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Abstract

Feature selection (FS) has long been studied in classification and regression problems,
following diverse approaches and resulting on a wide variety of methods, usually grouped as
either filters or wrappers. In comparison, FS for unsupervised learning has received far less
attention. For many real problems concerning unsupervised multivariate data clustering, FS
becomes an issue of paramount importance as results have to meet interpretability and
actionability requirements. A FS method for Gaussian mixture models was recently defined in
Law et al. (2004). Mixture models are well established as clustering methods, but their
multivariate data visualization capabilities are limited. The Generative Topographic Mapping
(Bishop et al. 1998a), a constrained mixture of distributions, was originally defined to overcome
such limitation. In this brief report we provide the theoretical development of a feature
relevance determination method for Generative Topographic Mapping, based on that defined in
Law et al. (2004); with this method, the clustering results can be visualized on a low
dimensional latent space and interpreted in terms of a reduced subset of selected relevant

features.
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1. Introduction

Finite mixture models have settled in recent years as a standard for statistical modelling
(McLachlan and Peel, 2000a). They can be used in classical data analysis problems such as
clustering, regression and probability distribution modelling. This report focuses on their
clustering capabilities. Gaussian mixture models (GMM), in particular, have received especial
attention for their computational convenience (McLachlan and Peel, 2000b) to deal with
multivariate continuous data. The usefulness of these models is reinforced by the wide spectrum

of their applications (see, for instance, Wedel and Kamakura, 2000; McLachlan et al., 2004).
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In practice, general finite mixture models suffer from several shortcomings that may limit their
applicability; one of them is their lack of multivariate data visualization capabilities. Data
visualization can be especially important in the exploratory stages of an analytical data mining
process (Wong, 1999). The Generative Topographic Mapping (GTM) was originally defined by
Bishop et al (1998a) as a constrained GMM allowing for multivariate data visualization on a
low dimensional space. The model is constrained in that mixture components are equally
weighted, share a common variance and their centres do not move independently from each
other. This last feature also makes GTM an alternative, founded on probability theory, to the
widely used (Kaski et al, 1998; Oja et al, 2002) Self-Organizing Maps (SOM: Kohonen, 2000).
What makes the GTM especially useful is its combination of a readily interpretable clustering
model with strong visualization capabilities (an extension of those of the SOM) and
computational tractability. Its probabilistic setting ensures the existence of a proper error
function and the convergence of its parameter optimization procedure, as well as enables the

definition of principled extensions (Bishop et al, 1998D).

The interpretability of the clustering results provided by the GTM, even in terms of exploratory
visualization, can be hampered when the data sets under analysis consist of a large number of
features. This situation is not uncommon in real problems concerning clustering in areas such
as, for instance, bioinformatics, chemometrics, or web mining. The data analyst would benefit
from any method that allowed ranking the features according to their relative relevance and,
ultimately, from a feature selection method. Feature selection (FS) has for long been the
preserve of supervised methods for classification and regression problems. Diverse approaches
have been followed, resulting on a wide variety of methods usually grouped as either filters or
wrappers. Reviews of such methods can be found, for instance, in George (2000) and Kudo and
Sklansky (2000). In comparison, FS for unsupervised learning has received far less attention,
and initial strands of research have only started to shed light on this matter. For many real
problems concerning unsupervised multivariate data clustering, FS becomes an issue of
paramount importance as results have to meet interpretability and actionability requirements.
Interpretability of clusters would be improved by their description in terms of a reduced subset
of relevant variables, while clustering actionability (understood as the capability to act upon the
clustering results), most important in managerial decision making problems such as market
segmentation (Wedel and Kamakura, 2000), would be improved by enabling actions based only

on a parsimonious subset of relevant features.

A recent main advance on feature selection in unsupervised model-based clustering has been
presented in Law et al. (2004) for GMM. It provides a definition of unsupervised feature
saliency and a method for its estimation as part of the Expectation-Maximization (EM:

Dempster et al., 1977) algorithm. In this report we follow this approach to provide the



theoretical development of a feature relevance determination (FRD) method for GTM; with this
method, the clustering results can be analysed on a low dimensional visualization space and

interpreted only in terms of a parsimonious subset of selected relevant features.

