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Abstract—In dense wireless scenarios, and particularly under

high traffic loads, the design of efficient random access protocols

is necessary. Some candidate solutions are based on Direct-

Sequence Spread Spectrum (DS-SS) combined with a Successive

Interference Cancellation (SIC) demodulator, but the perfor-

mance of these techniques is highly related to the distribution

of the users received power. In that context, this paper presents

a theoretical analysis to calculate the optimum user SINR profile

at the decoder maximizing the spectral efficiency in bps/Hz for

a specific modulation and practical Forward Error Correction

(FEC) code. This solution is achieved by means of Variational

Calculus operating in the asymptotic large-user case. Although

a constant SINR function has been typically assumed in the

literature (the one maximizing capacity), the theoretical results

evidence that the optimum SINR profile must be an increasing

function of the users received power. Its performance is compared

with that of the uniform profile for two representative scenarios

with different channel codes in a slightly overloaded system.

The numerical results show that the optimum solution regulates

the network load preventing the aggregate throughput from

collapsing when the system is overloaded. In scenarios with a

large number of transmitters, this optimum solution can be

implemented in an uncoordinated manner with the knowledge

of a few public system parameters.

Keywords—Spread Spectrum, Multiple-Access, Successive Inter-
ference Cancellation, Spectral Efficiency, Throughput, Variational
Calculus, Uncoordinated Access

I. INTRODUCTION

The random (or uncoordinated) multiple access problem
constitutes a major challenge in future massive wireless net-
works [1]. In such novel scenarios, collisions can be potentially
very critical, specially when the number of terminals grows
unboundedly. A common feature of recent uncoordinated
multiple-access protocols is that they tackle collisions, not as a
drawback, but as an opportunity to increase the throughput. In
most cases, this benefit is reaped by introducing a Successive
Interference Cancelation (SIC) scheme that mitigates the in-
terference produced by collisions [2]–[5]. The performance of
some SIC-based random access solutions is highly dependent
on the received power distribution [6] and benefits from power
unbalance, as is the case in Enhanced Spread Spectrum Aloha
(E-SSA) schemes [3]. Therefore, we focus on the performance
of the random access scheme in terms of the user power
distribution.

This paper provides the analytical solution to the optimum
symbol energy profile at the input of the SIC Direct-Sequence
Spread Spectrum (DS-SS) receiver maximizing the system

spectral efficiency in bps/Hz, for a specific FEC code (charac-
terized by its Packet Error Rate curve). A general belief in the
literature is that the optimum received signal to interference
plus noise ratio (SINR) profile in a multiple-access DS-SS
system is constant over successive SIC stages for all the users
[8]. While this statement is true when maximizing the channel
capacity [9] [10], no proof is available that a constant SINR
profile is optimum in terms of spectral efficiency (throughput)
when using specific and implementable modulation and coding
schemes. In [11], trying to implement an admission control
procedure, the authors derive the optimum received signal-
power distribution which maximizes throughput, but omit
the FEC (uncoded BER curves are assumed) and enforce,
heuristically, a constant SINR for all transmitted packets. In
this paper, we prove, by means of Variational Calculus, that in
the asymptotic many-user case the optimum SINR profile must
be an increasing function of the users received power when SIC
and practical modulation and coding schemes are implemented.
This asymptotic model and its optimization problem, both
presented in Sec. II, match the potentially large population
scenarios envisaged for future wireless networks. Sec. III and
appendices present the related asymptotic analyses deriving the
theoretical results for the per-user optimum Es/N0 and SINR
profiles. In Sec. IV, numerical results corroborate, for two
specific FECs, that the optimum SINR profile is not uniform,
but rather, a decreasing function of the SIC decoding order.
A more detailed examination of the results shows, that in
overloaded systems, the optimum solution regulates the load
avoiding the throughput drop-off due to an excess of collisions.
The last part of the paper discusses, briefly, how the optimum
solution could be implemented uncoordinatedly, a sensible
approach when a large number of terminals perform random
access.

