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ABSTRACT 

We present a new all-atom Monte Carlo technique capable of performing quick and accurate DNA-ligand 

conformational sampling. In particular, and using the PELE software as a frame, we have introduced an 

additional force field, an implicit solvent and an anisotropic network model to effectively map the DNA 

energy landscape. With these additions, we successfully generated DNA conformations for a test set 

composed of six DNA fragments of A-DNA and B-DNA. Moreover, trajectories generated for cisplatin 

and its hydrolysis products identified the best interacting compound and binding site, producing 

analogous results to microsecond molecular dynamics simulations. Furthermore, a combination of the 
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Monte Carlo trajectories with Markov State Models produced non-covalent binding free energies in good 

agreement with the published molecular dynamics results, at a significantly lower computational cost. 

Overall our approach will allow a quick but accurate sampling of DNA-ligand interactions. 

1. INTRODUCTION 

 Computational drug design efforts focus, to a large degree, on protein-ligand interactions. 

Nevertheless, there is a great interest in studying DNA-ligand interactions due to its importance, 

for example, in anticancer therapies.
1
 Cisplatin,

2, 3
 carboplatin and oxaliplatin complexes

4, 5
 are 

drug examples that bind to DNA causing cross-linking and triggering apoptosis; cisplatin cure 

rate in early stage testicular cancer is around 85%.
6
 

There are three main ways for small molecules to bind DNA: groove binding, intercalation 

between two base pairs and covalent binding to the bases.
7
 Besides, some small molecules can 

bind to DNA in more than one way. Groove binding is mostly driven by hydrogen bond 

interactions between ligand and DNA. Intercalation of a small molecule between two adjacent 

base pairs often requires a planar polyaromatic system that performs pi-pi interactions with DNA 

bases. Finally, covalent binding is first driven by preferential ligand diffusion and DNA 

recognition,
8
 where positively charged ligands (with large stabilizing Coulomb interactions) 

dominate,
9
 followed by irreversible drug addition.  Thus, an all-atom description of the DNA–

ligand interaction is a central aspect of drug design.   

Different docking algorithms such as AUTODOCK,
10

 GLIDE
11

 or CDOCKER
12

 are used to 

study binding interactions between drugs and DNA fragments, the main objective being to 

identify the preferential binding site and to produce a reduced set of ligand orientations. These 

tools, however, were mostly developed and tested for protein-ligand complexes and the accuracy 

of DNA-ligand predictions is still questioned.
13

 Moreover, docking approaches typically neglect 
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induced fit effects, thus adding bias to the initial conditions (structures). On the other hand, the 

reduced number of degrees of freedom in DNA (with respect to proteins), together with 

performance improvement in molecular dynamics (MD) due to GPU acceleration, has been 

applied to perform microsecond range simulations.
14

 These simulations explore whole DNA 

surface with a ligand and provide the binding energy of different regions in DNA fragments. 

However, binding free energy calculations are not a trivial task requiring a huge quantity of 

samples to statistically converge free energies. In this line, the recent introduction of Markov 

State Model (MSM) techniques
15

 applied to long MD trajectories has aided in estimating binding 

free energies
16

 but, in any case, MD sampling remain expensive computationally speaking. 

Monte Carlo (MC) approaches have become an alternative to reduce the computational time in 

this kind of problems. Different MC approaches have been developed to sample a large set of 

nucleic acids conformations based on fixed bond distances and perturbations of the angles and 

dihedrals such as concerted rotations with flexible bond angles (CRA)
17

 or the chain 

breakage/closure (CBC)
18

 algorithms. In particular, CBC algorithm have been applied for DNA 

flexible docking
19

 and to derive atomic resolution data representing the sequence-dependent 

conformation of DNA duplexes in solution.
20

 In addition, CBC has been the basis for further 

developments of MC sampling techniques for nucleic acids.
21

 