The remaining of the report is structured as follows. First, a brief definition of the standard
GMM is provided, accompanied by the description of the estimation of its parameters within the
EM framework. This is followed by a description of the FS method for GMM developed by
Law et al. (2004). A self-contained introduction to the standard Gaussian GTM is then provided,
followed by the presentation of the main contribution of this report: a FRD method for GTM,
accompanied by a summary of the Maximum Likelihood estimation of its parameters within the
EM framework; the corresponding details are presented in an appendix. The report wraps up

with some brief conclusions and directions for future research.

2. Gaussian Mixture Models and the EM estimation of their parameters

In mixture models, the observed data are assumed to be samples of a combination or finite
mixture of k=1,...,K components or underlying distributions, weighted by unknown priors
P(k). Given a D-dimensional dataset X:{Xn}nsz consisting of N random observations, the

corresponding mixture density is defined as:
K
pl)= X plsfk:6,)P(e), (1)

where each mixture component k is parameterized by 6, . For continuous data, the choice of

Gaussian distributions is a rather straightforward option due to their computational convenience

(McLachlan and Peel, 2000), in which case
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where the adaptive parameters &, are the mean vector and the covariance matrix of the D-
variate distribution for each mixture component, namely x; and ZX,. Their Maximum

Likelihood estimates can be obtained using the EM algorithm and, for that, first we define the

complete log-likelihood as

ki 1, 2 P(k). (3)

N
L (1. ZX)=log T_Ilp(xn )= %log ép(xn

In the context of the EM algorithm, we can introduce the binary indicator variables Z ={z % }le ,

with z, =(z;,,....z;y), which reflect our ignorance of which mixture component & is



responsible for the generation of data observation n. The complete expected log-likelihood can

now be expressed as
L ZX,2)= 3 3z, oglpl, 1. £, )P(0). @

The indicators Z are effectively treated as missing data and, following the iterative EM

procedure, the re-estimation of the adaptive parameters y;,~), requires the maximization of

the expected log-likelihood E [Lc (,u Z |X,Z1X, J7759 3 ] .

The expectation of each of the indicators in Z, which is the probability of a mixture component

k being responsible for data observation n (also known as responsibility 7, ) can be written as:
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With this, in the maximization step, the update formulae for x; , 2 are obtained as:
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2.1 Feature Relevance Determination in Gaussian Mixture Models

The problem of feature relative relevance determination for GMM was recently addressed by
Law et al. (2004). Feature relevance in this unsupervised setting is understood as the likelihood
of a feature being useful to define the data clustering structure. In that sense, it becomes a soft
version of a FS method: no feature is actually meant to be discarded because none is likely to be
either completely useful or useless. However, the resulting relevance ranking can be the basis of
an a posteriori selection. A similar counterpart procedure for supervised models is Automatic

Relevance Determination (ARD: MacKay, 1994; Qi et al., 2004)

Formally, the saliency of feature d is defined as p, =P(77d =1), where 1]=(771,...,77D) is a

further set of binary indicators that, like Z, can be integrated in the EM algorithm as missing

variables. A value of 77, =1 indicates the full relevance of feature d. According to this

definition, the mixture density in Eq.1 can be rewritten as:
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k=1

Notice that this entails the assumption that features are conditionally independent given a
mixture component, which is equivalent to the assumption of a diagonal covariance matrix. The
distribution p would be a univariate version of Eq.2, and the relevance of feature d would be

given by p,; consequently, a feature d would be considered as irrelevant, with irrelevance

(1-p,), if, for all mixture components, p(xd k;@kd)z q(xd|ﬂd ), where q(xd|/1d) is a common

density followed by feature d, or common mixture component. Notice that this is tantamount to
say that the distribution for feature d does not follow the cluster structure defined by the GMM.
This common component should reflect any prior knowledge we might have regarding

irrelevant features, or otherwise take the form of a general, uninformative distribution.

