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1- Introduction  

In the last decades, the use of concrete and steel composite beam structural systems has received 
significant attention both numerically (e.g. Martinelli et al. (2012), Zona and Ranzi (2014), Huang et al. 
(2014), Danku et al. (2013a)) and experimentally (e.g. Al-deen et al. (2011), Soty and Shima (2013), 
Guezouli, S. Lachal (2012), Hsu et al. (2014), Danku et al. (2013b) and Kim et al (2014)). This popularity is 
due to their construction speed together with structural and cost advantages. In a steel-concrete 
composite beam the tensile strength of the steel and the compressive strength and mass of the concrete 
slab are exploited. These two materials are connected with shear struts so that they act compositely. For a 
composite beam with rigid shear connection, there is full interaction between the steel and the concrete 
members. In this case, there is no relative slip at the interface of both materials and Navier hypothesis is 
fully applicable. This approach is followed by most codes (e.g. the rigid-ideal plastic method in Eurocode 4 
(1994a) and (1994b)). Nevertheless, all shear connections are flexible to some extent and therefore, full 
interaction is rarely achieved in practice. For this reason, partial interaction (see e.g. Wang and Chung 
(2006), Nie et al. (2008), Razi and Bradford (2009) and Degtyarev (2014)), with a relative slip at the 
interface, commonly appears in actual structures. The simulation of this relative slip is of primary 
importance because it affects both the deflections and the stresses in both the concrete and steel 
members. Therefore, partial interaction occurs to some extent in all beams weather fully connected or not. 
However, according to Queiroz et al. (2007), any flexibility in the connection may be ignored for beams 
designed for full connection.  

A number of studies has been carried out to simulate the behavior of composite beams with partial shear 
interaction. According to many authors (see e.g. Sousa et al. (2010)), the first analytical model including 
partial shear interaction for beams is attributed to Newmark et al. (1951). In this method, the equilibrium 
and compatibility equations for an element of the composite beam are reduced to second order differential 
equations. This model assumes distributed bonds at the concrete-steel interface. These bounds enforce 
contact between components and allow longitudinal interlayer slip. The differential equation approach of 
this method was also followed by Martínez and Ortiz (1975), who defined the analytical solutions for 
elastic simply supported composite beams under simple loading cases. This procedure assumes that the 
deflections of the centroids of steel and concrete cross-sections are the same and continuous connection 
at the concrete-steel interface. The main inconveniences of these analytical methods are as follows: (1) 
Obtaining the analytical equation of any simple load case requires many efforts. (2) The analysis is 
complex and costly to apply and is limited to some particular load cases and their combinations. (3) The 
effects of the actual non-continuous shear struts cannot be studied. For all these reasons, the analytical 
approach is far from being suitable for practical design [Turmo and Mirambell (1999)]. Alternatively, 
numerical methods have propitiated the development of approximated analysis procedures that are more 
suitable for practical design than analytical equations. Examples of approximated methods can be found in 
the literature (see e.g. Proco et al. (1994), Szabó (2006), Park et al. (2013), Sakr and Sakla (2009)). 
Among these procedures, it is to highlight the finite element model simulation. This issue has received 
considerable attention in the last years.  
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A major concern of the simulation of composite beams by Finite Element Model (FEM) analysis lays on the 
model dimensionality. Many researches (such as Daniels and Crisinel (1993), Salari et al. (1998) or 
Dall’asta and Zona (2002)) have proved that one-dimensional finite element models can be used to 
simulate satisfactorily the global behavior of composite beams. Nevertheless, these are not adequate to 
simulate the local responses, such as the distribution of stresses in concrete and steel components and in 
their interface. This limitation made research focus on 2D and 3D models to simulate the behavior of 
composite beams (see e.g. Mizra and Uy (2010)). On the one hand, 3D models are especially adequate 
for accurate simulation of local aspects of composite structures. An example of their application is to 
define an accurate distribution of stresses at discontinuity sections. Nevertheless, according to Queiroz et 
al. (2009) the numerical convergence problem and the large computation times of these models 
discourage its use for complex structural systems. Although the recent development of adequate software, 
such as ABAQUS/ explicit (see e.g. Prakash et al. 2011 or Tahmasebinia et al. 2013), has improve 
considerably the convergence, and therefore, the applicability of the 3D models, many authors agree that 
2D models might still be preferred for practical design work. A detailed review of some of the main 2D and 
3D models presented since the eighties is presented by Titoum et al. (2008). Many authors (see e.g. 
Queiroz et all 2007), have presented shell element models using springs to simulate the behavior of the 
connection. These models might be very accurate. In fact, they are able to simulate local effects, such as 
the crippling of thin walled sections (e.g. I beam web) including shear deformation. Nevertheless, the 
accuracy of the shell element models is associated with two problems: (1) The results of these models 
cannot be directly used in design, as integration of stresses is required. (2) Especially in large scale 
structures, shell element models might result more computationally challenging than beam element 
models. Because of these problems, beam element models might be preferred as they provide relatively 
accurate results to be used in design with lower computational effort. Furthermore, shear deformation can 
be included. One of the methods based on 2D simulation by linear frame elements is presented in Queiroz 
et al. (2009.a and b). In this method, the concrete-steel interface is simulated by discrete nonlinear springs 
located at the concrete centroid.  

This paper aims to provide a structured approach to the simulation of the partial interaction behavior using 
simple finite element software. To do so, a model uniquely composed of beam elements is proposed. This 
model directly provides useful information for the design work without the need of stress integration. To do 
so, it proposes a two-dimensional finite element model to analyze the behavior of composite beams with 
partial interaction and arbitrary boundary and loading conditions. In this model, the different elements of 
the composite beams are modeled by six different types of frame elements (concrete slab, steel beam, 
vertical struts, spring shear connector elements and elements representing concrete thickness and steel 
thickness). Compared with the analytical equations presented in the literature, the main advantages of the 
proposed model are as follows: (1) Intuitiveness, as each of the elements of the model presents a close 
and easy to understand relation with the structural behavior of composite beams. (2) Applicability, as the 
method directly provides useful information (such as forces in steel beam and concrete slab, shear 
connector forces or beam deflections) for the design work. (3) Versatility and generalization in dealing with 
any combination of loading and boundary conditions. The proposed model enables the analysis of 
statically indeterminate structures, tapered beams, frames as well as structures with non-uniform shear 
connector distributions. Furthermore, this model might be easily modified to deal with 3D structures and 
nonlinear behavior of concrete slab, steel beam and shear connectors. (4) As the models include 
sequences of repetitive elements, they can be easily elaborated by simple preprocessing algorithms. (5) 
As the model only includes frame elements, the model behavior can be easily reproduced by simple 
structural software.  
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The paper is organized as follows: In Section 2, the analytical equations presented in the literature to 
define the behavior of simply supported composite beams under different loading cases are reviewed. In 
Section 3, the main characteristics of each of the elements of the proposed frame model are described in 
detail. In Section 4, the numerical application of the model to two different examples (a simply supported 
and a continuous composite beam) is presented. To validate the accuracy and the efficiency of the 
proposed model, this section includes different FEMs verified against the results of the analytical 
equations. In this analysis, the effects of the connection stiffness and the geometrical and mechanical 
properties of the beam elements are also studied. Finally, some conclusions are drawn in Section 5.  

2- Composite beams with partial shear interaction: Analytical approach  

The analytical equations of composite constant depth simply supported beams with partial interaction 
under simple load cases can be found in Martínez and Ortiz (1975) (Equations (1)-(4)). In this procedure, 
the equilibrium equations of the composite beam are reduced to second order differential equations from 
which analytical results can be obtained. These equations are based on the following assumptions: (1) 
The shear connectors, as well as concrete and steel, behave linearly. (2) Concrete slab and steel beam 
have the same curvature (and same rotation) throughout the length of the composite beam. (3) Frictional 
effects and uplift at the concrete-steel interface are neglected. (4) The discrete shear connectors at the 
concrete-steel interface are uniform throughout the length composite beam. With kq being the connector 
stiffness under shear force, sq being the shear connector longitudinal spacing and nq being the number of 
shear struts in every row separated sq, the distributed constant stiffness of the shear connections 
throughout the beam is assumed as Kq=(nq·kq)/sq. These parameters are illustrated in Figure 1.A.  

