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Several papers have been devoted to the alternative maximum entropy method (MEM2) which uses a 
finite-length cepstrum modelling to estimate the spectrum from a given set of autocorrelations. In this 
paper, a simple technique that avoids the computational burden of MEM2 by using the causal part of the 
autocorrelation instead of the complete two-sided sequence is presented. Its finite-length cepstrum model, 
that arises from the minimization of a root-mean-square measure of spectral distance, can readily include 
prior information without increasing the computational complexity of the algorithm. As illustrated with 
some numerical examples, the new method also demonstrates a better performance than MEM2. 

1. INTRODUCTION 

The hereafter so-called 2nd. maximum entropy method 
(MEM2) [1,2] analogous approach to the well known 
maximum entropy method or MEM1 [1]. Their common 
starting point is a constrained optimization problem where 
the objective is to maximize a measure of entropy subject to 
a given set of autocorrelation constraints {rn, n=O, 1 , ... ,M}. 
Both MEMl and MEM2 differ by the entropy measure used, 
resulting that MEM1 has a rational all-pole model whereas 
the MEM2 spectral model is 

S(ro) = eP(ro) (1) 

where P(ro) is a trigonometric polynomial of order M. Thus, 
the spectral estimate obtained by MEM2 is the spectrum 
S(ro) that: 1) matches the first M+ 1 autocorrelations, and 2) 
agrees with the specific spectral estructure (1). The 
consequence is, therefore, an extrapolation of the 
autocorrelation beyond M according to (1). Since P(ro) is 

the logarithm of S(ro), the type of spectra described by (1) 
have a finite number of non-zero cepstral coefficients, i.e. 

C(n)=O , for lni>M (2) 
__{ 

where C(n) is the (real) cepstrum corresponding to S(ro) or, 

equivalently, the Fourier's series coefficients of P(ro). 

If, along with the autocorrelation values rn, an a-priori 
spectrum Sp(ro) is given, from the constrained maximization 
problem, it follows the spectral model [2,3] 

S(ro) = Sp(ro) eP(ro) (3) 

where the coefficients of P(ro) are such that the given 
autocorrelations are matched. Now the cepstrum has two 
components, i.e. 
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C(n) = Cp(n) + P(n) (4) 

where Cp(n) is the (non-finite) cepstrum corresponding to 

Sp(ro) and P(n) are the Fourier's series coefficients of P(ro), 
which are zero beyond M. 

To find the spectral estimate S(ro), a system of non-linear of 
equations has to be solved by means , for instance, of an 
iterative algorithm of Newton-Raphson's type [1,2]. 
Therefore, MEM2 involves a high computational 
complexity. 

Consequently, there has been some attempts to avoid this 
drawback [4,6]. First of all, Wu [4] proposed a non-iterative 
algorithm; however, his estimate really does not match a 
given set of autocorrelations. Analogously, Liefhebber­
Boekee [5] base their various proposed techniques on the 
application of a rectangular window to the cepstrum so the 
given autocorrelations are not preserved (excepting the trivial 
case in which they already correspond to a MEM2 
spectrum). Burr-Lytle [6] propose a computationally easy 
algorithm to solve the problem (unlike the other two papers, 
their approach considers a prior spectrum as additional 
information); however, their method actually uses an 
accurate set of cepstral values instead of autocorrelations. 

Thus, all three papers start from the same constrained 
optimization problem using the MEM2 entropy measure and 
the autocorrelation constraints and arriving at the MEM2 
spectral model (1). Then, they use this model to obtain 
spectral estimates with simple, non-iterative, algorithms 
which actually perform different types of cepstral 
smoothing. As a consequence, their autocorrelation 
estimates do not match the given values that were used as 
constraints of the starting approach shared by all three 
papers. Thus, although all those authors keep the name 
MEM2 (or other related names) for their techniques, they 
actually are not maximizing the MEM2 entropy measure but 
other (not explicit) functionals which give rise to the MEM2 
spectral model when their real constraints (different from 
autocorrelations) are used in the optimization problem. In 
fact, the MEM2 spectrum is unique [1] and it demands 
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solving the system of non-linear equations; any kind of 
simplification gives rise to a different spectrum. 

The aim of this paper is to present a new technique that also 
avoids the computational drawback of MEM2 but still 
preserving the known autocorrelation values. It is based on 
using the cepstrum of the causal part of the autocorrelation 
instead of the cepstrum of the complete two-sided 
autocorrelation sequence R(n). 

