements 

Steady-state kinetics measurements were spectrophotometrically monitored by following the 

oxidation of the alcohol substrate to the corresponding aldehyde as previously described [15]. 

Two-substrate steady-state kinetics measurements were performed by simultaneously varying 

the concentrations of alcohol substrate and O2 in 0.1 M phosphate buffer, pH 6, at 12 ºC. The 

reactions were carried out in a screw-cap cuvette where the buffer solution was first 

equilibrated at the desired concentration of O2 (61, 152, 319, 668 and 1520 µM at 12 ºC) by 
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bubbling with the appropriate O2/N2 gas mixture for 10-15 min. Then, reactions were started 

by the addition of the alcohol substrate (around 5-10 µL) and AAO (5 µL, 0.03 µM final 

concentration) into a reaction mixture with a final volume of 1.5 mL. Initial rates were 

calculated during the linear phase of alcohol oxidation to corresponding aldehyde, and 

analyzed by fitting to Eq. 1 or Eq. 2 describing ternary complex and ping-pong mechanisms, 

respectively:  

m(Ox)i(Al)m(Al)m(Ox)

cat

KKABBKAK

ABk

e

v


    (Eq. 1) 

ABBKAK

ABk

e

v cat




m(Al)m(Ox)

     (Eq. 2) 

 

where v represents the observed initial rate, e is the enzyme concentration , kcat is the maximal 

turnover, A is the alcohol substrate concentration , B is the O2concentration , Km(Al) and Km(Ox) 

are the Michaelis constants for alcohol and O2, respectively, and Ki(Al) is the alcohol 

dissociation constant . 

 

Stopped-flow measurements: Enzyme turnover and pre-steady-state kinetics 

Stopped-flow experiments were carried out on an Applied Photophysics SX17. MV 

spectrophotometer (Applied Photophysics Ltd.) using the SX18.MV or the Xscan softwares 

for experiments with single wavelength or photodiode-array detection, respectively. For 

enzyme-monitored turnover experiments, air-saturated enzyme and substrate solutions were 

mixed, and the evolution of the flavin redox state was monitored in the range of 350-900 nm.  

Reductive half-reaction studies were performed under anaerobic conditions. Tonometers 

containing enzyme and substrate solutions were made anaerobic by successive evacuation and 

flushing with argon. These solutions also contained glucose (10 mM) and glucose oxidase (10 

U·mL
−1

) to ensure anaerobiosis. Drive syringes in the stopped-flow apparatus were made 

anaerobic by sequentially passing a sodium dithionite solution and O2-free buffer [46]. 

Measurements were carried out in 0.1 M phosphate buffer, pH 6, at 12 ºC. All given 

concentrations are those after mixing an equal volume of substrate and enzyme (i.e. final 

concentrations). Spectral evolution was studied by global analysis and numerical integration 

methods using the Pro-K software (Applied Photophysics Ltd.). Observed rate constant (kobs) 

from traces recorded at 462 nm were calculated from exponential fits. Rate constants were 

obtained by a nonlinear fitting of kobs at different substrate concentrations to either Eq. 3 or 

Eq. 4:  

AK

Ak
k




d

red
obs     (Eq. 3) 

rev

d

red
obs k

AK

Ak
k 


    (Eq. 4) 

where kobs is the observed rate for reduction of the enzyme at a given alcohol concentration, 

kred and krev are the limiting rates for hydride transfer from the substrate to the flavin and for 

the reverse reaction, respectively, at saturating substrate concentrations and Kd is the 

dissociation constant for the enzyme-substrate complex.  

Rate constants for the oxidative half-reaction were measured at 12 ºC in 0.1 M phosphate 

buffer by monitoring the absorbance increase at 462 nm upon mixing the previously 

anaerobically reduced enzyme with buffer equilibrated equilibrated at different O2 

concentrations. The enzyme was reduced either by mixing the oxidized protein under 

anaerobic conditions with a 1.2 fold-excess of the corresponding alcohol substrate or by 

photoreduction in the presence of 2 mM 5-deazariboflavin and 3 mM EDTA [15]. The 



 11 

apparent second-order rate constants for the oxidative half-reaction (kox) were determined as a 

function of the O2 concentrations and calculated using Eq. 5, where the kobs is the 

experimentally observed rate constant associated for flavin oxidation at any given O2 

concentration  

 2ox

app  

obs Okk     (Eq. 5) 

 

KIE in p-methoxybenzyl alcohol oxidation 

The substrate KIEs due to p-methoxybenzyl alcohol α-deuteration (R, S and dideuterated 

forms) on apparent steady-state kinetic constants were measured in O2-saturated (0.1279 

mM) 0.1 M phosphate buffer,pH 6.0 at 25ºC, were and calculated by fitting the initial rates to 

Eq. 6, which describes a mechanism with separate isotope effects on kcat and kcat/Km; where S 

is substrate concentration, Fi is the atom fraction of deuterium label in the substrate (0.98 in 

the present case) and 
mcat Kk

E and 
catk

E are the isotope effect minus 1 in the two kinetic 

constants [47].  

