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Abstract 

Feature selection (FS) has long been studied in classification and regression problems, 

following diverse approaches and resulting on a wide variety of methods, usually grouped as 

either filters or wrappers. In comparison, FS for unsupervised learning has received far less 

attention. For many real problems concerning unsupervised multivariate data clustering, FS 

becomes an issue of paramount importance as results have to meet interpretability and 

actionability requirements. A FS method for Gaussian mixture models was recently defined in 

Law et al. (2004). Mixture models are well established as clustering methods, but their 

multivariate data visualization capabilities are limited. The Generative Topographic Mapping 

(Bishop et al. 1998a), a constrained mixture of distributions, was originally defined to overcome 

such limitation. In this brief report we provide the theoretical development of a feature 

relevance determination method for Generative Topographic Mapping, based on that defined in 

Law et al. (2004); with this method, the clustering results can be visualized on a low 

dimensional latent space and interpreted in terms of a reduced subset of selected relevant 

features. 
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1. Introduction 

Finite mixture models have settled in recent years as a standard for statistical modelling 

(McLachlan and Peel, 2000a). They can be used in classical data analysis problems such as 

clustering, regression and probability distribution modelling. This report focuses on their 

clustering capabilities. Gaussian mixture models (GMM), in particular, have received especial 

attention for their computational convenience (McLachlan and Peel, 2000b) to deal with 

multivariate continuous data. The usefulness of these models is reinforced by the wide spectrum 

of their applications (see, for instance, Wedel and Kamakura, 2000; McLachlan et al., 2004). 
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In practice, general finite mixture models suffer from several shortcomings that may limit their 

applicability; one of them is their lack of multivariate data visualization capabilities. Data 

visualization can be especially important in the exploratory stages of an analytical data mining 

process (Wong, 1999). The Generative Topographic Mapping (GTM) was originally defined by 

Bishop et al (1998a) as a constrained GMM allowing for multivariate data visualization on a 

low dimensional space. The model is constrained in that mixture components are equally 

weighted, share a common variance and their centres do not move independently from each 

other. This last feature also makes GTM an alternative, founded on probability theory, to the 

widely used (Kaski et al, 1998; Oja et al, 2002) Self-Organizing Maps (SOM: Kohonen, 2000). 

What makes the GTM especially useful is its combination of a readily interpretable clustering 

model with strong visualization capabilities (an extension of those of the SOM) and 

computational tractability. Its probabilistic setting ensures the existence of a proper error 

function and the convergence of its parameter optimization procedure, as well as enables the 

definition of principled extensions (Bishop et al, 1998b). 

The interpretability of the clustering results provided by the GTM, even in terms of exploratory 

visualization, can be hampered when the data sets under analysis consist of a large number of 

features. This situation is not uncommon in real problems concerning clustering in areas such 

as, for instance, bioinformatics, chemometrics, or web mining. The data analyst would benefit 

from any method that allowed ranking the features according to their relative relevance and, 

ultimately, from a feature selection method. Feature selection (FS) has for long been the 

preserve of supervised methods for classification and regression problems. Diverse approaches 

have been followed, resulting on a wide variety of methods usually grouped as either filters or 

wrappers. Reviews of such methods can be found, for instance, in George (2000) and Kudo and 

Sklansky (2000). In comparison, FS for unsupervised learning has received far less attention, 

and initial strands of research have only started to shed light on this matter. For many real 

problems concerning unsupervised multivariate data clustering, FS becomes an issue of 

paramount importance as results have to meet interpretability and actionability requirements. 

Interpretability of clusters would be improved by their description in terms of a reduced subset 

of relevant variables, while clustering actionability (understood as the capability to act upon the 

clustering results), most important in managerial decision making problems such as market 

segmentation (Wedel and Kamakura, 2000), would be improved by enabling actions based only 

on a parsimonious subset of relevant features. 