II. PROBLEM STATEMENT

Let K asynchronous DS-SS users transmit to a common
receiver and let �k be the received Es/N0 of the k-th user,
under the average received Es/N0 constraint �K ,

�K =
1

K

KX

k=1

�k (1)

We assume a successive interference cancellation strategy
where users are decoded sequentially from the most powerful
(k = K) to the least powerful (k = 1) one and where, each
time a user is successfully decoded, a residual interference
fraction 0 < "  1 of the current user’s power remains due
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to imperfect cancellation [6]. After cancellation of previous
users, the k-th user SINR is given by,

�k =
�k

1 + ✓
N

Pk�1
i=1 �i + " ✓

N

PK
i=k+1 �i

(2)

with ✓
N the average decorrelation factor assumed between

signatures of different users in the long code model (spreading
code much longer than the symbol period), N the spreading
factor and 0 < ✓  1 an additional average decorrelation factor
associated with random inter-user chip timing and/or carrier
phase differences. The k-th user’s Packet Error Rate (PER),
or probability of decoding incorrectly the k-th user packet, is
a function of �k depending on the adopted modulation and
channel-coding scheme: perk = PER(�k). For a SIC policy
whereby decoding is stopped when a packet decoding error
occurs, the system spectral efficiency in bps/Hz becomes,

EK =
Rc

N

KX

k=1

KY

i=k

(1� peri) (3)

with Rc the number of information bits per channel use of the
adopted modulation and coding scheme. In this context, our
objective is to derive the optimum Es/N0 profile {�k}k=1,...,K
and its associated SINR profile {�k}k=1,...,K that maximize
EK (we may refer to either one of them interchangeably
during the optimization). In the finite-user case (k discrete),
this problem cannot be solved analytically. Alternatively, as in
[9] [10], we evaluate the asymptotic case in which K,N ! 1
while the traffic load ↵ = K/N remains constant. This will
be useful in obtaining tight approximations when K,N >> 1.

One may be interested in the effect of using the asymptotic
Es/N0 profile when the number of users is finite. We refer the
reader to the analysis in [7], which, although implementing a
different SIC policy, provides a detailed comparison of average
PER results between the user-asymptotic and finite-user cases.
A good agreement is observed therein at K = 512 users.

A. User-asymptotic expressions

In the asymptotic case, the discrete index k is replaced
with the continuous index t

.
= limK!1 k/K (0 < t  1),

and the problem can be reformulated in terms of the (normal-
ized) continuous Es/N0 profile, ẏ(t), and the (normalized)
aggregate Es/N0 profile, y(t), defined as

ẏ(t)
.
=

1

�
lim

K!1
�tK (4)

y(t)
.
=

1

�
lim

K!1

1

K

tK�1X

i=1

�i =

Z t

0
ẏ(u)du (5)

where the normalization constant �
.
= limK!1 �K is the

asymptotic average received Es/N0 (1), the dot accent denotes
differentiation in t, i.e., ẏ(t) = rty(t)

.
= d

dty(t) and where
the differential du is obtained from the asymptotic equivalence
du⌘1/K when K ! 1.

From the above definitions, we can obtain the equivalent
asymptotic values of �k in (2) and EK in (3). Firstly, we
substitute (4) and (5) into (2) and we get,

�(t)
.
= lim

K!1
�k =

ẏ(t)

a+ by(t)
=

1

b
rt ln (a+ by(t)) (6)

with parameters a, b easily defined from (2) and ↵ = K
N as,

a
.
= (1 + ↵✓"�)/� , b

.
= (1� ")↵✓ (7)

Thus, equation (6) determines the asymptotic SINR profile
�(t) from the asymptotic normalized Es/N0 profile y(t). The
determination of y(t) from �(t) is addressed in section III.