)1()1(
cat

m

catm

cat

k

K

k EFSEFK

Sk

e

v

ii


    (Eq. 6) 

 

QM calculations 

Second-order Moller-Plesset (MP2) [48] QM calculations were performed using the 

Gaussian03 program [49]. Triple-zeta split-valence basis sets with polarization orbitals (6-

311G*) were used throughout. The structures of the T-shaped complexes between a model 

tyrosine side-chain and the 4-methoxybenzyl alcohol were optimized using MP2 in gas phase 

and the most stable structure was selected. To isolate the stacking interactions and avoid 

distortions from the gas phase minimization for the remaining complexes, the H atom in meta 

position of the methoxybenzyl structure was replaced by a chloride or a methoxy group. The 

3-chlorobenzyl alcohol was obtained by removing the para methoxyl from the 3-chloro-4-

methoxybenzyl while the 3-fluorobenzyl alcohol structure was obtained by a chloride to 

fluoride change in 3-chlorobenzyl alcohol. At this point, the benzene rings are maintained 

frozen and all substituents are optimized. This procedure was done for both the alcohol and 

aldehyde forms. Binding energies were approximated from the interaction energies: AB-

(A+B) for all complexes and basis-set-superposition-error (BSSE) corrections [50] were taken 

into account at the same level of theory. Several studies on substituted benzene dimers have 

shown that this level of theory is capable of a qualitative description of differences in 

stabilization energies [51]. 
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Table 1. Kinetics parameters for the steady-state reaction  and for the pre-steady-state reductive half-reaction of AAO with five 

different alcohol substrates 

 Steady-state turnover  Reductive half-reaction 

Alcohol substrate 
kcat 

(s
-1

) 

Km(Al)  

(µM) 

kcat/Km(Al) 

(s
-1 

mM
-1

) 

Km(Ox)  

(µM) 

kcat/Km(Ox) 

(s
-1 

mM
-1

) 
 

kred  

(s
-1

) 

Kd 

(µM) 

4-Methoxybenzyl
1
 129  5 25  3 5160  650 348  36 371  41  115  3 31  2 

3-Chloro-4-methoxybenzyl  29  1 8  1 3630  470 214  30 136  20  95  3 71  10 

3,4-Dimethoxybenzyl  57  1 543  39 105  8 119  11 479  45  131  10 838  242 

3-Chlorobenzyl  13 ± 1 62 ± 1 210 ± 4 10 ± 1 1300 ± 130  8  1 58  2 

3-Fluorobenzyl  9 ± 1 164 ± 3 56  1 7 ± 1 1400  160  6  1 180  7 

Measurements were performed in 0.1 M phosphate buffer, pH 6, at 12 ºC. Steady-state kinetic constants were determined by varying the 

concentrations of both alcohol and O2, and calculated by fitting to Eq. 1 (4-methoxybenzyl, 3-chloro-4-methoxybenzyl and 3,4-

dimethoxybenzyl alcohols) or Eq. 2 (3-chlorobenzyl and 3-fluorobenzyl alcohols) describing either a ternary or ping-pong mechanism, 

respectively (see Materials and Methods). The pre-steady state observed reduction rate constants were fitted to Eq. 3. Means and standard 

desviations are provided 
1
Data from Ferreira et al. [14] 
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Table 2: T-shaped stacking energies between five AAO alcohol substrates and their 

corresponding aldehydes with a tyrosine side-chain, and differences between the two 

calculated energies (in Kcal·mol
-1

)  

 Alcohols (Alc) Aldehyde (Ald) Difference (Alc-Ald) 