As an example of the results of the analytical approach, the analytical equations for concrete slab axial 
forces at cross section x, Nc(x), for different loading cases are presented as follows:  
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(4) 

in which NC,Q(x) is the axial force when a concentrated load Q is applied at mid-span, NC,q(x), is the axial 
force when a constant distributed vertical load q is applied throughout the beam, NC,M(x), is the axial force 
when a concentrated external bending moment, Mext, is applied at one beam edge, and NC,P(x), is the axial 
force when a concentrated prestressing load P is introduced at both beam edges and applied at the 
centroid of the concrete slab. In these equations M(x) is the bending moment at cross section x, Ec and Es 
are the Young’s modulus in concrete slab and steel beam, AR and IR are the area and the inertia of the 
reduced composite section, AcR and IcR are the reduced area and inertia of the concrete section, AS and IS 
are the area and inertia of the steel section, hsc is the distance between the concrete slab and the steel 
beam centroids, acR and xq are coefficients defined as presented in Equations (5) and (6).  

𝑎𝑎𝑐𝑐𝑅𝑅 =
𝐼𝐼𝑅𝑅 · 𝐴𝐴𝑅𝑅

ℎ𝑠𝑠𝑐𝑐 · 𝐴𝐴𝑐𝑐𝑅𝑅 · 𝐴𝐴𝑆𝑆
 (5) 
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(6) 

The first term of Equations (1), (2) and (3) represents the axial force of the concrete partial cross section in 
composite beams with full interaction between steel beam and concrete slab. On the other hand, the 
second term of these equations (𝜓𝜓𝑄𝑄, 𝜓𝜓𝑞𝑞 and 𝜓𝜓𝑀𝑀, respectively) includes the effect of the deformability of 
the shear connection at the concrete-steel interface. In the case of the prestressing load (in Equation (4)) 
the axial force for full interaction corresponds to the term 𝜁𝜁𝐶𝐶 · 𝑃𝑃, while 𝜁𝜁𝑆𝑆 · 𝑃𝑃 · 𝜉𝜉𝑆𝑆 includes the effects of 
the partial interaction. 

In addition to their computational cost, the limitation of the analytical equations refers to their application 
restrictions. In fact, these equations cannot be applied in a number of practical design solutions (such as 
tapered beams, non-continuous shear connector distributions or complex load cases). For continuous 
beams, support reactions are unknown. For this reason, these structures cannot be analyzed with those 
formulae unless it is assumed that the reactions of a continuous beam are not affected by the partial 
interaction. 

3- Description of the proposed model. 

The model presented to study the structural behavior of composite beams with partial interaction (as the 
one presented in Figure 1.A) is based on an intuitive elastic and linear FEM. In this model, six different 
types of beam elements are used to achieve the first three assumptions followed in the analytical 
equations described in the preceding section. The six frame elements of the proposed model are as 
follows:  

1. Elements type 1 for concrete slab: These beam elements model the concrete slab. Therefore, 
these elements include the same properties of the concrete slab at its centroid (presented in 
Figure 1.A). 

2. Elements type 2 for steel beam: These beam elements model the steel beam and they include 
the same properties of the steel beam at its centroid (presented in Figure 1.A). 

3. Elements type 3 for vertical struts: These truss elements connect vertically the nodes of the 
concrete and the steel beams (nodes of elements type 1 and 2). The element type 3 has no 
weight, infinity area and null inertia and might be uniformly spaced a length V. This element 
equals the vertical deflections at the centroids of steel and concrete sections throughout the 
beam length. This condition can be mathematically expressed as follows:  

𝑀𝑀𝑐𝑐(𝑥𝑥)
𝐸𝐸𝑐𝑐 · 𝐼𝐼𝑐𝑐

=
𝑀𝑀𝑠𝑠(𝑥𝑥)
𝐸𝐸𝑠𝑠 · 𝐼𝐼𝑠𝑠

 (7) 

in which, Mc(x) and Ms(x) are the bending moments along the x axis of concrete and steel 
sections, respectively. 

4. Elements type 4 for shear connector springs. These elements simulate the effects of the stiffness 
kq of the shear connectors illustrated in Figure 1.A. These elements correspond with axial linear 
springs located at the concrete-steel interface. The shear connector springs have no bending 
stiffness. With S being the spring spacing, sq being the shear connector longitudinal spacing, L4, 
being the arbitrary length of element type 4, A4 being the arbitrary area of element type 4, the 
Young’s modulus of element type 4, E4, can be defined assuming that the axial rigidity of the 
element is equal to the shear connection stiffness as presented in the following equation:  

𝐸𝐸4 =
𝑛𝑛𝑞𝑞 · 𝑘𝑘𝑞𝑞 · 𝐿𝐿4 · 𝑆𝑆

𝐴𝐴4 · 𝑠𝑠𝑞𝑞
 (8) 
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5. Elements type 5: These beam elements simulate the distance between the concrete centroid and 
the steel-concrete interface of the composite beam (see Figure 1.A). These elements connect the 
concrete nodes with the shear connectors at the concrete-steel interface (nodes of element types 
1 and 4). These elements have infinity axial and flexural stiffnesses. If the shear connectors are 
uniformly distributed these elements might be spaced a length S throughout the beam. With hc 

being the concrete thickness, uc being the horizontal displacement at the concrete beam node 
and θC its rotation they enable the following horizontal movement uc1 at the concrete-steel 
interface for rectangular sections: 

𝑢𝑢𝑐𝑐1 = 𝑢𝑢𝑐𝑐 −
𝜃𝜃𝑐𝑐 · ℎ𝑐𝑐

2
 (9) 

6. Elements type 6. These frame elements simulate the distance between the steel centroid and the 
steel-concrete interface of the composite beam (see Figure 1.A). These elements connect the 
steel nodes with the shear connectors at the concrete-steel interface (nodes of element types 2 
and 4). These elements include infinity axial and flexural stiffnesses. If the shear connectors are 
uniformly distributed these elements might be spaced a length S throughout the beam. With hs 
being the height of the steel beam, us being the horizontal displacement at the steel beam node 
and θs its rotation they enable the following horizontal movement us1 at the concrete-steel 
interface for a y-symmetric cross section beam: 

𝑢𝑢𝑠𝑠1 = 𝑢𝑢𝑠𝑠 +
𝜃𝜃𝑠𝑠 · ℎ𝑠𝑠

2
 (10) 

 

The boundary conditions of the FEM are located at the steel beam centroid. This is appreciable in Figure 
1.B, where a possible FEM to simulate the composite beam in Figure 1.A is presented. This figure also 
illustrates the six different element types described above and their location. 

 
Figure 1: (A) Composite Beam, (B) Proposed model to simulate 

the structural behavior of the composite beam. 
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The main characteristics of each of the element types of the proposed FEM are summarized in Table 1. In 
this table the infinity symbol, ∞, is used to indicate that the corresponding value is very high. 

 

 

 

Table 1: Characteristics of the different elements of the 
proposed FEM. (E=Young’s Modulus, A=Area, 
I=Inertia). 
 