The protein energy landscape exploration (PELE) algorithm,
22

 in particular, has revealed 

accurate results in describing protein-ligand interactions,
23-25

 at a significant lower computational 

cost than MD simulations.
26

 Currently, it provides protein simulations of biased and non-biased 

ligand migration, local induced fit, normal mode protein dynamics and protein elastic 

properties.
27, 28
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In this work, we introduce our recent changes to expand PELE for exploring DNA and DNA-

ligand dynamics. First, DNA dynamics are compared with nanosecond MD for six different 

DNA fragments, achieving excellent agreement. Then, we explored ligand diffusion with 

cisplatin and its hydrolysis products identifying the binding affinity and mode, in accordance 

with microsecond MD. Finally, the whole (free) DNA surface exploration was combined with 

MSM to successfully estimate binding free energies for these three platinum (Pt) compounds. 

 

2. METHODS 

The PELE algorithm 

PELE is a MC algorithm originally designed to explore the energy landscape between protein 

and ligands. Each MC step is based on two main parts: perturbation and relaxation (described in 

detail below). The first is composed by independent perturbations on the ligand and on the 

receptor. Ligand perturbation consists of a set of random ligand rotations and translations, 

coupled to quick (steric) local side chain rotamer repositioning (including ligand rotatable 

bonds), until a non-clashing ligand pose is found. The receptor is perturbed by driving selected 

atoms using a biased potential to a new position following the direction pointed by a 

combination of the lowest normal modes. PELE relaxation performs a global minimization using 

a truncated Newton (TN) algorithm combined with a weak harmonic constraint to partly 

maintain the new position of the perturbed atoms. In proteins, the relaxation step might also 

include a more robust side chain prediction using expanded rotamer libraries and the full force 

field potential energy. Final system conformations are accepted or rejected using a Metropolis 

criterion. At each accepted step, the binding energy is computed as the internal energy difference 

between the complex and the free receptor and ligand (𝐸𝐵𝑖𝑛𝑑 = 𝐸𝐴𝐵 − (𝐸𝐴 + 𝐸𝐵)). 
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Ligand perturbation. Ligands are translated and rotated randomly with discrete jumps around 

+/-25% of a predefined value. This value is selected depending on the exploration type. For 

global explorations, translation and rotation ranges oscillate around 1-3 Å and 45º. In contrast, 

standard values are between 0.5-1 Å and 10º for local exploration, where we aim at a ligand-

receptor local induced fit sampling. PELE can alternate or change dynamically these parameters 

defining jump conditions. Users can specify variable translation and rotation parameters using 

different criteria such as probabilities, root-mean-square deviations (RMSD), ligand solvent 

accessible area, or (given) separation distances between atoms, residues, etc. Ligand translational 

direction can be updated at each MC step or kept several steps (before being randomly 

reassigned) to increase ligand exploration in one region, a particularly useful approach in 

partially buried binding sites. Moreover, the exploration can be constrained to a cubic, prismatic 

or spherical box to reduce the conformational search space. To further restrict the exploration 

space in a dynamical manner, PELE can use a spawning criterion to exchange conformations 

between independent runs, where users define a criterion, such as a maximum distance between 

the ligand and an atom selection, interaction energies, etc.  

Protein perturbation. This task aims to induce protein global motion by introducing a 

backbone perturbation following a displacement along one (or a combination) of the lowest 

normal modes (NM). Normal mode analysis (NMA) approximates the harmonic nature of the 

global fluctuations through the second derivatives of the potential (the Hessian). In particular, 

PELE uses an NMA version called Anisotropic Network Model (ANM) 
29

, an elastic network 

model based on a simplified coarse grained potential connecting neighbour alpha carbon atoms 

(within a defined distance cut off). Once the perturbation direction has been chosen, we apply it 
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through an all-atom minimization including a harmonic constraint in the alpha carbons pointing 

in the NM direction.            