Secondly, by expressing the finite product ⇧K
i=k[·] in (3)

as exp(
PK

i=k ln[·]) and then letting the finite summationPK
i=k ln[·] in the exponent converge to an integral as done in

(5), we get the following tight approximation E to the system
spectral efficiency EK in (3) for a sufficiently large number
of users K = ↵N ,

EK ! E
.
= ↵Rc

Z 1

0
exp

✓
↵N

Z 1

u
f (�(v)) dv

◆
du (8)

where we have used that each stage’s PER converges as
perk=tK ! PER[�(t)], and where we have also defined,

f (�)
.
= ln (1� PER(�)) < 0 (9)

a negative function over � of the adopted modulation/coding
PER characteristic: the logarithm of the Packet Success Rate
PSR[�]

.
= 1 � PER[�]. Note that, as will be used, f(�)

increases with �, with the following positive derivative in �,

f 0(�) =
PSR0[�]

PSR[�]
> 0 (10)

as any practical function PSR[�] should increase with �.
Moreover, as lim�!1 PSR[�] ! 1�, we conclude that f 0(�)
decreases for � � �f , with �f specific to the modula-
tion/coding scheme.

B. Optimization problem

The optimization problem consists in maximizing the func-
tional E in (8) with respect to y(t) in (5) under the boundary
constraints y(0) = 0 and y(1) = 1, where the former is
trivially satisfied and the latter fixes the average received
Es/N0 (1). As in [9, Eq. 25], this is a variational calculus
problem that is solved analytically in Sec. III from the modified

Euler-Lagrange equation derived in Appendix I, which proves
that a necessary condition for the profile �(t) (corresponding to
y(t)) to maximize E is that the following invariance equation
be fulfiled for any t,

E(t) · f 0(�(t)) = c0 (11)

where the term E(t), defined from �(t) as follows,

E(t)
.
= ↵Rc

Z t

0
exp

✓
↵N

Z 1

u
f (�(v)) dv

◆
du (12)

constitutes the partial aggregate asymptotic spectral efficiency
of users with indices 0 < u < t and where each different
value for the constant c0 in (11) is associated with a different
solution y(t) to (11). We let that be denoted the solution space
y(t; c0). Therefore, we will select that solution y(t) = y(t; c0),
associated with a given c0, that satisfies the average received
Es/N0 constraint �̄. The following lemma sheds some light
on the behaviour of the corresponding optimum SINR profile
�(t), whose expression is analytically obtained in Sec. III.

Lemma 1: The SINR profile �(t) fulfiling the invariance
equation (11) is an increasing function of t.



Proof: Note that, by its definition in (12), E(t) is increasing
in t. Hence, from the invariance (11), f 0(�(t)) must be
decreasing in t. In consequence, as discussed after (10), the
derivative f 0(�) is a positive decreasing function in �, we
conclude that �(t) must be an increasing function of t ⌃.

The increasing character of the optimum SINR profile �(t)
in t stated by Lemma 1 establishes that efficiency is maximized
when the SINR of the first decoded users is prioritized. This
differs radically from the results of capacity studies where
the optimum SINR profile is found to be uniform [9]. The
reason is that we are considering a practical modulation
and coding scheme whereas a capacity-achieving error-free
modulation/coding is implicitly used in asymptotic capacity
studies. Our goal in the following sections is thus to obtain
an analytical expression for the increasing optimum profile
�(t) and to compare its performance with that of the capacity-
maximizing uniform profile in [9].

III. OPTIMUM SINR AND Es/N0 PROFILES

Firstly, rather than finding the solution y(t) to the in-
variance equation (11), we consider its corresponding solu-
tion �(t). The optimum SINR profile �(t) can be obtained
by solving the nonlinear integro-differential equation jointly
determined by (11)-(12). This step is, mathematically, rather
involved and is documented in appendix II. Its solution space,
denoted �opt(t; c) (see appendix II), depends on a constant
c which may also be determined from the average Es/N0

constraint �̄. Note that here we are considering a parameter
c for the solution space �opt(t; c), which is different from its
corresponding parameter c0 for the solution space y(t; c0). In
fact, both c and c0 will be determined from the values of a, b
in (7), which, in their turn, depend on �̄.