Element type  E A I 
1 (Concrete beam) EC AC IC 
2 (Steel beam) ES AS IS 
3 (Vertical strut) E ≈ ∞ A ≈ ∞ 0 
4 (Connector spring) E4 (Eq. (8)) A4 0 
5 (Concrete thickness) E ≈ ∞ A ≈ ∞ I ≈ ∞ 
6 (Steel depth) E ≈ ∞ A ≈ ∞ I ≈ ∞ 

 

The analysis by means of any simple structural software of the proposed FEM provides information useful 
for design. The obtained results might be summarized as follows: (1) Beam deflections throughout the 
composite beam axis. (2) Relative slip between the concrete slab and the steel beam. (3) Axial forces and 
bending moments at the centroids of the concrete slab and the steel beam. This has the advantage that 
these efforts can be used directly for design, without no need of integrating stresses. (4) Axial forces at the 
spring connectors. These forces are strongly related with the shear per unit length throughout the steel-
concrete interface. (5) Reactions at the boundary conditions.  

4-Application of the proposed method 

In this section the numerical application of the model proposed in Section 3 is presented. In this 
application, two composite beams are analyzed. The first structure (Example 1) corresponds with a simply 
supported composite beam, while the second one (Example 2) corresponds with a three-span continuous 
composite beam.  

4.1- Example 1: Simply supported composite beam 

In this section a simply supported composite beam is analyzed. After describing the main characteristics of 
the structure, three parametric analyses are carried out. In order to study the sensitivity of the composite 
behavior, the first of these analyses studies the effect of the size of the FEMs. To do so, the results 
obtained by the analytical equations of Martínez and Ortiz (1975) are compared with those obtained by 
different FEMs including changes in the separation of vertical struts (number of elements type 3) and 
shear connector springs (number of elements type 4, and hence 5 and 6). The second parametric analysis 
illustrates the effect of the stiffness of the concrete and steel connection, Kq. Finally, the third parametric 
analysis shows the effects of the depth of the steel beam. This study includes a comparison between the 
results obtained by the analytical equations and those obtained by FEMs with different I beams.  

4.1.1- Description of the structure 

The first analyzed example corresponds with the 4.5m length simply supported composite beam 
presented in Figure 2.A. This structure includes a 1m width and hc=0.2m thick concrete slab that is 
connected with an IPE300 (with a depth, hS, of 0.3m). The Young’s modulus of concrete, Ec, and steel, ES, 
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are 3.2E7 kN/m2 and 2.1E8 kN/m2, respectively. The connection between both materials is carried out by 
mean of two shear connectors spaced every 30cm. The stiffness of each shear connector, kq, is 170000 
kN/m. In this way, the stiffness of the connection Kq is 1.13E6kN/m2. 

 
Figure 2: Example 1: (A) Geometry, (B) 
Studied Models, (C) Concentrated load Q, 
(D) Uniform load, q, and (E) Prestressing 
load, P. 

 

The structural behavior of the composite beam is analyzed by a set of different FEMs. Differences 
between these models refer to: (1) Different spacing among spring elements, S, formed by elements type 
4, 5 and 6. The studied spacing between spring connectors might be either uniform or non-uniform 
depending on the distribution of the actual shear connectors. Only uniformly spaced spring connectors are 
considered in this analysis. The spacing used is 2.5, 5, 15, 30 and 90cm. These distributions are named 
S2.5, S5, S15, S30 and S90, respectively. (2) Different spacing among Vertical struts, V, that is to say 
elements type 3. As in the case of the spring connectors, the studied spacing is 2.5, 5, 15, 30 and 90cm. 
These distributions of struts are called V2.5, V5, V15, V30 and V90, respectively. The combination of the 
different Spring connectors and Vertical struts distributions leads to a number of 25 different FEMs 
presented in Figure 2.B. Every FEM is named by their spacing (e.g. S5V30 is a model with Spring 
connectors every 5cm and Vertical struts every 30cm). The main characteristics (Young’s modulus, E, 
Area, A, and Inertia, I) of each of the elements of the different FEMs are listed in Table 2. All the FEMs 
(referred in table as S2.5 to 90V2.5 to 90) share the characteristics of the first five element types. Nevertheless, 
this is not the case of the spring connector element which depend to a great extent on the spring spacing, 
obviously the higher the spacing the higher the axial stiffness of the springs. The Young’s modulus for 
each spring spacing is calculated by Equation (8) assuming an arbitrary spring area, A4, of 1E-3m2 and an 



8 
 

arbitrary spring length, L4, of 0.075m. Note that the Young’s modulus of the edge springs is half of that 
presented in Table 2 because their tributary lengths are half of that of the inner shear connector springs.  

 

Table 2: Characteristics different elements of the FEMs. 
Element type FEMs E (kN/m2) A (m2) I (m4) 

(1) Concrete slab S2.5 to 90V2.5 to 90 3.20E7 2.00E-1 6.67E-4 
(2) Steel beam S2.5 to 90V2.5 to 90 2.1E8 5.38E-3 8.36E-5 
(3) Vertical struts S2.5 to 90V2.5 to 90 1.00E10 1.00E10 0 
(4) Connector spring S2.5V2.5 to 90 4.25E5 1.00E-3 0 
 S5V2.5 to 90 8.50E5 1.00E-3 0 
 S15V2.5 to 90 2.55E6 1.00E-3 0 
 S30V2.5 to 90 5.10E6 1.00E-3 0 
 S90V2.5 to 90 1.53E7 1.00E-3 0 
(5) Concrete thickness S2.5 to 90V2.5 to 90 1.00E10 1.00E10 1.00E10 
(6) Steel depth  S2.5 to 90V2.5 to 90 1.00E10 1.00E10 1.00E10 

 

In order to ease the comparison with the analytical equations, the effects of three simple load cases have 
been studied. These load cases are as follows: (1) Concentrated load, Qm, of 100kN at the mid span of the 
concrete slab, m. (2) Constant distributed load, q, of 10kN/m on the concrete slab. (3) Two concentrated 
axial loads (prestressing), P, of 100kN applied at the centroids of the edges of the concrete slab. Each of 
these load cases are presented in Figure 2.C, 2.D and 2.E, respectively.  

It is clear to notice that in small structures, placing a spring element at the location of the actual connector 
might not be a computational issue. Nevertheless, this might not be the case in large scale structures 
where a minimization of the number of elements in the model (without a reasonable lack of accuracy) 
might be required. Obviously, the spacing of the spring connectors and vertical struts plays an important 
role in the number of both nodes and beam elements in the FEMs. This is appreciable in Figures 3.A and 
3.B where the minimum number of nodes and beam elements of each FEM are presented. It is important 
to highlight that in these figures each model (SiVj) is represented by the intersection of the corresponding 
spacing Si and Vj. The analysis of Figure 3.A shows that the number of nodes of the FEMs ranges from 
540 (S2.5V2.5 to 90) to 15 (S90V90). In the case of the beam elements, they range from 1080 (S2.5V2.5) to 30 
(S90V90). 

  
Figure 3: Characteristics of the FEMs of Example 1: (A) Number of nodes and (B) Number of elements. 
The result of each FEM (SiVj) is obtained by the intersection of the spacing Si and Vj. 

 

4.1.2 Comparison with the analytical equations 
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In this section, a parametric analysis is presented to illustrate how the spring connector and vertical strut 
spacing influence the behavior of the FEMs. To do so, the results of the Analytical Equations, AE, 
presented in Martínez and Ortiz (1975) are compared with those obtained by the FEMs described in the 
preceding section. This comparison is based on two parameters: (1) Beam deflection, fm, at mid span, m. 
(2) The axial force at the centroid of the concrete slab, Ncm, at mid span, m. 