Relaxation. The relaxation step is based on a TN minimization using the OPLS all-atom force 

field 
30

 and an implicit surface-generalized Born continuum solvent
31

 including, at least, all 

residues involved in the perturbation steps. By default, it adds weak position constraints in the 

ANM atom nodes with a force constant of 1 kcal/mol. A weak ligand position constraint can be 

added to maintain the ligand’s orientation found during the ligand perturbation. The typical force 

constant applied to the ligand ranges from 0.1 to 0.5 kcal/mol; a useful procedure when the 

binding site is narrow and a receptor conformational change is needed to allocate the ligand. 

Novel implementations in PELE 

Force field and solvent 

To study DNA, we have introduced the AMBER parmBSC0 force field,
32, 33

 specifically developed for 

nucleic acids. It has demonstrated the ability to preserve DNA’s structure and reproduce feasible 

fluctuations in microsecond long MD trajectories.
34

 We also introduced the Onufriev-Bashford-Case 

(OBC) implicit solvent
35

 which has been developed and tested to reproduce the solvent polar term in 

macromolecules combined with the ACE non-polar term.
36

 A Debye-Hückel term
37

 is added to the 

solvation energy to take into account the ionic strength contribution. Following PELE’s implementation, a 

multiscale
38

 non-bonding algorithm is used to speed up atomic pair list generation associated with the 

non-bonding energy terms. Moreover, cell list optimization provides a quick way to update non-bonding 

pair lists.  

ANM model 

Based on the work by Zacharias et al.,
39

 the ANM elastic network is generated using the C4’ 

backbone atoms of each DNA base as nodes. Then, an exponential decay model without any cut-

off is applied to connect the nodes and calculate the force constants needed for the Hessian 
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matrix (see equation 1 where i and j corresponds to two given nodes). This exponential decay 

model depends on two constant parameters 𝑘0 and d with values of 1.2 kcal/(mol·Å
2
) and 5 Å, 

respectively, as optimized in a recent study.
39

 Eigenvectors produced by the ten smallest normal 

modes are used to perturb DNA to sample the main global conformations. While PELE can 

update these ANM eigenvectors after each accepted step, the default behaviour uses the initial 

ones (updates should be considered if large conformational changes are expected or observed). 

The perturbation direction can be imposed by the user (a predefined ANM mode) or be based on 

a weighted average over the eigenvectors generated: after each iteration one random mode is 

selected with a larger contribution (65% by default), the remaining contribution comes from the 

average of the other nine eigenvectors. 

𝑘𝑖𝑗 = 𝑘0𝑒−(
𝑟𝑖𝑗

𝑑
)

2

  (1) 

Once the direction has been estimated and normalized, final eigenvectors are scaled by a 

constant factor of 1.5 and placed in the ANM nodes generating the coordinates of a new virtual 

point. As in proteins, a harmonic constraint with zero equilibrium length is created between each 

node atom and the virtual point, to be used in the perturbation step. In DNA, however, due to its 

linear geometry we found a strong dependence on the size and the relaxation force constant; the 

reduced mobility of short DNA fragments (as opposed to larger ones) imposed increasing 

slightly the force constant in the harmonic constraint. Table 1 presents the optimal set of 

parameters found for each DNA conformation and size. 

 

Table 1. Force constant values (kcal/(mol·Å
2
) for the position constraint applied in the PELE 

global minimization for each representative DNA fragment. 
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Number of 

bases 
A-DNA B-DNA 

24 3.0 1.5 

36 1.5 0.5 

48 1.0 0.0 

 

PELE parameters used 

In all simulations performed, the ligand perturbation kept the same direction during two 

consecutive steps to increase the possibility to escape from a local minimum. Translation 

magnitude was randomly alternated 50% of the time between 1.0 Å and 3.0 Å and rotation angle 

was generated with a Gaussian distribution around 72º. This set of parameters was chosen to 

allow a quick DNA surface exploration (using large perturbations) and a local refinement of the 

binding regions (using small perturbations) in the same run. In ligand diffusion simulations, two 

position constraints of 10 kcal/mol were added into DNA’s end residues (residue 12 and 24) to 

avoid artefacts with the ligand interaction due to the small fragment size. Ligand movement was 

restricted to a spherical box of 35 Å and the ionic strength of OBC solvent was set to zero.  