2. THE ANAL VTIC SPECTRUM AND CEPSTRUM 

Let R + (n) denote the "causal part" of the 
autocorrelation R(n), namely 

R+(n) = 2R(n) for 
= R(n) for 
=0 for 

Its Fourier transform s+(ro) is 

n>O 
n=O 
n<O 

(5) 

s+(ro) = S(ro) + jH(ro) = IS+(ro)leie(ro) (6) 

where H(ro) denotes the Hilbert transform of S(ro). s+(ro) 
may be referred to as the "analytic spectrum" [7], in 
correspondence with the analogous definition used in 
amplitude modulation. Accordingly, we may define the 
spectral envelope 

(7) 

which has already been used for spectral estimation, and the 
spectral "instantaneous frequency" 

t(ro) = -de(ro)/ro (8) 

Since R+(n) is a minimum phase function [8], either E(ro) 

or 't(CO) specify S(ro) uniquely and viceversa. Moreover, the 

poles of S(ro) appear in both t(ro) and the square envelope 
E2(ro). 

The complex cepstrum c+(n) of R+(n), i.e. the Fourier's 
series coefficients of log s+(ro), will be hereafter referred to 
as the analytic cepstrum. It directly characterizes both 
functions log E(ro) and 't(ro), since 

QO 

log E(ro) = c+(O) + L c+(n) cosnro 
n=l 

00 

rutd t(ro) = l n c+(n) cosnro 
n=l 

(9) 

(10) 

On the other hand, due to the causality and minimum phase 
properties of R+(n), the analytic cepstrum c+(n) can be 
obtained by means of the following recursion [9]. 

2 n-1 
c+(n) = R(O) [ R(n)- k~1 

= log R(n) , n = 0 
= 0, n<O 

k ii c+(k)R(n-k) ], n > 0 

(11) 

where the relationship (5) between R+(n) and R(n) has been 
used. 

Observe that to compute c+(ni), apart from its previous/ 
values, only the autocorrelations from lag 0 to lag n1 are 
needed. Hence, the first N values of C+(n) are completely 
determined by the first N values of R(n) and vice versa. 

3. MODELLING OF THE ANALYTIC CEPSTRUM 

The problem that will be considered here is the extrapolation 
of the given set of autocorrelation values r0 , or, 
equivalently, the estimation of a spectral function real or 
complex T(ro) that agrees with them. This function can be 

the spectrum S(ro) or another function related with it, 
provided that this function fully characterizes the 
autocorrelation R(n). 

On the other hand, some additional information about the 
spectral features of the underlying random process can be, in 
general, available. Assuming that this prior information is 
contained in the function Tp(CO), a reasonable criterion for 
extrapolating r0 may be to minimize a measure of spectral 
distance D(T,Tp) between T(ro) and Tp(ro). Thus the 
problem is 

to minimize 
subject to 

D(T,Tp) 
R(n) = rn, n=-M,., 0,., M 

In our approach, the starting data are a set of 
autocorrelations rn. However, according to (11), there exists 
an one to one correspondence between these first M+l 
autocorrelation values and the corresponding M+ 1 first 
coefficients of the analytic cepstrum. Therefore, we can 
compute these coefficients Cn+ with (11) and use them as 
the constraints of the optimization problem. 

Although different kinds of spectral functions and distances 
may be considered, we will just concentrate in this paper on 
one of them. We select the spectral function 

T(ro) =logs+ (ro) 

and the root-mean-square distance 

[ 
1t ]l/2 

D2(T,Tp) = ..!_ f IT(ro)-Tp(ro)l2 dro 
21t -1t 

Thus, we aim at 

minimizing 

subject to 

D2 (log s+, log Sp +) 

C+(n) = c;i, n = 0, ... , M 

(12) 
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To find the solution of this optimization problem we can 
equal to zero the derivatives of D2 (log S+, log Sp +) with 
respect to the unknown cepstral coefficients, resulting 

n>M (13) 

where Cp+(n) are the cepstral coefficients of the prior 
analytic spectrum. 

Thus, this very simple algorithm allows both the extrapo­
lation of c+(n) according to (13) and the estimation of the 
spectral functions log E(ro) and 't(ro), which can be obtained 
from c+(n) by means of the expressions (9) and (10). 

On the other hand, the extrapolation of c+(n) also yields, by 
means of the inverse relations of (11), an extrapolation of 
R(n) and therefore an estimation of both R(n) and S(ro). 

Note that E(ro) is always positive since it is obtained from 

log E(ro); however the positivity of S(ro) is not guaranteed. 

