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Finite automata for Schreier graphs of
virtually free groups

Pedro V. Silva, Xaro Soler-Escrivà and Enric Ventura

Communicated by James Howie

Abstract. The Stallings construction for f.g. subgroups of free groups is generalized by
introducing the concept of Stallings section, which allows efficient computation of the
core of a Schreier graph based on edge folding. It is proved that the groups that admit
Stallings sections are precisely the f.g. virtually free groups, this is proved through a con-
structive approach based on Bass–Serre theory. Complexity issues and applications are
also discussed.

1 Introduction

Finite automata have, over the years, become the standard representation of finitely
generated subgroups H of a free group FA. The Stallings construction consti-
tutes a simple and efficient algorithm for building an automaton S.H/ which
can be used for solving the membership problem of H in FA and many other
applications. This automaton S.H/ is nothing more than the core automaton of
the Schreier graph (automaton) of H in FA, whose structure can be described
as S.H/ with finitely many infinite trees adjoined. Many features of S.H/ were
(re)discovered over the years and were known to Reidemeister, Schreier, and par-
ticularly Serre [17]. One of the greatest contributions of Stallings [19] is certainly
the algorithm to construct S.H/: taking a finite set of generators h1; : : : ; hm of
H in reduced form, we start with the so-called flower automaton, where petals
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26 P. V. Silva, X. Soler-Escrivà and E. Ventura

labelled by the words hi (and their inverse edges) are glued to a basepoint q0:

�

h1

11

h2

��

hm

QQ
.

Then we proceed by successively folding pairs of edges of the form q
a
 � p

a
�! r

until no more folding is possible (so we get an inverse automaton). And we will
have just built S.H/. For details and applications of the Stallings construction,
see [1, 6, 13].

Since S.H/ turns out to be the core of the Schreier graph of H � FA, this
construction is independent of the finite set of generators of H chosen at the
beginning, and of the particular sequence of foldings followed. And the member-
ship problem follows from the fact that S.H/ recognizes all the reduced words
representing elements ofH , : : : and the reduced words constitute a section for any
free group.

Such an approach naturally invites generalizations for further classes of groups.
For instance, an elegant geometric construction of Stallings type automata was
achieved for amalgams of finite groups by Markus-Epstein [12]. On the other hand,
the most general results were obtained by Kapovich, Weidmann and Miasnikov [7]
for finite graphs of groups where each vertex group is either polycyclic-by-finite or
word-hyperbolic and locally quasiconvex, and where all edge groups are virtually
polycyclic. However, the complex algorithms were designed essentially to solve
the generalized word problem, and it seems very hard to extend other features of
the free group case, either geometric or algorithmic. Our goal in the present paper
is precisely to develop a Stallings type approach with some generality which is
robust enough to exhibit several prized algorithmic and geometric features, namely
in connection with Schreier graphs. Moreover, we are able to identify those groups
G for which this can be achieved: (finitely generated) virtually free groups.

What ingredients do we need to get a Stallings type algorithm? First of all, we
need a section S with good properties that can emulate the role played by the
reduced words in the free group. In particular, we need a rational language (i.e.
recognizable by a finite automaton). We may of course need to be more restrictive
than taking all reduced words, if we want our finite automaton to recognize all the
representatives of H �f:g: G in S . To get inverse automata, it is also convenient
to have S D S�1

Secondly, the set Sg of words of S representing a certain g 2 G must be at
least rational, so we can get a finite automaton to represent each of the generalized
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Finite automata for Schreier graphs of virtually free groups 27

petals. Third, the folding process to be performed in the (generalized) flower auto-
maton (complemented possibly by other identification operations) must ensure in
the end that all representatives of elements of H in S are recognized by the auto-
maton. And folding is the automata-theoretic translation of the reduction process
w ! w taking place in the free group. So we need the condition Sg1g2 � Sg1Sg2 ,
to make sure that the petals (corresponding to the generators of H ) carry enough
information to produce, after the subsequent folding, all the representatives of
elements of H . This is how we were led to our definition of Stallings section.

It is somewhat surprising how much we can get from this concept, which turns
out to be more robust than one would expect. Among other features, we can men-
tion independence from the generating set (so we can have Stallings automata
for free groups when we consider a noncanonical generating set!), or closure of
rational sets with respect to computation of normal forms. We present some appli-
cations of the whole theory, believing that many others should follow in due time,
as happened in the free group case.

The paper is structured as follows. In Section 2 we present the necessary basic
concepts. The theory of Stallings sections is presented in Section 3. In Section 4,
we discuss the complexity of the generalized Stallings construction in its most
favourable version. In Section 5 we use Muller–Schupp’s Theorem and Bass–Serre
theory to prove that those groups admitting a Stallings section are precisely the
finitely generated virtually free groups. In Section 6 we show that we can assume
stronger properties for Stallings sections with an eye to applications, namely the
characterization of finite index subgroups.