Molecular dynamics simulations 

MD simulations have been performed using Amber12 package
40

 with the parmBSC0 force 

field. Explicit solvent simulations have been set up using a truncated octahedral water box with 

TIP3P water model
41

 where the distance between the solute unit and the box edges was set to 12 

Å, and the systems were neutralized adding Na
+
 ions. The equilibration protocol consisted of 

initial solvent minimization, followed by a global minimization and 200 picoseconds heating the 

system from 0 to 300 K using a weak-coupling algorithm with constant pressure. The time step 

used has been 0.5 femtoseconds in the equilibration and production runs, with the SHAKE 

algorithm
42, 43

 constraining hydrogen bond lengths. Non-bonding interactions have been 
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evaluated using a cutoff of 9 Å with the Particle-Mesh-Ewald (PME)
44

 method to compute long-

range electrostatic interactions. Constant pressure and temperature (NPT ensemble) has been 

applied to the system using a Berendsen barostat and thermostat.
45

 Each simulation consisted of 

200 nanoseconds. Analogous implicit solvent simulations have been carried out using AMBER 

parmBSC0 force field and the OBC implicit solvent. 

DNA conformational analysis 

MD simulations with explicit and implicit solvent were carried out on each structure to provide 

a reference DNA set of conformations. Six independent PELE trajectories (each running in one 

single computing core) were simulated for each system. Then, these trajectories were joined in 

one trajectory removing the first 50 frames of each one, considered part of the equilibration. 

DNA conformations have been analysed and compared using the root mean square fluctuation 

(RMSF), principal component analysis (PCA) and DNA base pair step parameters. PRODY
46

 

library was used to compute RMSF and PCAs. 3DNA
47

 software was used to calculate the rise, 

roll, twist, slide, shift and tilt DNA bases topological parameters.  

Absolute binding free energies 

To test the ligand–DNA capabilities of PELE, we have selected three platinum compounds: 

cisplatin, CPT, neutrally charged; the first hydrolysis product, CPT1, with formal charge +1; and 

the second product, CPT2, with formal charge +2. Force field ligand parameters and charges 

were extracted from Lucas et al. 
8
. We started each PELE simulation from six different ligand 

positions 20 Å away from the DNA fragment. The same B-DNA fragment with 24 bases 

employed in a previous study 
8
 with protein data bank (PDB) entry 2K0V

48
 was used. The 

structure has the same sequence of the damaged DNA sequence 3LPV
49

 with cisplatin cross-

linked in the G6-G7 base pair (pdb entry 3LPV).
49
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Binding free energies were estimated using MSM with the software package EMMA.
50, 51

 

MSM defines states and uses the transition between them to describe equilibrium properties. 

PELE simulation frames were aligned to a reference structure using the DNA atoms P, C2 and 

C4’. MSM was constructed following the next steps
51

: 1) extract cartesian coordinates of the 

central Pt atom of cisplatin molecules; 2) generate 300 clusters using the K-means algorithm; 3) 

assign each snapshot to a (clustered) microstate using Voronoi discretisation; 4) check 

connectivity between microstates to determine the largest set of them; 5) assure that the implied 

timescales become constant after a certain lag time (𝜏); stationary distribution of the microstates 

is computed using 𝜋 = 𝜋𝑇𝑖𝑗 where 𝑇𝑖𝑗 corresponds to the transition matrix between microstates. 

After this analysis, the stationary distribution corresponds to the eigenvector with eigenvalue of 

the transition matrix equal to one. Potential mean force (PMF) profile is then computed using the 

Boltzmann inversion of the stationary distribution, 𝐺𝑖 = −𝑘𝐵𝑇 log 𝜋𝑖, and the binding free 

energy through Δ𝐺0 = −𝑘𝐵𝑇 log
𝑣𝑏

𝑣0
⁄ − Δ𝑤, where 𝑘𝐵 is the Boltzmann constant, T = 300 K, 

𝑣0=1661 Å3 (1 M ligand concentration), 𝑣𝑏 is the PMF bound volume and Δ𝑤 corresponds to the 

difference between the minimum (bound state) and the bulk average (unbound state) values in 

the PMF profile.   