The percentage differences between the results obtained by the FEMs and the analytical equations are 
calculated as follows:  

�
𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆𝑖𝑖𝑉𝑉𝑗𝑗) − 𝑁𝑁𝑐𝑐𝑐𝑐(𝐴𝐴𝐸𝐸)

𝑁𝑁𝑐𝑐𝑐𝑐(𝐴𝐴𝐸𝐸) � 
 

(11) 

�
𝑓𝑓𝑐𝑐(𝑆𝑆𝑖𝑖𝑉𝑉𝑗𝑗) − 𝑓𝑓𝑐𝑐(𝐴𝐴𝐸𝐸)

𝑓𝑓𝑐𝑐(𝐴𝐴𝐸𝐸) � (12) 

 

The differences obtained by Equations (11) and (12) for load cases Q and q are summarized in Figure 4. 
This figure also illustrates the parameters Ncm and fm. Differences in the load case P (prestressing) are not 
included in this figure because they were negligible.  

  

  
Figure 4: Comparison of the results of different FEMs with the Analytical Equations, AE: (A) Ncm for Q, (B) 
fm for Q, (C) Ncm for q and (D) fm for q. The result of each FEM is obtained by the intersection of the 
spacing Si and Vj.  
 

The differences in Figure 4 might be not only related with the way (location and shape) the load is applied, 
but also with the model geometry (location of the Vertical struts, V, and the Springs, S, elements). In fact, 
this figure shows that the higher differences appear in model S90V90 when the concentrated load at mid 
span is applied. It is to notice that, as this model includes neither vertical strut nor spring elements at the 
beam mid span, the load is directly applied to an inner point of a concrete element (element type 1). The 
difference of this model with the analytical equations might be explained by the local bending produced in 
the concrete element. Obviously, this effect is avoided when the concentrated load is directly applied to a 
node including either a vertical strut or a spring element (that is to say, in models with lower V and S 
spacing). Obviously, the higher the spacing between vertical struts and spring connectors, the higher the 
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differences. This is appreciable by the fact that the maximum differences are found in model S90V90. For 
this model, the maximum differences of Ncm and fm are 1.76 and 4.26% for Q and 1.38 and 3.30% for q. 
The results presented in Figure 4 also illustrate that increasing the spacing of the spring connectors in the 
FEM increases the differences with the analytical equations more than increasing the spacing of the 
vertical struts (or in other words, the role of the spring connector spacing is more important than the role of 
the vertical strut spacing).  

The values of Ncm obtained by the FEMs were lower than those obtained by the analytical equations. In 
fact, the lower the number of elements in the FEM the lower the obtained Ncm and the higher the 
differences with result of the Analytical Equations, AE. In the case of fm, the FEMs present higher values 
than the AE. The signs of these differences are explained by the fact that the AE assumes a continuous 
stiffness at the steel-concrete interface. This continuous interface produces higher stiffness than the actual 
one (with discrete shear connection). This higher stiffness results in higher values of Ncm and lower values 
of fm when the results of the AE are compared with those of the FEMs.   

Note that the analytical solution might be regarded as the exact solution. This is misleading, as the 
physical behavior of the discrete behavior of the shear connectors might be best modeled by the FEM. 
This is achieved introducing the spring elements there where the shear connectors are presented (S30). 
Even though the most accurate simulation of the physical behavior is achieved when a great number of 
shear connectors are used (S30V2.5), from a practical point of view, it is suggested to use the same number 
of vertical struts and shear springs in the FEM (S30V30). Furthermore, there is no need to use a spacing 
between these smaller than the actual separation of the shear connectors.  

4.1.3 Results of the FEMs 

Some of the results obtained in each of the proposed FEMs are summarized in Figure 5. In this figure the 
FEM S30V30 (with 45 nodes and 90 beam elements) is considered under load cases Q, q and P. Figure 5 
presents the axial forces throughout the axis of the concrete slab, Nc (Figure 5.A) and the shear forces per 
unit length at the concrete steel interface, SCS (Figure 5.B). The latter parameter might be determined from 
the Spring Forces, FS, or by the increment of concrete axial forces in elements between springs, ΔNc. The 
calculation of SCS from these parameters can be carried out taking into account the shear connector 
spacing, sq, as follows:  

𝑆𝑆𝐶𝐶𝑆𝑆 =
𝐹𝐹𝑆𝑆
𝑠𝑠𝑞𝑞

=
𝛥𝛥𝑁𝑁𝐶𝐶
𝑠𝑠𝑞𝑞

 (13) 
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Figure 5: Axial forces in S30V30 of Example 1: (A) 
Concrete slab, Nc, and (B) Shear force per unit length at 
the concrete steel interface, SCS. 

 

As expected, the analysis of the results presented in Figure 5.A shows that compressive forces appear at 
the concrete slab for all loading cases. For vertical loads (such as Q and q) the maximum compressive 
forces are 202.88 and 53.59kN, respectively and are located at mid span, while for prestressing loads (P) 
the maximum compressive force is 100,0kN and is located at the beam edges. On the other hand, the 
diagrams presented in Figure 5.B illustrate the shape of the shear forces per unit length at the steel-
concrete interface. The maximum values of these forces are located at the beam edges. The shear forces 
per unit length, SCS, obtained by FEMs in different locations (x=0, 0.9 and 1.8m) in load case Q are 
presented in Table 3. The analyzed FEMs are S90V90 (number of springs lower than the actual structure) 
S30V30 (number of springs equal to the actual structure) and S2.5V2.5 (number of springs higher than the 
actual structure). Table 3 also analyzes the effects of the number of spring elements in the SCS. This 
analysis is carried out by mean of the following percentage differences: 

�
𝑆𝑆𝐶𝐶𝑆𝑆(𝑆𝑆90𝑉𝑉90)− 𝑆𝑆𝐶𝐶𝑆𝑆(𝑆𝑆30𝑉𝑉30)

𝑆𝑆𝐶𝐶𝑆𝑆(𝑆𝑆30𝑉𝑉30)
� (14) 

�
𝑆𝑆𝐶𝐶𝑆𝑆(𝑆𝑆2.5𝑉𝑉2.5)− 𝑆𝑆𝐶𝐶𝑆𝑆(𝑆𝑆30𝑉𝑉30)

𝑆𝑆𝐶𝐶𝑆𝑆(𝑆𝑆30𝑉𝑉30)
� (15) 

 

Table 3: Shear stress per unit length, SCS, in Q at different locations 
throughout the beam length, x. 

  x=0m x=0.9m x=1.8m 
SCS(S90V90) [kN/m] 114.03 106.73 57.90 
SCS(S30V30)  [kN/m] 116.21 108.78 65.17 
SCS(S2.5V2.5) [kN/m] 116.48 109.16 65.50 

�
𝑺𝑺𝑪𝑪𝑺𝑺(𝑺𝑺𝟗𝟗𝟗𝟗𝑽𝑽𝟗𝟗𝟗𝟗)− 𝑺𝑺𝑪𝑪𝑺𝑺(𝑺𝑺𝟑𝟑𝟗𝟗𝑽𝑽𝟑𝟑𝟗𝟗)

𝑺𝑺𝑪𝑪𝑺𝑺(𝑺𝑺𝟑𝟑𝟗𝟗𝑽𝑽𝟑𝟑𝟗𝟗)
� [%] 1.88% 1.88% 11.15% 

�
𝑺𝑺𝑪𝑪𝑺𝑺(𝑺𝑺𝟐𝟐.𝟓𝟓𝑽𝑽𝟐𝟐.𝟓𝟓) − 𝑺𝑺𝑪𝑪𝑺𝑺(𝑺𝑺𝟑𝟑𝟗𝟗𝑽𝑽𝟑𝟑𝟗𝟗)

𝑺𝑺𝑪𝑪𝑺𝑺(𝑺𝑺𝟑𝟑𝟗𝟗𝑽𝑽𝟑𝟑𝟗𝟗)
� [%] 0.23% 0.35% 0.65% 
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The analysis of Table 3 shows that when a lower number of spring elements are introduced into the FEM 
(S90V90) lower values of SCS are obtained. For example, at x=1.8m the value of S90V90 (57.90 kN/m) is 
11.15% lower than model S30V30 (65.17 kN/m). The opposite effect appears when the number of spring 
elements (S2.5V2.5) is higher than that of the actual structure. Nevertheless, these differences are 
significantly lower in comparison with S90V90. For example, SCS in S90V90 at x=1.8m (65.50 kN/m) is a 0.65% 
higher than model S30V30. 