Secondly, we determine the corresponding y(t) and �(t)
.
=

�̄ẏ(t) from �(t). Note now that the boundary condition y(1) =
1 can be cast in terms of �(t): if y(t) is evaluated from (6)
using y(0) = 0, we obtain

y(t) =
a

b
exp

✓
b

Z t

0
�(u)du

◆
� a

b
(13)

Then, substituting y(1) = 1 into the equation above, the
following equivalent constraint on the area of �(t) = �opt(t; c)
results, which is associated with the corresponding parameter
c of the solution space �opt(t; c),

Z 1

0
�opt(u; c)du =

1

b
ln

✓
1 +

b

a

◆
.
= �0 (14)

where �0 (depending on �̄ through a, b) corresponds to the
SINR of the constant profile maximizing capacity [9]. Once
the optimal SINR profile is found, the optimum continuous
Es/N0 profile can be computed from the derivative of (13)
evaluated at �(t) = �opt(t; c), yielding

�opt(t) = �ẏ(t)|�opt
(15)

= a��opt(t) exp

✓
b

Z t

0
�opt(u)du

◆

IV. NUMERICAL ANALYSIS

The theoretical results derived in the previous sections
are numerically evaluated in this section for a representative
scenario with a spreading factor N=2048, a SIC residual
interference power coefficient " = 0.1 and QPSK modulation.
Assuming an interference dominated scenario, an average
received Es/N0 of 30dB is considered (Eq. 1). Similar conclu-
sions are drawn nonetheless for lower moderate Es/N0 values.

We compare the performance of the SINR profile that
maximizes throughput (blue plots with circle markers) with the
uniform SINR profile that maximizes capacity [9] (red plots
with asterisk markers). As the SINR profile that maximizes
throughput is sensitive to the PER(�) function of the selected
forward-error correcting (FEC) code, the performance is an-
alyzed for two illustrative FEC codes (Fig. 1) : (a) a 3GPP
based Turbo code of rate 1/3 with 10% puncturing, as defined
in [12]; (b) the classical convolutional code of rate 1/2 and
generator polynomials 133oct and 171oct (adopted in some
standards such as DVB-S or IEEE 802.11). In both cases the
packet length (information bits per packet) is L = 320.

As shown in Fig. 1, the set of available PER values (aster-
isks) obtained by simulation are correctly fitted by means of a
piecewise exponentially decreasing function as the following,

PER(�) =

⇢
exp(�k1�) 0  �  �th

exp(k2 � k3�) � > �th
(16)

The constants k1, �th, k2 and k3 for the studied FEC codes
are: (a) for the 3GPP based Turbo code k1=0.05, �th=0.78,
k2=18.68 and k3=24; (b) for the convolutional code of rate
1/2 k1=0.263, �th=1.35, k2=6.77 and k3=5.28.

Fig. 2 depicts the system spectral efficiency versus the
load ↵ = K/N for the first studied FEC code (Turbo code).
As shown, whereas the spectral efficiency for the uniform
profile (red) degrades for large loads, the optimum profile
(blue) maintains the maximum spectral efficiency. In Fig. 3,
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Fig. 1. PER vs. SINR curves for the two studied FEC codes:
convolutional code (blue curve) and 3GPP Turbo code (red curve).
Asterisks correspond to simulated points and continuous lines are the
adopted piecewise exponentially-approximated curves.
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Fig. 2. Spectral Efficiency vs. traffic load (↵) for the first studied
FEC (Turbo code).
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Fig. 3. Per-user profiles vs. user index t for a 10% overloaded system
(↵ = 2.30, K ⇡ 4710 users) for the first studied FEC (Turbo code).

for the same FEC code, a 10% overloaded system (↵ = 2.30)
dealing with approximately K = 4710 users is simulated. For
this value of ↵, the SINR profile �(t) and the normalized
Es/N0 profile ẏ(t) are obtained using the theoretical analysis
in Section III. The per-user efficiency profile is also calculated
as the derivative of (12) with respect to the user index t,

Ė(t) =
d

dt
E(t) = ↵Rc exp

✓
↵N

Z 1

t
f (�(v)) dv

◆
(17)

This simulation evidences that the SINR profile maximizing
throughput (blue, circular markers) is not uniform in contrast to
the SINR profile maximizing capacity (red, asterisks markers),
which is constant for all the users [9].