The maximum likelihood criterion can now be made explicit as the estimation of those model

parameters that maximize the complete log-likelihood
N K D
L.=2log X P(k)EI(PdP(xd|k»'9k)+(1—Pd )CI(ded ). ©)

n=l1 k=1

which can be accomplished using the EM algorithm (For details, see Law et al., 2004). The

probability of a component k£ being the generator of observation n: r,,, is computed in the

expectation step of the algorithm as:

__ P () (pap(x, k64 )+ (- p, ), A4 )
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(10)
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Then, the maximization step provides update expressions for the components’ priors P(k)=c, ,

-), as well as for the

for the means and variances associated to each feature d in p(~ |) and q(~

relevance parameter p, :

dy = Zn"ln/ (11)
> pdp(xnd k; 9kd) -
. Pdp(xnd|k!9kd)+(1—/0d )Q(xnd|/7~d) n (12)
de - .
Papl5lk:6i) "
" Pdp(xnd|k!9kd)+(1—[’d )(J(xnd|/7~d) !
5 Pdp(xnd|ki‘9kd) " (x =l )z
5o " paplxglki 6 )+ (1= py )q(xndu’d) e “ (13)

B par(x,q |k 6q)
" pdp(xnd k; 64 )"‘ (l—l’d )Q(xnde

)rkn




)‘J( ndM’d) ’ }r
; _an[pdp< 0 B Dalealad) ™

i 14
- DI (1 )q nd|ﬂ’d (14)
" paplx ) (- pu eyl g) ™
(1-p4)alx nd|/7~d) J
I e,
Z, = k[pdp(xnd|k”9kd) (1- ,Od (nd|/1d)rk ( T M)Z (15)
ﬂd Z Zk ( pd nd|ﬂ’d
! Pdp(x ) (1- Pd ( nd|ﬂd)
5, == paplx nd ks 6kd)
v 16
S PP\l Oy )+ (1= (nd|/1d) (16)

3. GTM as a constrained GMM

The GTM (Bishop et al., 1998a) was originally formulated both as a probabilistic alternative to
SOM (Kohonen, 1995) and as a constrained mixture of distributions. It is precisely its
constrained definition that allows overcoming the data and cluster visualization limitations of
general finite mixture models. The GTM is a non-linear latent variable model that defines a
mapping from a low dimensional latent space onto the multivariate data space. The mapping is
carried through by a set of basis functions generating a (mixture) density distribution. The

functional form of this mapping is defined as a generalized linear regression model:
M

a0, W)=30, (w,, , (17)
m

where @ is a set of M basis functions @(u)= ((2)1 (u),...,(z)M (u)) that were originally defined as

Ju - |°

> , with g, the centres of the

spherically symmetric Gaussians ¢, (u)=exp— .

Gaussians and o their common width; W is the matrix of adaptive weights w, , that defines

the mapping; and u is a point in latent space. In order to achieve computational tractability and
to provide an alternative to the clustering and visualization space defined by the characteristic
SOM lattice, the latent space of the GTM is discretized as a regular grid of K latent points

u,;, defined by the probability

u)=%<k§::15(u—uk), (18)



The probability distribution for a data point x takes the form of isotropic Gaussian noise and,
given the adaptive parameters of the model, which are the matrix W and the inverse variance of

the Gaussians /£, it can be written as:

hfuwep)-( £ j el B lxofF) 19)

Marginalizing over the latent points and using Eq.18, we obtain

pbw.)= b plrtabin =L & (2 e A 1y, ) 20

According to this general description, the GTM is a constrained mixture of Gaussians in the

sense that all the components of the mixture are equally weighted by the term 1/K, all
components share a common variance ,3_1 (therefore X :,B_ll ), and the centres of the
Gaussian components y, = cb(uk JW do not move independently from each other, as they are

limited by the mapping definition to lie in a low dimensional manifold embedded in the D-
dimensional space. Notice that, given the common variance constrain, the GTM complies by
definition with the assumption that features are conditionally independent given a mixture

component, expressed in section 2.1.