When a prior log analytic spectrum log Sp+(ro) is not 
available, we can reasonably consider that 1t is flat, i.e. 
logSp+(ro) =eo+ (the average value of log S+(ro)). The 
solution of the minimization problem is then a zero 
extrapolation, namely, 

c+(n) = 0 , n > M (14) 

" Hence, the part of the analytic cepstrum corresponding to the 
given autocorrelations is always of finite length M+ 1 and it 
is obtained applying a rectangular window to the analytic 
cepstrum sequence. If a prior analytic cepstrum exists, it is 
just appended to the finite length sequence so that the first 
M+ 1 values of that prior analytic cepstrum are not used. 
Thus, if Se(w) is the exact or true spectrum and WM(n) is a 
rectangular window of length M+1, the analytic cepstrum 
estimated by this method when the given autocorrelation are 
exact can be written in the form 

c+(n) = WM(n) C~(n) + [1-WM(n)] ct<n) (15) 

It should be noted the analogy between equations (14) and 
(2). Consequently, the version in the frequency domain of 
the spectral model arising from (14) is analogous to (1), 
namely 

s+(ro) = e p+(ro) (16) 

where P+(ro) is a complex polynomial of order M. Thus, the 
proposed method performs a correct matching of the given 
autocorrelations and uses a spectral model analogous to the 
MEM2 model. Additionally, it allows a readily inclusion of 
a-priori information in form of values of the analytic 
cepstrum. In this case, there also exist model expressions 
that are analogous to (3) and (4). 

The algorithm is much simpler than the iterative algorithm 
used to find the MEM2 spectrum and even is simpler than 
the MEM1 algorithm (using the Levinson-Durbin recursion). 
Moreover, if a prior spectrum is available, the algorithm is 
also much simpler than those used for MEM2 or MEM1 
[10], which are of iterative type. 
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4. NUMERICAL EXAMPLES 

First of all, let us consider a spectrum of unit power 
consisting of a peak and a valley with Gaussian shapes and 
the same logarithmic amplitude, as shown in Fig.l. The 
spectra (in dB) obtained with the proposed method and 
MEM2, using 20 exact autocorrelations, are plotted in Fig.2. 
By comparing these spectra, we observe that the new 
technique is superior to the MEM2 spectrum in both peak 
and valley. 

A second example will help us to illustrate the resolution 
capability of the new method and the use of prior 
information. For this purpose, a different spectrum having 
two close Gaussian peaks of the same amplitude was 
selected. The exact spectrum, which also has unit power, is 
given in Fig.3. 

Fig.4 shows the MEM1 spectrum along with the new 
estimate which was obtained, according to the proposed 
method, by keeping only the first M+l coefficients of the 
analytic cepstrum. In this case, the number of given 
autocorrelations is M+1=13. Clearly, both methods are 
capable of resolving the two peaks. However, when the 
number of autocorrelations is 12, both of them fail to 
distinguish the peaks. 

However, even though the information about the existence 
of two separate peaks is lost in the spectrum of the proposed 
technique, it still remains in the spectral function 't( ro) 
which, as observed in section 2, has the same poles than 

·. S(ro). In fact, Fig.S shows that the peaks are resolved for 12 

autocorrelations and even for 11. Also, observe that t(ro) 
sligthly shifts the peaks, separating one from the other. It is 
worth noticing that only positive values of t(ro) are 
considered, since they give the desired information about 
spectral poles. 

Continuing with the same example, let suppose now that the 
highest frequency peak is previously known. As shown in 
Fig.6, the proposed technique only needs 8 autocorrelations 
to resolve the peaks. The corresponding spectral envelope 
has also been plotted in the same figure to show that it is 
also able to display the desired information. 

5. CONCLUSIONS 

The initial goal of the work presented' in this paper was to 
develop a spectral estimation technique based on the same 
type of model than MEM2 but avoiding its computational 
complexity. To accomplish this objective, we resorted to an 
already reported concept: the analytic spectrum. By 
modeling the analytic spectrum (or, equivalently, its 
Fourier's series coefficients, namely, the causal part of the 
autocorrelation sequence) instead of the spectrum itself, we 
were able of arriving at a very simple algorithm for spectral 
estimation that, as MEM2, uses a finite-length (analytic) 
cepstrum modelling. 

Due to the one-to-one correspondence between the first M+ 1 
autocorrelation values and the corresponding analytic 
cepstral coefficients, the proposed method actually consists 
of applying a rectangular window to the latter and allows a 
readily inclusion of prior spectral information. Nevertheless, 

-, 
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unlike the other published papers that avoid the iterative 
algorithm required by MEM2, the spectrum obtained with 
the presented method actually matches a given set of 
autocorrelations. 

As shown with numerical examples, the new technique 
gives clear evidence, with both functions S(ro) and E(ro), of 
a performance greater than its homologous MEM2. 
Moreover, when the interest lies in the spectral poles, the 
spectral instantaneous frequency 't(O>) can be used in lieu of 
the spectrum, so even achieving more resolution. This fact is 
a consequence of the high-pass liftering procedure used to 
obtain 't( ro) with ( 10). 

Finally, the proposed algorithm is simpler than the 
Levinson-Durbin recursion used in MEMl, and additionally 
the inclusion of prior information does not substantially 
affect it, unlike MEMl which requires, in this case, an 
iterative algorithm. 
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