The same curves are plotted in Fig. 4 and Fig. 5 for the
second studied FEC (convolutional code). Since the convo-
lutional code is less powerful than the studied Turbo code,
the admissible load with this FEC is much lower than with
the Turbo code (Fig. 4). In particular, the maximum accepted
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Fig. 4. Spectral Efficiency vs. traffic load (↵) for the second studied
FEC (convolutional code)
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Fig. 5. Per-user profiles vs. user index t for a 10% overloaded
system (↵ = 0.93, K ⇡ 1905 users) for the second studied FEC
(convolutional code).

load is approximately ↵ = 0.84 (i.e. K ⇡ 1720 users). The
optimum profiles in terms of throughput and capacity for the
convolutional code appear depicted in Fig. 5 for comparison.

As is illustrated in Fig. 3 and Fig. 5, if the system is
10% overloaded, the Es/N0 profile maximizing throughput
(blue, circles) assigns null power to 10% of the users in
order to regulate the system load and maintain (maximize)
the SIC performance in terms of spectral efficiency. This
result is particularly relevant in the case of dynamic systems
in which users select the transmitted power randomly on a
frame-by-frame basis. In this setup, although users choose
their transmitted power independently, they are able to induce
collectively the Es/N0 profile that maximizes the overall
system spectral efficiency, as explained in the next paragraph.
Following this approach and using the proposed Es/N0 profile,
the instantaneous load can be regulated in a distributed fashion
in order to avoid the collapse of the system throughput in
overloaded scenarios, as shown in Fig. 2 and Fig. 4. This



allows the system to manage dynamically more users than the
maximum number of users the capacity-achieving profile (red,
asterisks) tolerates before the throughput drop-off.

An important advantage of the studied asymptotic (in the
number of users) regime is that the Es/N0 profile �opt(t) in
(15) can be generated uncoordinatedly in some scenarios. This
is possible because �opt(t) only depends on public system
parameters such as the spreading factor N , the total number of
users K, the FEC characteristic curve or the average Es/N0

constraint �̄. The main idea is that users can use the Es/N0

profile for deciding, randomly, the transmitted symbol energy
in every frame. In particular, in those scenarios in which the
channel power gain h2

k is deterministic or near-deterministic,
the transmitted symbol energy of user k can be computed
as (N0/h2

k)�opt(tk) where tk is a (independent) uniformly
distributed random variable in the interval [0, 1].

V. CONCLUSIONS

We have shown, that in multiple access scenarios fea-
turing a large number of users, it is feasible to express
global performance (e.g., spectral efficiency) in terms of a
limiting continuous distribution (or profile) for the symbol
energy of the user population. This approach facilitates system
optimization through application of Variational Calculus such
that the optimum symbol energy profile and associated maxi-
mum performance can be determined by solving a differential
equation with suitable boundary constraints. This framework
is applicable to the whole range of system loads K/N and
predicts a seamless transition between an under- and an
overloaded system. In the latter case, the obtained symbol
energy distribution offers a natural way to regulate the load
in the overloaded case. Notice, finally, that the analysis can be
particularized to any FEC scheme in terms of its associated
Packet Error Rate characteristic.

It is worth noting that the optimum Es/N0 and SINR
profiles depend on the specific SIC policy implemented.
Therefore, different results may be obtained when using other
policies such as those described in [7], [14] (Multi-Branch SIC
based on different user orderings) or [15] (Multi-Feedback SIC
based on several candidates for cancellation).