4.1.3- Parametric analysis of the connection stiffness Kq 

The structural behavior of the composite beam is influenced, to a great extent, by the connection stiffness, 
Kq. Obviously, the higher this stiffness the lower the slip between concrete and steel and therefore, the 
more similar the behavior to that of a composite beam with full interaction. This is to say, the resistant 
mechanism is mainly a couple of forces, a compressive force in the slab, and a tensile force in the steel. 
The lower the connection stiffness, external loads are mainly balanced by two bending moments acting in 
the steel and concrete cross sections. To illustrate this effect Figure 6 is presented. This figure compares 
the values of Ncm and fcm obtained by the model S2.5V2.5 for a stiffness Kq, [𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆2.5𝑉𝑉2.5)𝐾𝐾𝑞𝑞  and 

𝑓𝑓𝑐𝑐𝑐𝑐(𝑆𝑆2.5𝑉𝑉2.5)𝐾𝐾𝑞𝑞], with those values obtained for full interaction, for loading cases Q, q and P when the Kq of 
beam of Example 1 varies from 0 to 2.33E7kN/m2. 

 

 
Figure 6: (A) Ratios between 𝑁𝑁𝑐𝑐𝑐𝑐(𝐴𝐴𝐸𝐸) 𝐾𝐾𝑞𝑞 and 𝑁𝑁𝑐𝑐𝑐𝑐(𝐴𝐴𝐸𝐸) 𝐾𝐾∞, and (B) Ratios 

between 𝑓𝑓𝑐𝑐𝑐𝑐(𝐴𝐴𝐸𝐸) 𝐾𝐾𝑞𝑞  and 𝑓𝑓𝑐𝑐𝑐𝑐(𝐴𝐴𝐸𝐸) 𝐾𝐾∞, for loading cases Q, q and P.  
 

Figure 6.A shows that, obviously, the higher the Kq the more similar the values of 𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆2.5𝑉𝑉2.5)𝐾𝐾𝑞𝑞  and 
𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆2.5𝑉𝑉2.5)𝐾𝐾∞ , and therefore, the closer the ratio to 1. When Kq is increased this ratio tends 
asymptotically to 1. Figure 6.A also illustrates the important role that the flexibility of the connection plays 
in the structural behavior of the composite beam. In fact, in structures with flexible connections under 
vertical loads the error of assuming a full interaction at the concrete-steel interface cannot be neglected. 
For example, when Kq is fixed to 1.66E5kN/m2 the axial forces in the model in the loading case q (-29.92 
kN) represents 48.69% of 𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆2.5𝑉𝑉2.5) 𝐾𝐾∞ (-61.44 kN). This difference is increased in the loading case Q. 
In this case, the 𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆2.5𝑉𝑉2.5)𝐾𝐾𝑞𝑞 (-107.82 kN) represents 39.48% of 𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆2.5𝑉𝑉2.5) 𝐾𝐾∞  (-273.06 kN). On the 
other hand, Figure 6.B shows that the stiffness of the connection plays a significant role in all analyzed 
load cases. For example, when Kq is fixed to 1.66E5kN/m2, 𝑓𝑓𝑐𝑐𝑐𝑐(𝑆𝑆2.5𝑉𝑉2.5) 𝐾𝐾𝑞𝑞 (-3.49mm) represents 167.72% 
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of the full interaction deflection (-2.09mm). It is important to highlight that, in this particular example, this 
ratio is very closed to the one obtained for loading case q (166.98%). In loading case P, the influence of 
the connection stiffness is smaller than in the other analyzed loading cases. 

The role that the connection stiffness plays in the shear force per unit length at the concrete steel interface, 
SCS, is presented in Figure 7. This figure compares the values obtained in the model S2,5V2,5 for four 
different stiffnesses Kq (6.67E4, 1.67E5, 1.16E6 and 2.33E6 kN/m2) with those obtained assuming full 
interaction.  

 

Figure 7: Shear force per unit length at the concrete steel interface, SCS, in 
model S2.5V2.5 for different Kq in kN/m2 and with a full interaction connection. 

Figure 7 shows that, as expected, the higher the connection stiffness, the higher the absolute value of 
shear force per unit length at a given x, SCS(x). For example, the value of SCS obtained for a connection 
stiffness of Kq=6.67E4kN/m2 (-39.4kN/m) is increased to 121.38kN/m for a connection stiffness of 
2.33E6kN/m2 over the bearings. The higher the connection stiffness, the more similar the maximum value 
to the one obtained by full interaction (121.39kN/m). It is important to highlight that the maximum values 
for partial interaction do not exceed those obtained when full interaction is assumed. Moreover, the 
integral of the shear forces along the beam increases for increasing shear connection stiffness. The major 
differences between partial and full interaction are located at mid span as the full interaction assumption 
cannot predict accurately the shear force per unit length at this location.  

In order to evaluate how the connection stiffness Kq influences the results of the different models, a 
parametric analysis is carried out in this section. In this analysis the differences of the results of model 
S30V30 are compared with those obtained by a model with a reduced number of spring connectors (S90V90), 

a model with a high number of spring connectors (S2.5V2.5) and the results of the Analytical Equation (AE, 
also referred as S0V0) when Kq varies from 0 to 2.33E6kN/m2. Calculation of Eq of the spring connector 
elements (element types 4) is carried out by Equation (8). 

The analysis of the effects in Ncm of the number of springs representing Kq is presented in Figure 8. This 
figure includes the percentage differences between the results of S30V30 and the Analytical Equations (also 
called S0V0), S2.5V2.5 and S90V90 for loading cases Q and q. These differences are calculated by Equation 
(16). The prestressing load P is not included because the differences with S30V30 were negligible. 

�
𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆𝑖𝑖𝑉𝑉𝑗𝑗)− 𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆30𝑉𝑉30)

𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆30𝑉𝑉30)
� (16) 
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Figure 8: Percentage differences of Ncm between results of S2.5V2.5, S90V90 and Analytical Equations, 

S0V0 (AE), related to S30V30 in terms of Kq for loading cases Q (A) and q (B). 
 

Figure 8 shows that stiffness Kq plays an important role in the results obtained by the different models. On 
the one hand, the differences between Analytical Equations, AE, and S2.5V2.5 with the S30V30 are practically 
negligible, as they remain lower than 0.1%. From these values, it can be concluded that similar results are 
obtained when a higher number of spring connectors than the actual structure is considered. Nevertheless, 
this is not the case in those models with lower number of springs than the actual structure (such as S90V90). 
In this case, the differences depend on Kq (the higher the Kq, the higher the differences). The maximum 
values represent a deviation of 2.69% for Q and 1.35% for q.  

4.1.4- Effects of the relative height of the concrete deck and the steel beam 

In order to evaluate how the steel relative height influences the results of the different models, a 
parametric analysis is carried out in this section. In this analysis the structure presented in Section 4.1.1 is 
assumed to have four different steel cross sections (IPE100, IPE300, IPE500 and IPE1000). Differences 
between the characteristics of these models only refer to the beam element type 2, steel beam (as each 
model includes the Area and Inertia of the different steel I beams). For each of the steel beams, the three 
following models are analyzed: model with high number of spring connectors S2.5V2.5, Analytical Equation, 
AE or S0V0, and model S30V30. 