The complete log-likelihood can now be defined as:

L(W.AX)= zzog{ ;k_l(—”J "l B Is, -vi] }} @1

As for GMM, we can resort to the EM algorithm to obtain the Maximum Likelihood estimates

of the adaptive parameters W and /£ . Defining once again as Z the indicators describing our
lack of knowledge of which latent point u, is responsible for the generation of data point x,,,

the complete expected log-likelihood is defined as

Dj2
L(W,BX,Z)= zzzgl( j exrl- B s, -yknﬂ @)

n=lk=1

The expected value of z;, is now an special case of Eq.5

esnl- 1w, vl |
= P(k|x,. W, 8)= 3 - (23)
Zleexp{—znxn -l }



The update expressions for W and S are computed in the maximization step. We obtain W"*"

as the solution of the following system of equations in matricial form:
O'GOW™ —®'RX =0, (24)
where @ is a K x M matrix with elements @, =@, (u, ); R is the responsibility matrix, with

ZnNZIFkn’k:k,

elements r,, ; and G 1s a matrix with values g, = )
kn 8kk { 0 k#k

Notice that Eq.24 is equivalent to Eq.6, given that the component centres for the GTM are
described by Y =OW .

The update expression for S is:

1 NK
(ﬁmeT1 = En§lk§1 Tin ”Xn —Yi "2 (25)

See Bishop et al. (1998a) for further details on these calculations.

3.1 Feature Relevance Determination in Generative Topographic Mapping: the FRD-
GTM

The approach to feature relevance determination (FRD) described in section 2.1 can be
transferred to the standard Gaussian GTM. It has to be born in mind, though, that, to some
extent, the relevance of a feature depends on the number of clusters defined by a given solution.
Considering the GTM strictly from its definition as a constrained mixture model, each of the
points of the latent space sampling defined by Eq.18 can be thought as the generator of a single
data cluster. For data visualization purposes, the number of latent points is left rather
unconstrained in the usual GTM definition. Therefore, the FRD method applied to GTM should
be understood as a constrained one in as far as it is meant to reach a compromise between its
own ability as detector of feature relevance in clustering structure, and the data visualization
capabilities of the GTM. In other words, for FRD-GTM, individual features are relevant in the
sense that they explain the specific clustering structure provided by GTM, and not necessarily

the unconstrained clustering structure.

For FRD-GTM, the complete log-likelihood in Eq.21 becomes:

K iSia41

N 1 XD
Lc (W’Wo ’ﬁ’ ﬁo|X)= Z—:llog{_ Z H(aknd + bknd )} ’ (26)

where



g = Pa(B)270 )1/2 exp(— B2(x, =20 8 (0 W, )2) (27)

and

bwa = (1= P, )(ﬁo,d /275)1/2 exp(— B,a/2 (x,0 =8, (u,)w, )2 ) (28)
The common component requires the definition of two extra adaptive parameters w,_ and B,
so that y, = ¢0(u0 )WO.

This common component accounts for data observations that the mixture components cannot
explain well; in other words, data observations that do not fit with the cluster structure described
by these components. This approach is not unlike the one commonly used to deal with the
presence of atypical data observations, or outliers, when fitting Gaussian mixtures, which entails
the inclusion of an additional component with a uniform distribution. This can be circumvented
by the fitting of Student z-distributions mixtures (Peel and McLachlan, 2000), which has also
been done for GTM (Vellido et al., 2005). The FRD method presented in this report, though,

differs from the former on its featurewise approach.

Resorting again to the EM algorithm, we rewrite the complete log-likelihood of the model as:

D
Lc (W9Wo’ﬁ’Bo|X’Z)= Zn,k Vien Zlog(aknd +bknd) (29)

where the expected responsibiblity in Eq.23 becomes:

D
H(aknd + bknd)
Fon = Pk, W, W, BB, ) = —Z . (30)

« D
zk':1p(ak'nd +bk'nd)
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The maximization of the expected log-likelihood for GTM yields the following update formulae

for parameters p;, W, B, w,and B, :

1
Pt = I 2k Tenbknd » 31
where
Aind
Upyy =—"—. (32)
" g b
IBnew — Zn.k rkn zd uknd (33)
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ﬁ:;w — Zn.k TknVind > (34)
zn.k VinVind (xnd - ¢o (uo )wo,d )

bknd
Vipd =——— . 35)
" g + g

For fully relevant (0o, — 1) features, the common component variance (,30, y )_1 — 0. We now

obtain, for each feature d, the elements of matrix W"®" as the solution of the following system

of equations in matricial form:
®'G'OW,"" —®"R*X, =0, (36)

where R” has elements r,; =u,, T, fora given feature d * with 7, given by Eq.30, and G”

N ot k=K
Z}’I:l Vi » . .. . ..
, - Notice the similarity of Eq.36 and Eq.12. Similarly, we

has elements g}, =
Er { 0 k=k

new

obtain W, , featurewise, as the solution of:

8, g W —9, 1 X, =0 (37)

* * * . * * *
where r has elements 7, =27, =2V, Iy, for a given feature d, and g =2, 7, -

Details of all these calculations can be found in the appendix.