APPENDIX I. MODIFIED EULER-LAGRANGE EQUATION

We seek to maximize the spectral efficiency E in (8) with
respect to y(t) subject to the boundary constraints y(0) = 0
and y(1) = 1. Using the tools of Variational Calculus,
the spectral efficiency can be expressed as a non-standard
functional G(y) depending on the normalized aggregate Es/N0

profile y(t), with K = ↵N ,

G(y) =

Z 1

0
exp

✓
K

Z 1

u
L(y,ẏ; t)dt

◆
du (18)

L(y,ẏ; t)
.
= f (�(t)) = f

✓
ẏ(t)

a+ by(t)

◆
, (19)

where, using the definition of the partial spectral efficiency
E(t) in (12), we have G(y) = 1

↵Rc
E(t). For yopt(t) the

maximizing function, the standard procedure in Variational
Calculus considers,

y(t) = yopt(t) + ✏ · ⌘(t), (20)

with ⌘(t) any function with ⌘(0) = ⌘(1) = 0 (boundary
constraints on y(t) are not affected). Then, for yopt(t) to
be a stationary point, we must have that r✏=0[G(y)] = 0
for any such ⌘(t), which leads to a differential equation for
y(t) = yopt(t), as will be shown. Hence, defining the auxiliary
functional M(y;u)

.
= K

R 1
u L(y, ẏ; t)dt, we have,

r✏G(y) =

Z 1

0
exp[M(y;u)]r✏[M(y;u)]du (21)

r✏[M(y;u)] = K

Z 1

u
(@yL ·r✏y + @ẏL ·r✏ẏ)dt(22)

where, in (22), for shorter notation, the following partial
derivatives are defined: @yL

.
= (@/@y)L(y, ẏ; t) and @ẏL

.
=

(@/@ẏ)L(y, ẏ; t), as well as y
.
= y(t) and ẏ

.
= ẏ(t). From

(20), we have that r✏y = ⌘(t) and r✏ẏ = ⌘̇(t) = rt⌘(t).
Hence, applying integration by parts to (22) and the boundary
constraint ⌘(1) = 0, we get,

r✏[M(y;u)] = (23)

= K

Z 1

u
([@y �rt@ẏ]L)⌘(t)dt+K((@ẏL)⌘(t))

��1
u

= K

Z 1

0
([@y �rt@ẏ]L)⌘(t)u(t� u)dt�K((@ẏL)⌘(t))

��
t=u

with u(t) the unit step function. For rEL
.
= @y � rt@ẏ the

Euler-Lagrange diferentiation operator, we substitute (23) into
(21), interchange integrals and set G0 = r✏G(y), so that,

G0 = K

Z 1

0

Z 1

0
⌘(t)u(t� u)eM(y;u)(rELL)dtdu�

�
Z 1

0
eM(y;u)⌘(u)(@ẏL)

��
t=u

du =

Z 1

0
⌘(t)w(t)dt

where, changing the integration variable from u to t in the
second integral, w(t) can be expressed as,

w(t) =

Z 1

0
eM(y;u)u(t� u)du ·rELL� eM(y;t)@ẏL (24)

From the Fundamental Lemma of Variational Calculus [13],
we have that G0 = 0 for any ⌘(t) only if w(t) = 0. Hence,
defining the partial integral A(t),

A(t) =

Z 1

0
eM(y;u)u(t� u)du =

Z t

0
eM(y;u)du (25)

we have Ȧ(t) = rtA(t) = exp[M(y; t)] and, finally, setting
w(t) = 0 in (24), yields the modified Euler-Lagrange equation,

A(t) · ([@y �rt@ẏ]L) = Ȧ(t) ·rẏL (26)

Now, we may multiply (26) by ↵Rc so that Ė(t) = ↵RcȦ(t),
where Ė(t) = rtE(t) = ↵Rc exp

⇣
K

R 1
t f (�(u)) du

⌘
stands

for the spectral efficiency density of user t, defined from the
spectral efficiency E(t) in (12). Hence, A(t) may be substituted
by E(t) in (26) and we can already proceed to derive the
invariance equation in (11). Compacting notation : Ė .