The axial forces at the mid span, Ncm, obtained in each of the models under loading cases Q and q are 
summarized in Table 4. This table shows that Ncm depends on the stiffness of the composite section. 
Obviously, independently of the number of spring connectors considered, the larger the I beam, the stiffer 
the steel beam and therefore the lower Ncm. For example, this is appreciable in S30V30 under loading case 
Q. In this structure, Ncm varies from -108.61kN (IPE100) to -59.69kN (IPE1000).  
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Table 4: Comparison of the axial forces in concrete Ncm for different beam types. 
  IPE100 IPE300 IPE500 IPE1000 
  Q q Q q Q q Q q 

Ncm(S0V0) [kN] -110.59 -28.30 -203.07 -53.68 -137.04 -36.91 -56.95 -15.32 
Ncm(S2.5V2.5) [kN] -109.32 -28.12 -203.08 -53.69 -139.54 -37.34 -58.36 -15.88 
Ncm(S30V30) [kN] -108.61 -28.00 -203.46 -53.79 -140.54 -37.61 -59.69 -16.23 

�
𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟐𝟐.𝟓𝟓𝑽𝑽𝟐𝟐.𝟓𝟓) −𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟗𝟗𝑽𝑽𝟗𝟗)

𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟗𝟗𝑽𝑽𝟗𝟗)
� [%] 1.15% 0.64% 0.01% 0.02% 1.82% 1.16% 2.48% 3.64% 

�
𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟑𝟑𝟗𝟗𝑽𝑽𝟑𝟑𝟗𝟗) −𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟗𝟗𝑽𝑽𝟗𝟗,)

𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟗𝟗𝑽𝑽𝟗𝟗)
� [%] 1.70% 1.05% 0.19% 0.21% 2.55% 1.89% 4.82% 5.97% 

 

Table 4 also includes the percentage differences between the model with high number of spring (S2.5V2.5) 
connectors and the Analytical Equations, AE and the percentage differences between the model S30V30 

and the AE. These differences are calculated by the following equations: 

�
𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆2.5𝑉𝑉2.5)− 𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆0𝑉𝑉0)

𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆0𝑉𝑉0)
� 

 

(17) 

�
𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆30𝑉𝑉30)− 𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆0𝑉𝑉0)

𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆0𝑉𝑉0)
� 

 

(18) 

The analysis of the comparison parameters presented in Table 4 shows that the differences between 
S2.5V2.5 and the analytical equations depend on the I beam. In the analyzed structure, the stiffer the steel 
beam the larger Ncm obtained by S2.5V2.5. For example in the IPE1000, the percentage difference 
calculated by Equation (17) represents the 2.48% for Q and the 3.64% for q. The same effect is obtained 
when the results of S30V30 and the analytical equations are compared. In this case, the maximum 
differences calculated by Equation (18) represent the 4.82% for Q and the 5.97% for q. 

4.2- Example 2: Three span continuous composite beam 

In this section a three span continuous composite beam is analyzed. First, the main characteristics of the 
structure are described. Then, two parametric analyses are carried out. The first of these parametric 
analyses illustrates the effect of the size of the FEMs in continuous beams. The second parametric 
analysis shows the role of the stiffness of the connection, Kq in continuous structures with different I 
beams. Finally, the results obtained by the analytical equations presented by Martínez and Ortiz (1975) 
are compared with those obtained by different FEMs for different I beams. 

4.2.1- Description of the structure 

The continuous composite beam analyzed in this paragraph has three spans (3.6m+4.5m+3.6m) as 
presented in Figure 9.A. This beam includes the same cross section of Example 1, that is to say a 
concrete slab of 1m width and 0.2m thick connected to an IPE300.  

As in the preceding example, the analyzed loading cases are as follows: (1) Concentrated load, Q, of 
100kN on concrete slab at mid span, m, of the central span. (2) A uniform distributed load, q, of 10kN/m 
along the whole length of the concrete slab. (3) Two concentrated prestressing loads, P, of 100kN at the 
centroids of the edges of the concrete slab. These load cases are illustrated in Figure 9.B. The parameters 
analyzed for each of these loading cases are the axial force at the concrete slab at mid span, Ncm, and the 
vertical deflection at the mid span, fm (Figure 9.C).  
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Figure 9: Example 2: (A) Geometry, (B) Analyzed load cases, (C) 
Analyzed parameters. 

 

In order to analyze the effects of the element number of the FEM, a set of different FEMs have been 
studied. Differences between these models refer to: (1) Spacing between spring connectors. The same 
uniform spacing of Example 1, (S2.5, S5, S15, S30 and S90) is considered. (2) Spacing between vertical struts. 
Two different spacing (V2.5 and V90) are considered. This leads to a number of ten different FEMs that are 
named, as in Example 1, by mean of the combination of the two corresponding spacing (e.g. S2.5V90). The 
number of nodes and elements of each of the FEMs are presented in Figure 10.  

 
Figure 10: Number of nodes and beam elements in different FEMs of Example 2. 

Figure 10 shows that in Example 2 the number of nodes ranges from 39 (S90V90) to 1404 (S2.5V2.5 and 
S2.5V90), while the number of beam elements ranges from 78 (S90V90) to 2808 (S2.5V2.5). 

4.2.2- Results of the FEMs  

A comparison of the results obtained by the analyzed FEMs is presented in Figure 11. This figure includes 
the percentage differences in terms of axial forces at the mid span of the concrete slab, Ncm (Figure 11.A) 
and the vertical deflection at mid span, fm (Figure 11.B) between S2.5V2.5 (the more similar model to the 
Analytical Equations) and the other analyzed FEMs for loading cases Q, q and P. The comparison 
parameters are calculated as follows:  

�
𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝒊𝒊𝑽𝑽𝒋𝒋) −𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟐𝟐.𝟓𝟓𝑽𝑽𝟐𝟐.𝟓𝟓)

𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟐𝟐.𝟓𝟓𝑽𝑽𝟐𝟐.𝟓𝟓) � (19) 

�
𝒇𝒇𝒄𝒄(𝑺𝑺𝒊𝒊𝑽𝑽𝒋𝒋)− 𝒇𝒇𝒄𝒄(𝑺𝑺𝟐𝟐.𝟓𝟓𝑽𝑽𝟐𝟐.𝟓𝟓)

𝒇𝒇𝒄𝒄(𝑺𝑺𝟐𝟐.𝟓𝟓𝑽𝑽𝟐𝟐.𝟓𝟓) � 

 

(20) 

The analysis of Figure 11.A shows that the differences of Ncm between FEMs are negligible for the loading 
case P. For vertical loads (such as Q and q) most of FEMs also present negligible differences of Ncm with 
S2.5V2.5. Nevertheless, this is not the case of those FEMs with spring connectors separated 90cm, such as 
S90V2.5 and S90V90. For example in S90V90, the differences of Ncm with S2.5V2.5 reach the 2.57% for q and 
2.22% for Q. On the other hand, the analysis of Figure 11.B illustrates that the differences of fm between 
FEMs are higher than those obtained in Ncm. The maximum values reach the 6.44% for q, the 5.91% for Q 
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and the 3.32% for P. These results show a slightly worse behavior than in the case of simply supported 
beams. 

 
 

 
Figure 11: Comparison of the results of different FEMs with the results of 
S2.5V2.5 in terms of (A) Ncm and (B) fm for loading cases Q, q and P. The result 
of each FEM is obtained by the intersection of the spacing Si with the line Vj.  

 

Some of the results obtained in each of the proposed FEMs are summarized in Figure 12 for S2.5V2.5 under 
loading cases Q, q and P. This figure includes the axial forces throughout the axis of the concrete slab, Nc 
(Figure 12.A) and the longitudinal shear forces per unit length at the steel-concrete interface, SCS (Figure 
12.B). The values of SCS have been calculated by Equation (13). 