4-Methoxybenzyl  -3.27 -2.83 -0.44 

3-Chloro-4-methoxybenzyl -3.16 -3.00 -0.16 

3,4-Dimethoxybenzyl -4.11 -3.62 -0.49 

3-Chlorobenzyl  -2.77 -1.96 -0.81 

3-Fluorobenzyl -2.67 -1.81 -0.86 
T-shaped stacking energies between Tyr and alcohol (Alc) or aldehyde (Ald) were calculated as 

described in the Materials and Methods section. Stacking energy difference between alcohol and 

substrate (Alc-Ald) is shown. Energies (in Kcal·mol
-1

) 
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Table 3. Kinetic parameters for steady-state reaction and for the pre-steady-state reductive half-readction of 

native AAO and three Tyr92 variants in the oxidation of 4-methoxybenzyl alcohol 

 Steady-state turnover  Reductive half-reaction 

 
kcat Km(Al) kcat/Km(Al) Km(Ox) kcat/Km(Ox)  kred  Kd 

(s
-1

) (µM) (s
-1

 mM
-1

) (µM) (s
-1

 mM
-1

)  (s
-1

) (µM) 

AAO
1
 129 ± 5 25 ± 3 5160 ± 650 348 ± 36 371 ± 41  115  3 31  2 

Y92F 120 ± 1 30 ± 1 4450 ± 120 147 ± 4 814 ± 21  119 ± 9 42 ± 12 

Y92L 100 ± 2 51 ± 2 1940 ± 4 348 ± 13 286 ± 12  95 ± 2 52 ± 4 

Y92W 11 ± 0.3 1890 ± 70 6 ± 0.3 181 ± 7 60 ± 3  14 ± 1 4630 ± 520 

Measurements were carried out in 0.1 M phosphate buffer, pH 6, at 12 ºC. Bisubstrate steady-state constants were 

determined by varying the concentrations of both alcohol and O2, and fitting the data to Eq. 1 (native AAO) or Eq. 2 

(Y92F, Y92L and Y92W variants) describing ternary and ping-pong mechanisms, respectively (see Materials and 

Methods).  Means and standard deviations are provided.
 
 
1
Data

 
from Ferreira et al. [14] 
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Table 4. KIE on apparent steady-state parameters for the oxidation of three α-deuterated 

p-methoxybenzyl alcohols by native AAO and its Y92L variant estimated under O2-

saturation conditions 

 
D
(
app

kcat) 
D
(
app

Km(Al)) 
 D

(
app

kcat/Km(Al))  

Native AAO
1
:    

(R)-[α-
2
H]-4-Methoxybenzyl alcohol 5.0 ± 0.0 1.3 ± 0.1 3.8 ± 0.1 

(S)-[α-
2
H]-4-Methoxybenzyl alcohol 1.3 ± 0.0 1.0 ± 0.1 1.3 ± 0.1 

[α-
2
H2]-4-Methoxybenzyl alcohol 7.6 ± 0.1 1.9 ± 0.1 4.1 ± 0.1 

Y92L variant:    

(R)-[α-
2
H]-4-Methoxybenzyl alcohol 4.0 ± 0.0 1.0 ± 0.1 4.3. ± 0.1 

(S)-[α-
2
H]-4-Methoxybenzyl alcohol 1.3 ± 0.0 1.1 ± 0.1 1.2 ± 0.1 

[α-
2
H2]-4-Methoxybenzyl alcohol 6.2 ± 0.1 1.1 ± 0.1 5.8 ± 0.1 

Steady-state constants were estimated in O2-saturated (1.279 mM O2) 0.1 M phosphate, pH 6, at 

25ºC. KIE values are the ratio between the activity on protiated and deuterated substrate 

calculated by fitting constants to Eq. 6. Means and standard deviations are provided.
 1

Data from 

Ferreira et al. and Hernandez-Ortega et al. [14, 33]
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Scheme 1. Ternary and ping-pong mechanisms in AAO catalysis. Ternary and ping-pong 

mechanisms are described by the upper and lower loops, respectively, while the right reaction 

corresponds to aldehyde release in anaerobic experiments. 

 

 

Figure 1. Detail of the AAO active site after alcohol substrate migration. Position of 4-

methoxybenzyl alcohol after migration to the AAO active site using the PELE software [52] 

(on 3FIM crystal structure). The alcohol situates in the environment of two conserved 

histidines, three aromatic residues, and the FAD isoalloxazine ring. 

 

Figure 2. Bisubstrate steady-state kinetics for AAO. Double reciprocal plot for the 

oxidation of 3-chloro-4-methoxybenzyl (A) and 3-chlorobenzyl (B) alcohols by native AAO, 

measured in 0.1 M phosphate buffer, pH 6, at 12 ºC, as a function of the alcohol substrate 

concentration at fixed O2 concentrations: 61 µM (x), 152 µM (), 319 µM (), 668 µM () 

and 1520 µM (). Direct plots are included in the corresponding insets. 

