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A REAL TIME SIMULATION MODEL FOR LOGNORMAL FADING CHANNELS 

J.Delgado-Penín , J . Serrat-Fernández 

Department of Signal Theory and Communications 
Universitat Politecnica de Catalunya 
PO Box 30002 
Barcelona, Spain 

In this paper we present a mathematical model for the simula­
tion of lognormal fading channels. A modeling technique and its 
validation by computer simulation are described with special 
emphasis on the aspects related to the spectrum shaping. The 
obtained results have shown that it is possible to control the 
fading depth and the fading rate with a good enough reliability 
in their usual variation ranges. 

INTRODUCTION 
Simulation plays an important role in computer-aided analysis 
and design of Communications and Radar systems. In recent 
years, propagation models with long-term fading characterized 
by random processes with lag-normal probability:density func­
tions (pdf) have been developed and are currently being used in 
a variety of applications. 

The generation of complex correlated processes with 
statistics is not trivial. In fact, many recently 
papers [1],[2], [3] are focussed in this subject . 
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In [1] a canonical model which carries out the fading spectrum 
shaping by means of a linear operator on a batch block of 
uncorrelated samples is presented. Besides the difficulties 
associated to find the linear operator to get the appropriate 
correlation function, its main drawback relies on the fact that 
it do not process sequentially, thus making difficult its 
interoperation with commercially available simulators which are 
usually based on a sequential processing of data . 

The model presented in (3] makes use of a deterministic ap­
proach in arder to get Rayleigh and lag-normal statistics. In 
case that only the second one were required, the main drawback 
is that the output process is real (not coherent) . On the other 
hand it is likely less reliable as far as the statistics on the 
extreme values is concerned and neither is straightforward the 
control of the frequency spread. 

MODEL OF THE MULTIPLICATIVE PROCESS 
In arder to overcome the problems associated to the 
mentioned approaches, we propase a model constituted 
filter, and a complex exponential non-linear device as 
shown in figure 1 . 

u(t)___J'-------~I====w=(=t=)==~~------~l===g=(t=)= ~- H(f) _ cexp(.) 

Figure l. Functional block diagram of the model 

abo ve 
by a 

it is 



The variable u(t) is a complex white Gaussian process with the 
real and imaginary components mutually uncorrelated. The auto­
correlation function of g(t) will be determined by the combined 
effect of the filter and the non-linear memoryless transforma­
tion. This non-linear function has been choosen because it 
transforms a pair of jointly distributed Gaussian variables 
into a complex one having log-normal envelope. 

It is also straigthforward to show that the pdf of the phase 
will be Gaussian. But this would not be worrying assuming that 
the phase standard deviation is big enough compared with "· In 
fact the phase must be understood modulo-2!'\. Therefore folding 
the phase distribution at every 2!'\ intervaí we get a quasi 
uniform characteristic inside the interval (-fi,fi). In turn, 
this will be one of the assumptions to be validated. 

The frequency spread of g(t), and therefore the fading rate, 
can be controlled by specifying a shape for the output spectrum 
and allowing the control on its characteristic parameters 
(bandwidth, ... ). As it was mentioned earlier, the output spec­
trum will be conformed by the combined effect of the filter 
transfer function and the non-linear device. In fact the mean 
and the autocorrelation of g(t) can be written as follows [1] 

E{g(t)} = exp((Rxx(O)-Ryy(0))/2) (cos(Rxy(O)+ 

j sin ( Ryx ( o ) ) ) ( 1 ) 

Rgg(t) = cexp(Rxx(t)+Ryy(t)+Rxx(O)-Ryy(O) -

j(Rxy(t)-Ryx(t))) (2) 

Concerning the average power of the output process it must be 
noted that it could be controlled indistinctly at the input or 
at the output of the complex exponential. The control at the 
output is like if we were adding a de term to the Gaussian 
process w(t). In this case the pdf of the lognormal process 
becomes spread out as much more output power is required. 
Therefore the probability that the output envelope is below a 
given fading depth may be very low even for a great output 
power.On the contrary, the control at the input makes the pdf 
more concentrated near the origin, allowing a more flexible 
control of the probability of exceeding a given fading depth 
with moderate output powers. As a conqequence we choosed this 
second approach although its inherent drawbacks which will be 
pointed out later. 

SPECTRUM SHAPING OF g(t) 
First of all we assume that the cross-correlation functions 
between the real and the imaginary components of the process at 
the input of the non-linear function are both equal to zero and 
also that, for the same process, the autocorrelation of the 
imaginary component is proportional to the autocorrelation of 
the real part. In the following paragraphs we note by L the 
proportionality factor. This is 

Rxy(t) = Ryx(t) = O 

Ryy(t) = L Rxx(t) 

( 3) 

(4) 



Then (1) and (2) becorne 

E{g(t)} = exp(((1-L)Rxx(0))/2) 

Rgg(t) = exp((1+L)Rxx(t) + (1-L)Rxx(O)) 

and the output power will be 

p = Rgg(O) = exp(2Rxx(O)) 

(5) 

(6) 

(7) 

Also under the above rnentioned hypothesis is easy to show that 
the squared rnagnitude of the transfer function H(f) is propor­
tional to the Fourier transform of the following expression 

-(1-L)Rxx(0)/(1+L) + ln (Rgg(t) / (1+L) (8) 

frorn which we can realize that it is not possible to guarantee 
the existence of a solution for any output spectrurn (autocorre­
lation) shape. 