 
Figure 12: Internal force diagrams in Example 2 for 
S2.5V2.5: (A) Axial forces in concrete slab, Nc. (B) 
Longitudinal shear force per unit length at the concrete-
steel interface, SCS. 
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Figure 12.A shows how the axial forces, Nc, are based on the bending moment law of each loading case. 
In the vertical loading cases (such as Q and q) hogging bending moments appear in the inner supports. 
For this reason, at the proximities of these supports positive forces Nc (that is to say, tensile forces) are 
obtained. The maximum compressive forces for the vertical loading cases (-117.56kN in Q and -14.91kN 
in q) are located at mid span, m. On the other hand, the diagrams presented in Figure 12.B illustrate the 
continuous shape of the shear forces per unit length at the steel-concrete interface.  

Note that as showed in Figures 3 and 4, from a practical point of view, S30V30 is the most interesting model 
that represents the behavior of the actual composite beam. For this reason, this model is used in all the 
following sections.  

4.2.3- Parametric analysis of Kq for different beam sizes 

In order to evaluate the effects of the connection stiffness, Kq, on statically indeterminate structures two 
parametric analyses are carried out in this section. In the first of these analyses Ncm of S30V30 is studied for 
stiffnesses Kq varying from 0 to 2.33E6kN/m2 for loading cases Q, q and P. In this analysis, the Eq of the 
spring connector elements (element type 4) is calculated by Equation (8). 

A comparison between Ncm and fcm obtained by the S30V30, for a stiffness Kq, and Ncm and fcm obtained by 
the same model for very stiff connections, K∞, is presented in Figure 13.  

 
 

 
Figure 13: (A) Ratio between 𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆30𝑉𝑉30)𝐾𝐾𝑞𝑞and 𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆30𝑉𝑉30)𝐾𝐾∞, and (B) Ratios 

between 𝑓𝑓𝑐𝑐𝑐𝑐(𝑆𝑆30𝑉𝑉30) 𝐾𝐾𝑞𝑞 and 𝑓𝑓𝑐𝑐𝑐𝑐(𝑆𝑆30𝑉𝑉30) 𝐾𝐾∞,  for loading cases Q, q and P. 
 

Figure 13.A shows that, as expected, the higher the Kq the more similar the values of 𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆30𝑉𝑉30)𝐾𝐾𝑞𝑞 and 
𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆30𝑉𝑉30)𝐾𝐾∞, and therefore, the closer the ratio to 1. This figure also illustrates that the flexibility of the 
connection plays an important role in the structural behavior of continuous composite beams. In fact, in 
structures with partial interaction under vertical loads differences with full interaction might be significant. 
For example, when Kq is1.67E5kN/m2 the axial force in the model in the loading case Q (-53.53 kN) 
represents the 29.90% of 𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆30𝑉𝑉30)𝐾𝐾∞ (-179.03 kN). On the other hand, the analysis of the deflections 
presented in Figure 13.B shows that the lesser the connection stiffness, the higher the differences 
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between ratios. For example, when Kq is 1.67E5kN/m2 the vertical deflection in the loading case Q (-
1.98mm) represents the 201.38% of the deflection for full interaction (-0.98mm). So, service limit state 
should be carefully checked with adequate models.  

Figure 14 presents a comparison between the shear forces per unit length at the concrete steel interface, 
SCS, in model S30V30 with five connection stiffnesses Kq. This figure shows that the stiffer the connection 
the closer the maximum values of SCS to those obtained for full interaction. As in the case of the simply 
supported beam presented in Figure 7, the maximum values of the full interaction are not exceeded by the 
models with partial interaction. In addition, it is important to highlight that major differences appear 
between the results obtained by the partial and the full interaction at the proximities of the inner supports 
and mid span. Because of these differences, the integral of the shear forces throughout the beam 
obtained by the models with partial interaction are lower than those obtained by the model with full 
interaction.  

 

Figure 14: Shear force per unit length at the concrete steel interface, 
SCS, in model S30V30 for different Kq (in kN/m2) and with a full interaction. 

The second parametric analysis presented in this section studies how the connection stiffness Kq 
influences the behavior of the model S30V30 with different I beams. In this analysis the structure presented 
in Section 4.2.1 is assumed to have four different beams (IPE100, IPE300, IPE500 and IPE1000). The 
characteristics of the models of these structures only differ in the Area and Inertia of the steel beam 
element (element type 2). This parametric analysis is focused on the bending moments at mid span, Mm. 
The values of these bending moments can be determined either from the internal forces (axial forces and 
bending moments acting on the concrete slab and the steel beam) or the external forces (external 
reactions on the boundary conditions). In this paper, the latter method has been used. This is to say, the 
bending moment at cross section m at mid span has been calculated by equilibrium equations from the 
reactions obtained in the finite element model.  

The effect of the stiffness connection in different I beams in the loading case Q is summarized in Figure 15 
according to the following ratio:  

1 − �
𝑅𝑅𝑖𝑖(S30V30)𝐾𝐾𝑞𝑞

𝑅𝑅𝑖𝑖
�  ,  i=1 for the outer supports and i=2 for inner supports 

 

(21) 
 

in which 𝑅𝑅𝑖𝑖(S30V30)𝐾𝐾𝑞𝑞represents the vertical reactions obtained for an stiffness Kq, and 𝑅𝑅𝑖𝑖 represents the 
vertical reactions for the continuous beam. The subindex i refers to the location of the support (i=1 for the 
outer supports and i=2 for the inner ones). Obviously, the closer the ratio of Equation (21) to 0, the more 
similar the reactions obtained by the models with flexible connection, 𝑅𝑅𝑖𝑖(S30V30)𝐾𝐾𝑞𝑞  to those of the 
continuous beam. The maximum ratios of each I beam are also indicated in Figure 15.  
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Figure 15: Ratio presented in Equation (21) in terms of Kq for a S30V30 with different I beams 
(IPE100, IPE300, IPE500 and IPE1000) under loading case Q. Reaction at the outer supports 
R1, (A), and at the inner supports R2, (B). 

 

With 𝑀𝑀𝑐𝑐(S30V30)𝐾𝐾𝑞𝑞 being the bending moment at mid span obtained for an stiffness Kq, and 
Mm(S30V30)K∞being the bending moment at mid span obtained for a very high stiffness, K∞, the following 
ratio can be defined to present the changes of the bending moments produced by the shear connector 
stiffness:  

1 − �
𝑀𝑀𝑐𝑐(S30V30)𝐾𝐾𝑞𝑞
𝑀𝑀𝑐𝑐(S30V30)𝐾𝐾∞

� 

 

(22) 
 

Figure 16 summarizes the differences between 𝑀𝑀𝑐𝑐(S30V30)𝐾𝐾𝑞𝑞  and 𝑀𝑀𝑐𝑐(S30V30)𝐾𝐾∞for loading cases Q 
and q. This figure shows that the ratio in Equation 22, depends on the stiffness, Kq, the I beam and the 
loading case. The analysis of loading case Q (Figure 16.A) shows that the bending moments for null Kq 
correspond with those obtained by K∞, and therefore, null ratios are obtained. For intermediate Kq a 
maximum ratio is obtained for each I beam. The maximum ratios obtained in loading case Q (0.33% for 
the IPE100, 1.76% for the IPE300, 3.47% for the IPE500 and 2.67% for the IPE1000) are found in a range 
of Kq between 6.67E4kN/m2 (IPE100) and 1.67E6kN/m2 (IPE10000). Because of the statically redundancy 
of the structure, the location of this maximum is not easy to predict. Furthermore, the depth, the area and 
the inertia of the I beam are related with two different resistant mechanisms (the pair of forces between the 
concrete and the steel and the flexural mechanism). The resistant mechanism of the pair of axial forces 
between the concrete and the steel section depends on the depth and the area of the I beam. In this way, 
the higher the depth or the area of the IPE section, the higher the axial forces in both concrete and steel. 
On the other hand, the flexural stiffness of the I beam, depends on the IPE inertia. Obviously, the higher 
the inertia the higher the flexural behavior of the steel beam and therefore, the lower the axial force in the 
concrete. The effects of the stiffness Kq in loading case q (Figure 16.B) are significantly lower. In fact, the 
maximum ratios obtained (0.71% for the IPE1000) can be considered negligible as they do not reach the 
1%.  
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Figure 16: Ratio presented in Equation (21) in terms of Kq for a S30V30 with different I 
beams (IPE100, IPE300, IPE500 and IPE1000) under loading case Q (A), and q (B). 