 

Figure 3. AAO redox state during turnover with five alcohol substrates. The enzyme (~16 

µM) was mixed in the stopped-flow spectrophotometer with equal volumes of 0.1 M 

phosphate buffer, pH 6, containing 2 mM 3-chlorobenzyl alcohol (trace 1), 5 mM 3-

fluorobenzyl-alcohol (trace 2), 1 mM 3-chloro-4-methoxybenzyl alcohol (trace 3), 2 mM 4-

methoxybenzyl alcohol (trace 4), 4 mM 3,4-dimethoxybenzyl alcohol (trace 5). The time 

course of the reaction (25 ºC) was monitored at 462 nm.  

 

Figure 4. AAO spectral changes during turnover. The AAO spectral changes during 

turnover experiments described in Fig. 3 with 1 mM 3-chloro-4-methoxybenzyl alcohol (A) 

and 3 mM 3-chlorobenzyl alcohol (B), are here shown. The oxidized enzyme sprectrum 

before mixing is shown as a dashed line. Spectra after mixing are indicated at 0.003, 0.011, 

0.08, 0.15, 0.3, 0.45, 0.60, 0.75, 1, 2, 10, 20 and 40 s in B, and at 0.16, 2.7, 4.3, 5, 10, 20, 30, 

40, 50 and 60 s in A. The corresponding insets show the spectral species (A, B and C) 

obtained after global analysis of the reactions. Revisar si estan cambiados los tiempos entre A 

y B 

 

Figure 5. Pre-steady-state kinetics for the reductive half-reaction of AAO. Spectral time-

course of the anaerobic reduction of native AAO (7.5 µM) by 3-chloro-4-methoxybenzyl (A) 

and 3-chlorobenzyl (B) alcohols. The spectrum of the oxidized enzyme before mixing is 

shown as a dashed line. Spectra after mixing are shown at 4, 19, 39, 80, 330 and 500 ms in A, 

and at 2, 39, 78, 129, 219, 500 ms in B. The corresponding insets show the absorbance spectra 

for the two-three kinetically distinguishable spectroscopic species (A, B and C) obtained by 

global analysis of the spectral evolution. The second inset shows the evolution of these 

species along the reaction course.  

 

Figure 6. Pre-steady-state kinetics for the reductive half-reaction of three Tyr92 AAO 

variants when using as substrate 4-methoxybenzyl alcohol. Spectral evolution of the 

anaerobic reduction of Y92F (A), Y92L (B), and Y92W (C) AAO variants (9 µM) by 4-

methoxybenzyl alcohol. Spectra for the oxidized enzyme before mixing are shown by dashed 

lines. Spectra after mixing are shown at 0.004, 0.006, 0.009, 0.0115, 0.0141, 0.0192 and 

0.032 s in A, 0.004, 0.006, 0.012, 0.017, 0.029, 0.099, 0.25 s in B, and 0.004, 0.006, 0.03, 

0.11, 0.18, 0.44, 0.98 s in C. The corresponding insets show the spectra for the kinetically 

distinguishable species (A and B) obtained by global analysis of the spectral evolution. 

Dependences of observed rates on the concentrations of 4-methoxybenzyl alcohol by native 
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AAO (),Y92F (), Y92L (▲) and Y92W () AAO variants are shown in D and fitted to 

Eq. 5. Assays performed at 12 ºC.  

 

Figure 7. Logo of sequence of 70 putative AAO sequences from different basidiomycetes 

in positions 83-97 of mature P. eryngii AAO. The compared sequences were taken from the 

following genomes available at JGI (www.jgi.doe.gov); the numbers of AAO sequences are 

indicated in parentheses): B. adusta (11), Dichomitus squalens (9), Fomitiporia mediterranea 

(1), Fomitopsis pinicola (1), Ganoderma sp. (7), Gelatoporia subvermispora (4), 

Gloeophyllum trabeum (2), Laccaria bicolor (1), P. chrysosporium (3), Phlebia brevispora 

(3), Punctularia strigosozonata (6), Rhodonia placenta (2), Stereum hirsutum (15) and 

Trametes versicolor (3). Numbers under each stack indicate the position in the mature P. 

eryngii AAO sequence; the overall height of the stack reflects the sequence conservation at 

that position; and the height of each symbol in the same column indicates the relative 

frequency of each amino acid. 

 

file:///G:/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/ING6VB5G/www.jgi.doe.gov
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