A recent main advance on feature selection in unsupervised model-based clustering has been 

presented in Law et al. (2004) for GMM. It provides a definition of unsupervised feature 

saliency and a method for its estimation as part of the Expectation-Maximization (EM: 

Dempster et al., 1977) algorithm. In this report we follow this approach to provide the 
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theoretical development of a feature relevance determination (FRD) method for GTM; with this 

method, the clustering results can be analysed on a low dimensional visualization space and 

interpreted only in terms of a parsimonious subset of selected relevant features. 

The remaining of the report is structured as follows. First, a brief definition of the standard 

GMM is provided, accompanied by the description of the estimation of its parameters within the 

EM framework. This is followed by a description of the FS method for GMM developed by 

Law et al. (2004). A self-contained introduction to the standard Gaussian GTM is then provided, 

followed by the presentation of the main contribution of this report: a FRD method for GTM, 

accompanied by a summary of the Maximum Likelihood estimation of its parameters within the 

EM framework; the corresponding details are presented in an appendix. The report wraps up 

with some brief conclusions and directions for future research. 

 

2. Gaussian Mixture Models and the EM estimation of their parameters 

In mixture models, the observed data are assumed to be samples of a combination or finite 

mixture of k=1,…,K components or underlying distributions, weighted by unknown priors 

( )kP . Given a D-dimensional dataset { }N
nn 1== xX , consisting of N random observations, the 

corresponding mixture density is defined as: 

( ) ( ) ( )∑=
=

K

k
k kP;kpp

1

θxx ,              (1) 

where each mixture component k is parameterized by kθ . For continuous data, the choice of 

Gaussian distributions is a rather straightforward option due to their computational convenience 

(McLachlan and Peel, 2000), in which case 
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where the adaptive parameters kθ  are the mean vector and the covariance matrix of the D-

variate distribution for each mixture component, namely kµ  and kΣΣΣΣ . Their Maximum 

Likelihood estimates can be obtained using the EM algorithm and, for that, first we define the 

complete log-likelihood as 

( ) ( ) ( ) ( )kP,;kplogplog,L
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= == 1 11
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In the context of the EM algorithm, we can introduce the binary indicator variables { }K
kk 1== zZ , 

with ( )kNkk z,...,z 1=z , which reflect our ignorance of which mixture component k is 
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responsible for the generation of data observation n. The complete expected log-likelihood can 

now be expressed as 

( ) ( ) ( )[ ]∑ ∑=
= =

N

n

K

k
kknknc kP,;kplogz,L

1 1

ΣΣΣΣΣΣΣΣ µµ xZX, .                      (4) 

The indicators Z are effectively treated as missing data and, following the iterative EM 

procedure, the re-estimation of the adaptive parameters kk ,ΣΣΣΣµ  requires the maximization of 

the expected log-likelihood ( )[ ]kkc ,,,LE ΣΣΣΣΣΣΣΣ µµ XZX, . 

The expectation of each of the indicators in Z, which is the probability of a mixture component 

k being responsible for data observation n (also known as responsibility knr ) can be written as: 
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With this, in the maximization step, the update formulae for kk ,ΣΣΣΣµ are obtained as: 

∑
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2.1 Feature Relevance Determination in Gaussian Mixture Models 

The problem of feature relative relevance determination for GMM was recently addressed by 

Law et al. (2004). Feature relevance in this unsupervised setting is understood as the likelihood 

of a feature being useful to define the data clustering structure. In that sense, it becomes a soft 

version of a FS method: no feature is actually meant to be discarded because none is likely to be 

either completely useful or useless. However, the resulting relevance ranking can be the basis of 

an a posteriori selection. A similar counterpart procedure for supervised models is Automatic 

Relevance Determination (ARD: MacKay, 1994; Qi et al., 2004)  