Proposed approach 
Cornming back to the rneaning of expression (8) it is clear that 
if the output spectrurn is Gaussian the squared: rnagnitude of 
H(f) adopts a closed expression, thus sirnplifying the involved 
rnathernatics. In this context it rnust be kept in rnind that our 
final goal is not so rnuch to get a predefined spectrurn but to 
control its characteristic pararneters. 

Assurning that the output spectrurn is Gaussian and using (8) - it 
can be seen that the autocorrelation of w(t) should be an 
inverted parabola centered around the origin. This is of course 
a non feasible autocorrelation function. Therefore an approach 
rnust be used. In the following two paragraphs we surnmarize it . 

First of all, the parabola is truncated from the point where it 
is zero (t0 ) as it is shown in figure 2. In this case, the 
autocorrelat1on of the lognorrnal process becornes Gaussian 
inside the interval (-t0 ,t0 ) and flat outside of it. Moreover, 
the flat terrn is inversely proportional to the exponential of 
the factor L. Therefore, rnaking L as rnuch great as possible the 
fitting of the output spectrum to a Gaussian one is irnproved. 

t 
Figure 2. The parabola is truncated rrorn 

the point where it is zero. 



On the other hand, to sirnplify the filter synthesis, the trun­
cated parabola is approached with a Gaussian function (figure 
3) • 

,..... 
R~~ (t) 

t 
Figure 3. The truncated parabola is fitted 

to a Gaussian function. 

In order to fit the Gaussian function to the parabola, the 
second one is equated to the first two terrns of the series 
expansion of the Gaussian function. Therefore, the filter of 
the rnodel will be Gaussian with a variance proportional to the 
width of the output spectrum and also inversely proportional to 
the factor L. This means that L can not be rnade arbitrarily 
high in order to avoid that this ~ilter bandwidth becomes much 
lower than the sirnulation sarnpling frequency. 

MODEL VALIDATION 
In order to validate the model and implicitly to determine the 
range of values for the factor L we proceeded to sirnulate the 
system represented in figure 1. 

Filter synthesis 
In order to determine the filter recurrency equation its rnagni­
tude was expanded in series of Laguerre polynomials. In fact, 
previous work had revealed that this gives a better precission 
than other series expansions, like Taylor or Tchebyshev, for 
the sarne filter order. 

In the present case we choosed an order ten expansion (five 
cascaded cells of order two) which leads to a Gaussian transfer 
function in a dynamic margin of about 80 dB. 

Surnrnary and interpretation of results 
From the tests carried out with different algorithms for the 
evaluation of the factor L, the following can be stated: 

The discrepancies between the required and the estima­
ted output power are not rninirnized increasing the 
number of sirnulated sarnples. 

The output spectrum is Gaussian only for srnall values 
of the output power. 

Keeping in mind that we had seen analytically that it was 
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possible to reach the model objectives, we attributed the above 
mentioned discrepancies to the possible statistical errors in 
the noise source with which we feed the model. Therefore, an 
exhaustive analysis of such noise source was done and it revea­
led that in fact the cross-correlation functions are not iden­
tically zero and also that they show a residual mean value. 
This statistical errors are relatively small and in most appli­
cations involving linear transforms can be neglected. But in 
our case we use the complex exponential which magnifies them 
and therefore it is reasonable to expect errors in the output 
power and asymetries in the output spectrum. As the development 
of a new noise source was out of the scope of this research, we 
could only reduce the errors by means of a~areful evaluation 
of the filter noise equivalent bandwidth. 

On the other hand, the factor L adopts a minimum value around 
20 when the output power reaches the maximum (100 power units 
(pu) is a fair upper bound) . As a consequence the approach in 
this case is not good enough yielding to a narrower output 
spectrum. 

In spite of the discrepancies observed in the spectrum shape, 
the relative errors measured in the frequency spread are not 
greater than 10% and 20% when the output power is little than 
20 pu and 100 pu respectively. 

Finally, the probability density function of the 
(modulo-2fi) is practically'uniform. 

CONCLUSIONS 

phase 

This model and the associated implementation approach overcomes 
the drawbacks of other existing enes . In fact, it allows the 
sequential (real-time) generation of a coherent lognormal f 
uniform random process intended to simulate long- term fading 
channels. The fading frequency spread can be controlled with 
relative errors not exceeding the 20%. Moreover , the probabi­
lity of a fading depth of 30 dB can be made as high as 10- 2 

The model limitations which have been pointed out throughout 
the paper come mainly from its sensitivity to the statistical 
errors of the white noise source. However, in the context of 
the analysis of transmission systems under long-term fading, 
they do not constitute any obstacle for its use. 
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