 

3. RESULTS 

DNA conformational analyses 

To test the DNA conformational sampling obtained by the ANM model, A-DNA and B-DNA 

fragments with 24, 36 and 48 bases were generated using NAB tool
52

 as a test set. The initial 24 

bases sequence was taken from the PDB
53

 entry 2K0V
48

 corresponding to 

d((CCTCTGGTCTCC)·d(GGAGACCAGAGG)). Sequences with 36 bases and 48 bases were 
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generated replicating the 24 bases sequence motif (see supporting information Figure S1 for a 

picture of the final models and the sequences for the 36 and 48 bases fragments).  

Analyses of the RMSF, PCA and bases topological parameters show that PELE explores an 

equivalent conformational space as the (200 nanosecond) MD simulations (Figure 1). For the 

RMSF analysis, we obtained around 5000 frames from each MD and PELE trajectory where the 

initial structure was chosen as reference for both trajectories. Figure 1A shows the RMSF for the 

B-DNA fragment with 24 bases, where points represents the RMSF of atoms P, C2 and C4’, 

respectively (in each individual residue), and residues are arranged in ascending order from 1 to 

24. Initial, medium and final parts of the plot (nodes 1-6, 30-42 and 66-72 belong to terminal 

residues in each strand) correspond to the 5’ and 3’-ends of the double strands. As expected in 

movements derived from the lowest normal modes, the RMSF plot shows higher fluctuations in 

the DNA for MD than PELE, since these fluctuations correspond to higher frequency modes; all 

other bases present an excellent agreement. 
54, 55

 RMSF plots showed the same agreement for the 

other five systems studied (see supporting information Figure S2).  

Fluctuation analyses of the bases’ topological parameters allow us to evaluate the structural 

integrity along the simulations. We have focused on the parameters: roll, rise, twist, slide, shift 

and tilt (see 3DNA 
47

 for a detailed explanation). Figure 1B shows a comparison between MD 

trajectories with explicit and implicit solvent and PELE for the B-DNA fragment with 24 bases, 

where the reference value corresponds to the initial structure generated with NAB tools. Overall, 

the agreement between PELE and MD is excellent. Roll is the only one that showed significant 

differences between the reference and the simulations; after a few MD and MC steps, DNA’s 

ends were slightly collapsed reducing the chain length and the average roll value. In production 

runs, one might choose to use a weak constraint on the ends if emulating the effects of a larger 
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DNA chain, or to avoid DNA-ligand overestimated interactions (see Methods). In any case, 

changes in 5´ and 3´ DNA ends do not significantly affect the minor and major groove size and 

are not important for the binding process. In the remaining DNA fragments studied, PELE and 

MD sampling produced a similar parameter agreement (see supporting information Figure S5). 

PCA was used to extract the most important motions from the conformational sampling 

trajectories. We used the inner product over the first ten principal components (PCs) and 

projections over the first two PCs to compare both simulation methods. Figure 1C shows the 

inner product matrix in a colour map with good overlapping between the lowest 4-5 modes, 

similar to the one we could obtain with two different force fields. As usual, PCs were sorted in 

decreasing maximum variance order. Thus, the most significant modes are the lowest ones 

because they represent the highest contribution to the variance of the fluctuations. All six DNA 

fragments studied showed similar correlations for the inner product matrix diagonal (see 

supporting information Figure S3). As expected from applying a simple ANM approximation, in 

some instances the (variance) ordering from MD and PELE trajectories is shifted.  
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Figure 1. B-DNA with 24 bases analysis. Panel A shows the RMSF results for MD (blue), PELE 

(yellow) and the difference between them (red). Each point represents the RMSF of atoms P, C2 

and C4’, respectively (in each individual residue), and residues are arranged in ascending order 

from 1 to 24. Panel B, base pair step parameters comparison between DNA canonical structure 

and MD (explicit and implicit solvent) and PELE. Panel C corresponds to the normalized cross 

correlation matrix for the first ten PCs. Panel D is the 2D projection plot of the first two PCs for 

MD (yellow) and PELE (black).  