Formally, the saliency of feature d is defined as ( )1== dd P ηρ , where ( )D,...,ηη1=η  is a 

further set of binary indicators that, like Z, can be integrated in the EM algorithm as missing 

variables. A value of 1=dη  indicates the full relevance of feature d. According to this 

definition, the mixture density in Eq.1 can be rewritten as: 
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( ) ( ) ( ) ( ) ( ){ }∑ ∏ −+=
= =

K

k

D

d
dddkdd xq;kxpkPp

1 1

1 λρθρx             (8) 

Notice that this entails the assumption that features are conditionally independent given a 

mixture component, which is equivalent to the assumption of a diagonal covariance matrix. The 

distribution p would be a univariate version of Eq.2, and the relevance of feature d would be 

given by dρ ; consequently, a feature d would be considered as irrelevant, with irrelevance 

( )dρ−1 , if, for all mixture components, ( ) ( )ddkdd xq;kxp λθ = , where ( )ddxq λ  is a common 

density followed by feature d, or common mixture component. Notice that this is tantamount to 

say that the distribution for feature d does not follow the cluster structure defined by the GMM. 

This common component should reflect any prior knowledge we might have regarding 

irrelevant features, or otherwise take the form of a general, uninformative distribution. 

The maximum likelihood criterion can now be made explicit as the estimation of those model 

parameters that maximize the complete log-likelihood 

( ) ( ) ( ) ( )( )∑ ∏ −+∑=
= ==
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n
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1 11

1 λρθρ ,           (9) 

which can be accomplished using the EM algorithm (For details, see Law et al., 2004). The 

probability of a component k being the generator of observation n: knr , is computed in the 

expectation step of the algorithm as: 

( ) ( ) ( ) ( )( )
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Then, the maximization step provides update expressions for the components’ priors ( ) kkP α≡ , 

for the means and variances associated to each feature d in ( )⋅⋅p  and ( )⋅⋅q , as well as for the 

relevance parameter dρ : 
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3. GTM as a constrained GMM 

The GTM (Bishop et al., 1998a) was originally formulated both as a probabilistic alternative to 

SOM (Kohonen, 1995) and as a constrained mixture of distributions. It is precisely its 

constrained definition that allows overcoming the data and cluster visualization limitations of 

general finite mixture models. The GTM is a non-linear latent variable model that defines a 

mapping from a low dimensional latent space onto the multivariate data space. The mapping is 

carried through by a set of basis functions generating a (mixture) density distribution. The 

functional form of this mapping is defined as a generalized linear regression model: 

( ) ( )∑=
M

m
mdmd wy uWu, φ ,            (17) 

where ΦΦΦΦ  is a set of M basis functions ( ) ( ) ( )( )uuu M,...,φφ1=ΦΦΦΦ  that were originally defined as 

spherically symmetric Gaussians ( )
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m exp

u
u , with mµ  the centres of the 

Gaussians and σ  their common width; W is the matrix of adaptive weights mdw  that defines 

the mapping; and u is a point in latent space. In order to achieve computational tractability and 

to provide an alternative to the clustering and visualization space defined by the characteristic 

SOM lattice, the latent space of the GTM is discretized as a regular grid of K latent points 

ku defined by the probability 

( ) ( )∑ −=
=

K

k
kK

P
1

1 uuu δ ,           (18) 
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The probability distribution for a data point x takes the form of isotropic Gaussian noise and, 

given the adaptive parameters of the model, which are the matrix W and the inverse variance of 

the Gaussians β , it can be written as: 

( ) { }2
2

22
y-xW,u,x

β
π

β
β −








= expp

D

         (19) 

Marginalizing over the latent points and using Eq.18, we obtain 

( ) ( ) ( ) { }∫ ∑ −
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According to this general description, the GTM is a constrained mixture of Gaussians in the 

sense that all the components of the mixture are equally weighted by the term 1/K, all 

components share a common variance 
1−β  (therefore I

1−= βΣΣΣΣ ), and the centres of the 

Gaussian components ( )Wuy kk ΦΦΦΦ=  do not move independently from each other, as they are 

limited by the mapping definition to lie in a low dimensional manifold embedded in the D-

dimensional space. Notice that, given the common variance constrain, the GTM complies by 

definition with the assumption that features are conditionally independent given a mixture 

component, expressed in section 2.1. 