Note that the expression u,,,7;, could be considered as the responmsibility of mixture
component £ for generating feature d of a data observation n. Correspondingly, expression
Vinalin could actually be considered as the irresponsibility of mixture component k for

generating feature d of a data observation 7.

4. Conclusion

A definition of feature saliency for unsupervised clustering with GMM was recently provided
by Law et al. (2004). In this report, we have detailed some preliminary theoretical developments
concerning the extension of this method to the constrained mixture GTM model. The result is
the definition of a feature relevance determination method for unsupervised clustering with
GTM. The FRD-GTM model is capable of simultaneous multivariate data clustering and data

visualization based upon relevant features. Future work will include the model implementation

10



and its test using synthetic and real data. Further developments of FRD-GTM might include its

extension to t~GTM: a constrained mixture of z-distributions (Vellido et al, 2005).
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Appendix

In this appendix we provide a more detailed account of the calculations to obtain the update
Egs. 31, 33, 34, 36 and 37 in section 3.1 for the FRD-GTM, within the EM framework. Starting

from the expression in Eq.29 for the complete log-likelihood, here in extended form

pd( g ]1/2 exp(—g(xm _%¢m(uk)wmdj2J+

27 ”

D
L.=%,, rknleog , (A.1)
=1

update equations are obtained through maximization with respect to the various parameters.
Maximization with respect to the elements of W, using differentiation rules and Eqs.27 and 28,

implies:

ey 5o )

a, . 2-
oL nj (
< :O:Zn,krkn

: (A2)
awif aknj + bknj
and then
A
zn,k Tien L(xnj _Zm ¢m (uk )ij)@(uk): 0. (A.3)
aknj + bknj

This leads, for each feature d, to Eq.36 in matricial form. Now, for the common component, the

maximization with respect to the elements of w_ :

bkni -2 (_ %JJ(xni - ¢0 (uo )Wo,i )¢0 (uo )
<=0= zn,k Vi

oL
— (A4)
Iw; Ui+ Dpni
which implies
bkm'
zn,k Vi —(xni _¢o (uo )Wi )¢0 (uo): 0, (A.5)
A + bkni
leading, for each feature d, to Eq.37.
Expressions for the two inverse variance parameters: £ and P, , are obtained as follows:
a 2
oL D k"%g = g (Xg = 2 B (W IW,0)
. (A.6)

—<c=0= _
8,5 Zn,krkn§2

g +Dina
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Then,

1 Aind

— 2ok Vin 2d =2k n

5, Ut Xt = Zn O W W

B Anad + Dina g+ Dina

which leads to Eq.33. Similarly, for the common component:

b, . 2
a ni o bkni (xni - ¢o (uo )Wo,i )
Lc =0= z l :60.1
aﬁoz i 2 Qi + bkm '
Then,
2
1 bkni _ bkm' (xm' - ¢o (uo )wo,l' )
_zn,k Vien - zn,k Vien >
Igo,i akni + bkni akni + bkni
which leads to Eq.34.

Finally, maximizing with respect to p,, and using Eqs. 32 and 35,

aLc Ajni | Pi — bpni /1 = P Upni Vini
=0=3, 4 hn i | Pi it/ ( P):Zn,krkni ki __ Vi J’
9p; Ajeni + Dpyi Pi (1 —pPi )

we obtain (recall that > 7, = N)
1
(1 - inew): Nzn,k VienVini >
which, given that u,,; +v,,; =1 , leads to Eq.31, as:

1 1
pinew ZW(N_Zn,k rknvkni)zﬁzn,k FienYini -

: (A7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
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