 

The first two PCs projections contain the most significant fluctuation information of each 

trajectory; Figure 1D shows the projections for the 24 B-DNA fragment simulation for the first 
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two eigenvectors. Clearly, PELE and MD explore the same area showing good agreement 

between their conformations. The other five DNA systems PCs projection plots show similar 

good correlation (see supporting information Figure S4).   

 

 

Figure 2. Panel A, view of cisplatin compounds CPT-parent drug, CPT1-mono-aquo and CPT2-

di-aquo. Panel B, representation of PDB ID 3PLV structure showing the cross-linked cisplatin in 

the binding site (black circle). 

 

DNA-ligand exploration 

To test the DNA-ligand conformational sampling capabilities, we have studied the interaction 

with CPT and its aqua derivatives CPT1 and CPT2, with an overall molecular charges of 0, +1 

and +2, respectively.  Figure 2A shows the atomic representation of the three compounds and 

Figure 2B the crystallographic DNA cisplatin bound structure with the binding site highlighted. 

PELE’s binding energy (Figure 3A) with respect to the binding site distance clearly indicates that 
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CPT spends most of the time in the bulk with very few visits to the binding site, where the ligand 

shows low interaction energies. In fact, other DNA regions (mainly the loose ends) presented 

better interaction energies than the binding site. Introducing a positive charge into the ligand (by 

replacing a chlorine substituent by a water molecule) clearly produces a significant shift in the 

ligand exploration. CPT1 is now able to identify the binding site showing more favourable 

interaction energies than the neutral variant. Following this trend CPT2 improved the binding 

site recognition, producing a clear precursor structure for the covalent addition. Figure 3B shows 

the ligand distribution around the DNA fragment during the simulations for the three ligands, 

showing excellent agreement with the results found in the previous microsecond MD study (see 

supporting information Figure S6). In line with the interaction energy profiles, CPT shows low 

ligand concentration close to the DNA fragment, CPT1 presents a larger exploration, and CPT2 

has the highest cluster concentration around the DNA molecule and especially in the binding 

region. The ligand structure adopted in both MD and PELE in the binding site is shown in Figure 

4, indicating (besides the agreement in both methods) a clear covalent addition precursor. To 

further quantify the equivalence of these ligand distributions between PELE and MD, we 

performed the MSM analyses and computed the absolute binding free energies.  
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Figure 3. Panel A, PELE binding energy profiles for CPT, CPT1 and CPT2. Distance is 

measured from the Pt atom position to the binding site N7 atom from guanine 6. Panel B shows 

Pt atom position for each PELE trajectory frame. Black circles show cisplatin binding site. 
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Figure 4. Representative cisplatin di aqua orientations for the binding site cluster. Panel A and B 

correspond to MD and our MC approach, respectively.    

 

Binding free energies of cisplatin compounds 

In a previous study,
8
 we applied MSM to microsecond MD trajectories generated for the three 

cisplatin compounds: CPT, CPT1 and CPT2. Results were compared with steered molecular 

dynamics (SMD) and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) 

techniques to determine the similarity between different methods. Here, we have applied MSM 

to our Monte Carlo simulations generated in the previous section to study the ability to reproduce 

the ligand affinities. To this end, we have generated the 2D PMF profiles obtained through MSM 

(see supporting information S7) and estimated binding free energies following the procedure 

described in the Methods section.  