The complete log-likelihood can now be defined as: 
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As for GMM, we can resort to the EM algorithm to obtain the Maximum Likelihood estimates 

of the adaptive parameters W and β . Defining once again as Z  the indicators describing our 

lack of knowledge of which latent point ku  is responsible for the generation of data point nx , 

the complete expected log-likelihood is defined as 
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The expected value of knz  is now an special case of Eq.5 
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The update expressions for W and β  are computed in the maximization step. We obtain 
new

W  

as the solution of the following system of equations in matricial form: 

0=− RXΦWΦGΦ
TnewT ,           (24) 

where Φ is a MK × matrix with elements ( )kmkm uφφ = ; R is the responsibility matrix, with 

elements knr ; and G is a matrix with values 
'kk

'kk,r
g

N
n kn

'kk
≠

=



∑

= =

0

1 . 

Notice that Eq.24 is equivalent to Eq.6, given that the component centres for the GTM are 

described by ΦWY = . 

The update expression for β  is: 

( ) ∑ ∑ −=
= =

− N

n

K

k
knkn

new r
ND 1 1

21 1
yxβ           (25) 

See Bishop et al. (1998a) for further details on these calculations. 

 

3.1 Feature Relevance Determination in Generative Topographic Mapping: the FRD-

GTM 

The approach to feature relevance determination (FRD) described in section 2.1 can be 

transferred to the standard Gaussian GTM. It has to be born in mind, though, that, to some 

extent, the relevance of a feature depends on the number of clusters defined by a given solution. 

Considering the GTM strictly from its definition as a constrained mixture model, each of the 

points of the latent space sampling defined by Eq.18 can be thought as the generator of a single 

data cluster. For data visualization purposes, the number of latent points is left rather 

unconstrained in the usual GTM definition. Therefore, the FRD method applied to GTM should 

be understood as a constrained one in as far as it is meant to reach a compromise between its 

own ability as detector of feature relevance in clustering structure, and the data visualization 

capabilities of the GTM. In other words, for FRD-GTM, individual features are relevant in the 

sense that they explain the specific clustering structure provided by GTM, and not necessarily 

the unconstrained clustering structure. 

For FRD-GTM, the complete log-likelihood in Eq.21 becomes: 

( ) ( )
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1 11

1
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where  
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( ) ( )( )( )221
22 ∑−−= m mdkmnddknd wxexpa uφβπβρ        (27) 

and  

( )( ) ( )( )( )221
221 ooondd,od,odknd xexpb wuφβπβρ −−−= .                  (28) 

The common component requires the definition of two extra adaptive parameters ow  and oβ , 

so that ( ) oooo wuy φ= . 

This common component accounts for data observations that the mixture components cannot 

explain well; in other words, data observations that do not fit with the cluster structure described 

by these components. This approach is not unlike the one commonly used to deal with the 

presence of atypical data observations, or outliers, when fitting Gaussian mixtures, which entails 

the inclusion of an additional component with a uniform distribution. This can be circumvented 

by the fitting of Student t-distributions mixtures (Peel and McLachlan, 2000), which has also 

been done for GTM (Vellido et al., 2005). The FRD method presented in this report, though, 

differs from the former on its featurewise approach.  