 

4.2.4- Comparison with the Analytical Equations 

In this section the results of the Analytical Equations, presented by Martínez and Ortiz (1975) are 
compared with those obtained by two FEMs. These FEMs correspond with a model with practically 
continuous steel-concrete connection, S2.5V2.5, and a model S30V30. The first step to carry out this 
comparison consists on extending the analytical equations to deal with continuous structures, as in the 
literature they are only proposed to simply supported structures. To do so, the continuous beam can be 
replaced by an equivalent simply supported beam for each loading case. In this way, the bending 
moments at mid span can be obtained by equilibrium equations. It is to highlight to apply equilibrium 
equations using Martinez and Ortiz formulas, the support reactions have to be calculated first with the 
model presented in this paper (in this section the model S30V30 has been used). The possibility of using the 
reactions for a continuous beam given by the strength of materials theory is always there, but some error 
will be introduced in the solution.  

The Ncm value obtained by the analytical equations (S0V0), S2.5V2.5 and S30V30 for different I beams (IPE100, 
IPE300, IPE500 and IPE1000) with Kq of 1.13E6kN/m2 in loading cases Q and q are presented in Table 5. 
This table shows that for light I beams (such as the IPE100) the analytical equations provides higher 
values than the FEMs. The opposite effect is produced in stiff I beams (such as IPE500 and IPE1000). 
Table 5 also presents a comparison between the results obtained by the different models. This 
comparison is carried out by mean of the absolute value of the ratios presented in Equations (17) and (23).  

Table 6: Comparison of the axial forces Ncm for different steel I beams. 
  IPE100  IPE300  IPE500  IPE1000  
  Q q Q q Q q Q q 

Ncm(S0V0)  [kN] -67.25 -8.86 -117.64 -14.83 -77.64 -9.89 -30.34 -3.96 
Ncm(S2.5V2.5) [kN] -65.94 -8.85 -117.63 -14.91 -80.29 -10.48 -32.19 -4.23 
Ncm(S30V30)  [kN] -65.90 -8.85 -117.56 -14.88 -80.40 -10.47 -32.28 -4.22 

�
𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟐𝟐.𝟓𝟓𝑽𝑽𝟐𝟐.𝟓𝟓)−𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟗𝟗𝑽𝑽𝟗𝟗)

𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟗𝟗𝑽𝑽𝟗𝟗)
� [%] 1.95% 0.17% 0.01% 0.55% 3.42% 5.93% 6.07% 6.58% 

�
𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟑𝟑𝟗𝟗𝑽𝑽𝟑𝟑𝟗𝟗)−𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟐𝟐.𝟓𝟓𝑽𝑽𝟐𝟐.𝟓𝟓)

𝑵𝑵𝒄𝒄𝒄𝒄(𝑺𝑺𝟐𝟐.𝟓𝟓𝑽𝑽𝟐𝟐.𝟓𝟓)
� [%] 0.05% 0.00% 0.06% 0.18% 0.14% 0.06% 0.29% 0.01% 
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�
𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆30𝑉𝑉30)− 𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆2.5𝑉𝑉2.5)

𝑁𝑁𝑐𝑐𝑐𝑐(𝑆𝑆2.5𝑉𝑉2.5)
� 

 

(23) 

The analysis of the ratios presented in Table 5 shows that the differences between the results of the 
Analytical Equations (S0V0) and S2.5V2.5 depend on the I beam. The stiffer the steel beam the larger the 
differences. The maximum values (6.07% for Q and 6.58% for q) are obtained for the IPE1000. These 
differences can be explained by the role that the stiffness of the steel beam plays in the overall behavior of 
the continuous composite beams (and therefore, on their reactions). On the other hand, the second ratio 
presented in Table 5 illustrates that in this particular case, the differences between S2.5V2.5 and S30V30 are 
negligible.  

5- Conclusions 

In addition to their computational cost, the use of analytical equations to analyze composite beams with 
partial interaction is limited in practice. In fact, this procedure is not always applicable to a number of 
common structures (such as statically indeterminate and tapered beams, non-continuous shear connector 
distributions or complex load cases). To fill these gaps, a two dimensional Finite Element Model (FEM) is 
proposed in this paper to simulate the behavior of composite beams with partial interaction. This model 
includes the following six different types of frame elements: the concrete slab, the steel beam, the spring 
connectors to simulate the concrete-steel interface, and two kind of vertical struts to simulate de distance 
between concrete and steel sections’ centroid and the steel-concrete interface. Compared with the 
analytical equations presented in the literature, this method presents the following advantages: (1) 
Intuitiveness, as the different elements of the model present a close and easy to understand relation with 
the structural behavior of the composite beam. (2) Applicability, as the method directly provides useful 
information for the design work. In fact, the application of this method include any beam geometry, any 
distribution of non-uniform shear connectors and any applied load for both determinate and indeterminate 
beams. (3) Versatility and generalization in dealing with any combination of loading and boundary 
conditions. Furthermore, the proposed model does not require assuming a continuous connection at the 
concrete-steel interface. (4) Easy elaboration of models. (5) Possible widespread use of the model, as it 
can be implemented in any structural software. The presented method is able to simulate the shear 
deformability. Nevertheless, in the current work, shear deformability was not considered because the 
results were compared and validated with the analytical equations, which do not include this deformation. 
The effects of the shear deformability will be addressed in detail in a future research 

To evaluate the simulation of the proposed methodology, two examples (a simply supported beam and a 
continuous beam) have been analyzed according to different load cases. In each of these structures 
different parametric analysis have been carried out and the results were compared with those obtained by 
the analytical equations presented in the literature. The analysis of these structures leads to the following 
conclusions: (1) The FEMs with reduced spacing among spring connectors reproduce correctly the results 
of the analytical equations. Note that the analytical equations might be regarded as the exact solution. 
This is misleading, as the physical behavior of the discrete behavior of the shear connectors might be best 
modeled by the proposed FEM. This model includes a spring element at the steel-concrete interface, there 
where the shear connectors are present. Even though the most accurate simulation of the physical 
behavior is achieved when a great number of vertical shear connectors are used, from a practical point of 
view, it is suggested to use the same number of vertical struts and shear springs in this FEM. (2) As 
expected, the stiffness of the concrete and steel connection influences the behavior of the composite 
beams. In statically determined beams, the higher the stiffness of the connection the larger the differences 
between the analytical equations and the FEMs are. This effect is more significant in those structures with 
higher spacing of spring elements. On the other hand, in the case of continuous beams the maximum 
differences with the analytical equations depend on the depth of the I beam. In fact, the maximum 
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differences are obtained for intermediate shear stiffnesses. Because of the statically redundancy of the 
structure, the location of this maximum cannot be easily predicted. Furthermore, the depth, the area and 
the inertia of the I beam are related with two different resistant mechanisms (the pair of forces between the 
concrete and the steel and the flexural mechanism).In the prestressing of the concrete slab the effects of 
the stiffness of the connection can be neglected. (3) As expected, the models show how the values of 
shear forces per unit length obtained by models with partial interaction do not exceed those values 
obtained when full interaction is assumed. The integral of shear forces throughout the beam is lower in 
those models with partial interaction than in models with full interaction. (4) The proposed model has 
validated the use of the analytical equations to approximate the behavior of continuous beams. Albeit 
reasonable, until now, this conclusion was untested as in the literature these equations were only 
presented to deal with simply supported beams. The presented method will be developed in the future to 
address tapered beams, the effect of shear deformation, 3D structures and nonlinear behavior of concrete 
slab, steel beam and shear connectors. 
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