Binding free energies are summarized and compared with the previous published results in 

Table 2. PELE’s results, -0.7±0.2, -2.0±0.5 and -2.8±1.0 kcal/mol for CPT, CPT1 and CPT2, 

respectively, are in good agreement with those obtained in microsecond MD simulations. The 

binding free energy for CPT showed the maximum difference (0.7 kcal/mol) between PELE and 

MD. This difference comes from the ligand conformational sampling: in MD, CPT was able to 

find more weak local minima around the DNA structure, particularly in the minor groove, 

increasing the binding free energy. PELE, due to the implicit solvent model and the ligand 

perturbation, was not able to keep the ligand in these clusters long enough to converge the 

results. Nevertheless, PELE clearly discriminates ligand affinity and provides quantitative 

absolute binding energies for ligands with significant binding energy.  
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Table 2. Absolute Binding free energies (kcal/mol) comparison for CPT, CPT1 and CPT2 drugs. 

MD results have been extracted from.
8
 

  CPT CPT1 CPT2 

MD 

MSM -1.4 -2.1 -2.8 

SMD -1.6 -2.6 -2.8 

MMPBSA -2.4 -3.3 -3.8 

PELE MSM -0.7 -2.0 -2.8 

 

 

4. CONCLUSIONS  

The PELE algorithm is today a well-established Monte Carlo method for studying protein-ligand 

interactions, with a good compromise between speed and accuracy. Here, we have presented the 

expansion of the program to allow its usage to study DNA-ligand interactions. To this aim, several 

modifications including an additional implicit solvent, ANM model and a force field have been 

implemented.  Altogether, with these additions PELE is now able to reproduce conformations and ligand 

distributions obtained at microsecond scale by MD. In particular, we demonstrated its ability to explore 

similar DNA conformations obtained with MD for different A-DNA and B-DNA fragments of various 

sizes. The comparison between DNA structures using RMSF, PCA (inner product and projections) and 

the base pair step DNA parameters for both methods confirmed the similarity of the conformational 

exploration. Certainly, our Monte Carlo based approach has limitations, such as a reduced set of normal 

modes, their approximate nature or the lack of time evolution, that will not make it the best tool for an 
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exhaustive dynamical DNA exploration. Nevertheless, it produces a great quick conformational search to 

be coupled with ligand dynamics.  

The potential of PELE in exploring the DNA-ligand conformational space was tested against recent 

non-biased microsecond molecular dynamic simulations for cisplatin and two of its aqua derivatives. The 

well-defined trend (difference) observed for the three ligands (Figure S6), together with the extensive MD 

simulation data,
8
 makes of this system a nice test set. Clearly PELE is capable of reproducing the non-

covalent DNA-ligand interactions for the three systems. As expected, differences are only observed for 

the (very) weak-binding CPT compound, for which the ligand perturbation step leads to a reduced 

population of the DNA surface (minor groove occupation seen in MD not observed in PELE). As 

discussed earlier, however, CPT most likely does not bind to DNA
8
; true binders produce quantitative 

absolute free energies.  

Importantly, besides ligand (space) distribution, ranking and absolute free energies, the correct 

orientation of the pre-covalent bound compound is observed (Figure 4). This is an important feature since 

obtaining receptor-ligand induced fit orientations is a crucial aspect in drug development projects, from 

which to design new compounds. Such information is quickly obtained, within 1-2 CPU hours in a 

commodity cluster (~16 cores), with PELE. Further computation of absolute binding free energies, for 

instance by using MSM, is not a trivial task, requiring approximately 128 cores for 24 hours. 

Nevertheless, this still constitutes an improvement over the 1.5 microseconds simulation necessary to 

reach convergence in molecular dynamics. Moreover, since each core performs an independent 

simulation, the method scales linearly with computational resources. This speed up in time and scalability 

opens the door for in silico accurate screening of DNA binders using affordable resources and simulation 

time.  

In summary, we introduced here the expansion of our Monte Carlo code PELE to study DNA-ligand 

interactions. By introducing last generation force field and solvent models, together with specific DNA 

sampling algorithms, we are capable of quickly and accurately explore the DNA-ligand induced fit space 

for the non-covalent recognition process. 
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