Resorting again to the EM algorithm, we rewrite the complete log-likelihood of the model as: 

( ) ( )∑ ∑ +=
=

kn kndknd

D

d
knooc barL ,

1

log,, ZX,βwW, β         (29) 

where the expected responsibiblity in Eq.23 becomes: 
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''
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The maximization of the expected log-likelihood for GTM yields the following update formulae 

for parameters dρ , W, β , wo and oβ : 

∑= k,n kndkn
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1
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( )( )∑ −

∑
=
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k.n kndknnew
d,o
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vr
2

uφ
β ,        (34) 

where 

kndknd

knd
knd

ba

b
v

+
= .            (35) 

For fully relevant ( 1→dρ ) features, the common component variance ( ) 0
1

→
−

d,oβ . We now 

obtain, for each feature d, the elements of matrix new
W  as the solution of the following system 

of equations in matricial form: 

0=− ∗∗
d

Tnew
d

T
XRΦWΦGΦ ,          (36) 

where ∗
R  has elements knkndkn rur ∗=∗

 for a given feature ∗d  with knr  given by Eq.30, and ∗
G  

has elements 
'kk

'kk,r
g

N
n kn

'kk
≠

=





∑

= =
∗

∗

0

1 . Notice the similarity of Eq.36 and Eq.12. Similarly, we 

obtain 
new
ow , featurewise, as the solution of: 

0=− ∗∗
d

T
o

new
d,oo

T
o g Xrw φφφ                        (37) 

where 
∗r  has elements ∑=∑= ∗

∗∗
k knkndk knn rvrr  for a given feature ∗d , and ∑=∗

k,n
*
knrg . 

Details of all these calculations can be found in the appendix. 

Note that the expression knkndru  could be considered as the responsibility of mixture 

component k for generating feature d of a data observation n. Correspondingly, expression 

knknd rv  could actually be considered as the irresponsibility of mixture component k for 

generating feature d of a data observation n. 

 

4. Conclusion 

A definition of feature saliency for unsupervised clustering with GMM was recently provided 

by Law et al. (2004). In this report, we have detailed some preliminary theoretical developments 

concerning the extension of this method to the constrained mixture GTM model. The result is 

the definition of a feature relevance determination method for unsupervised clustering with 

GTM. The FRD-GTM model is capable of simultaneous multivariate data clustering and data 

visualization based upon relevant features. Future work will include the model implementation 
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and its test using synthetic and real data. Further developments of FRD-GTM might include its 

extension to t-GTM: a constrained mixture of t-distributions (Vellido et al, 2005). 
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Appendix 

In this appendix we provide a more detailed account of the calculations to obtain the update 

Eqs. 31, 33, 34, 36 and 37 in section 3.1 for the FRD-GTM, within the EM framework. Starting 

from the expression in Eq.29 for the complete log-likelihood, here in extended form 
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,                (A.1) 

update equations are obtained through maximization with respect to the various parameters. 

Maximization with respect to the elements of W, using differentiation rules and Eqs.27 and 28, 

implies: 
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and then 

( )( ) ( ) 0=∑ ∑−
+

k,n kim mjkmnj

knjknj

knj

kn wx
ba

a
r uu φφ .       (A.3) 

This leads, for each feature d, to Eq.36 in matricial form. Now, for the common component, the 

maximization with respect to the elements of ow : 
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which implies 

( )( ) ( ) 0=∑ −
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kni
kn wx

ba

b
r uu φφ ,                    (A.5) 

leading, for each feature d, to Eq.37. 

Expressions for the two inverse variance parameters: β  and oβ , are obtained as follows: 
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Then, 
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which leads to Eq.33. Similarly, for the common component: 
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Then, 

( )( )
∑ ∑

+

−
=

+
k,n k,n

knikni

i,ooonikni
kn

knikni

kni
kn

i,o ba

wxb
r

ba

b
r

2
1 uφ

β
,                 (A.9) 

which leads to Eq.34. 

Finally, maximizing with respect to dρ , and using Eqs. 32 and 35, 
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we obtain (recall that ∑ =k,n kn Nr ) 

( ) ∑=− kn knikn
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1
1 ρ ,        (A.11) 

which, given that 1=+ knikni vu  , leads to Eq.31, as: 
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