= Ė(t)
and � .

= �(t), and moving the negative term in (26) to the
right-hand side, where A(t) = E(t)/(↵Rc), we get,

E · @yL = Ė · @ẏL+ E ·rt@ẏL

= rt [E · @ẏL] (27)



As @yL = �f 0(�) · bẏ/(a + by)2 = �b� · @ẏL and @ẏL =
f 0(�)/(a+ by) > 0 for L =f (ẏ/(a+ by)), (27) becomes,

�b� = rt [ln (E · @ẏL)]
= rt ln(E) +rt ln(@ẏL) (28)

Operating on the last term in (28) and using (19) and (6),
we get that rt ln(@ẏL) = rt ln(f 0(�)) � b� with f 0(�)

.
=

r�f(�) and, therefore, (28) can be written as,

rt ln(E) +rt ln(f
0(�)) = 0 (29)

) rt ln(E · f 0(�)) = 0 (30)

which, after integrating in t, yields (11), for some c0 consis-
tent with applicable boundary conditions, as is examined in
appendix II when solving for the corresponding �(t).

APPENDIX II. DETERMINATION OF �opt(t; c)

We may remove the two integrals in (12) by applying twice
the operator rt as follows,

rt lnrt


E(t)

↵Rc

�
= �Kf (�(t)) (31)

Now, we substitute (11) into the left-hand side of (31). Hence,
concealing the dependence on t as � .

= �(t), we get,

�Kf (�) = rt lnrt


c0/(↵Rc)

f 0(�)

�
=

r2
t [1/f

0(�)]

rt[1/f 0(�)]
(32)

Now, let us define �̇ .
= �̇(t)

.
= rt�(t) and use the following

equality in (32), which contains the term rt[1/f 0(�)],

rt[f(�)/f
0(�)] =

f 0(�) · �̇
f 0(�)

+ f(�)rt [1/f
0(�)] (33)

Solving for f(�)rt[1/f 0(�)] in (33) and subsituting into (32),
we have that,

r2
t [1/f

0(�)]�K�̇+Krt[f(�)/f
0(�)] = 0 (34)

Integration in t may now be carried out from (34) to (35) to
reduce by one the differential equation order,

rt[1/f
0(�)]�K�+Kf(�)/f 0(�) = c, (35)

with c a generic integration constant determined from the prob-
lem constraint specified at the end of this appendix. Calculating
the derivative in rt[1/f 0(�)] and rearranging terms, we obtain
the following first-order Ordinary Differential Equation (ODE),

�̇(t) = 1/ c (�(t)) (36)

where  c (�), which depends on the constant c, is given by

 c (�)
.
=

�f 00(�)

[f 0(�)]2 (Kh(�) + c)
(37)

with h(�)
.
= ��f(�)/f 0(�) and f 00(�)

.
= r2

�f(�). In order
to solve for �(t) in (36), we use that �̇(t) = d�/dt is a ratio
of differentials, which allows us to integrate in the continuous
user index over the interval [0, t], obtaining,

Z �(t)

0
 c (�) d� =

Z t

0
du = t (38)

where we have used �(0) = 0, as concluded from (11) in Sec.
II. Defining ⌦c (�)

.
=

R �
0  c (x) dx, we get ⌦c (�(t)) = t

and, consequently, ⌦c (�) is the inverse function of �(t) or,
equivalently, the optimum SINR profile is expressed as,

�opt(t; c) =⌦
�1
c (t) , (39)

in terms of ⌦c (�), which is calculated from the PER function
of the adopted modulation/coding scheme for a given value of
c. The value of c in (37) may be selected in order to fulfil
the average area constraint �0 in (14) while satisfying the
positiveness of  c (�) in (37), i.e., c > �Kh(�(1)), which
is indeed a necessary condition to guarantee that ẏ(t) � 0.
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