2 Preliminaries

Given a finite alphabet A, we denote by A� the free monoid on A, with 1 denoting
the empty word. A subset of a free monoid is called a language.

We say that A D .Q; q0; T; E/ is a (finite) A-automaton if:
� Q is a (finite) set,
� q0 2 Q and T � Q,
� E � Q � A �Q.

A nontrivial path in A is a sequence

p0
a1
�! p1

a2
�! � � �

an
�! pn

with .pi�1; ai ; pi / 2 E for i D 1; : : : ; n. Its label is the word

a1 � � � an 2 A
C
D A� n ¹1º:

It is said to be a successful path if p0 D q0 and pn 2 T . We consider also the
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28 P. V. Silva, X. Soler-Escrivà and E. Ventura

trivial path p
1
�! p for p 2 Q. It is successful if p D q0 2 T . The language L.A/

recognized by A is the set of all labels of successful paths in A. A path of minimal
length between two vertices is called a geodesic, and so is its label by extension.

The automaton A D .Q; q0; T; E/ is said to be deterministic if, for all p 2 Q
and a 2 A, there is at most one edge of the form .p; a; q/. We say that A is trim if
every q 2 Q lies in some successful path.

Given deterministic A-automata A D .Q; q0; T; E/ and A0 D .Q0; q00; T
0; E 0/,

a morphism 'WA! A0 is a mapping 'WQ! Q0 such that

� q0' D q
0
0 and T ' � T 0,

� .p'; a; q'/ 2 E 0 for every .p; a; q/ 2 E.

It follows that L.A/ � L.A0/ if there is a morphism 'WA! A0. The morphism
'WA! A0 is:

� injective if it is injective as a mapping 'WQ! Q0,

� an isomorphism if it is injective, T 0 D T ' and every edge of E 0 is of the form
.p'; a; q'/ for some .p; a; q/ 2 E.

The star operator on A-languages is defined by

L� D
[
n�0

Ln;

where L0 D ¹1º. A language L � A� is said to be rational (or to admit a rational
expression) if L can be obtained from finite languages using the operators union,
product and star a finite number of times. Alternatively, L is rational if and only
if it is recognized by a finite (deterministic) A-automaton A D .Q; q0; T; E/,
see [3, Section III]. The definition generalizes to subsets of an arbitrary monoid
M in the obvious way.

We denote the set of all rational languagesL � A� by RatA�. Note that RatA�,
endowed with the product of languages, constitutes a monoid.

In the statement of a result, we shall say that a rational language L is effectively
constructible if there exists an algorithm to produce from the data implicit in the
statement a finite A-automaton A recognizing L.

It is convenient to summarize some closure and decidability properties of
rational languages in the following proposition (see, e.g., [3]). The prefix set of
a language L � A� is defined as

Pref.L/ D ¹u 2 A� j uA� \ L ¤ ;º:

A rational substitution is a morphism 'WA� ! RatB� (where RatB� is endowed
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Finite automata for Schreier graphs of virtually free groups 29

with the product of languages). Given L � A�, we denote by L' the language[
u2L

u' � B�:

Since singletons are rational languages, monoid homomorphisms constitute par-
ticular cases of rational substitutions.

More generally, a mapping � WA� ! 2B
�

is called a transduction. Its graph is
defined by

�� D ¹.u; v/ 2 A
�
� B� j v 2 u�º:

The transduction � is rational if �� is a rational subset of the monoid A� � B�.
Rational substitutions constitute a particular case of rational transductions. Ratio-
nal transductions are most commonly defined through rational transducers, i.e.
finite automata with edges labelled by elements of A � RatB�.

The inverse transduction ��1WB� ! 2A
�

is defined by

v��1 D ¹u 2 A� j v 2 u�º:

It is well known (see [3, Section III.4]) that rational transductions are closed under
inversion.

Proposition 2.1. Let A be a finite alphabet and let K;L � A� be rational. Then:

(i) K [ L;K \ L;A� n L;Pref.L/ are rational,

(ii) if � WA� ! 2B
�

is a rational transduction, then L� is rational,

(iii) if 'WA� !M is a monoid homomorphism and M is finite, then X'�1 is
rational for every X �M .

Moreover, all the constructions are effective, and the inclusion K � L is decid-
able.

The class of context-free languages (see [3, Chapter II] for details) constitutes
the next level in the classical Chomsky hierarchy above rational languages. We
have also the following closure property (see [3, Corollary III.4.2]):

Proposition 2.2. Let � WA� ! 2B
�

be a rational transduction and let L � A� be
context-free. Then L� is context-free.

Given an A-automaton A and L � A�, we denote by A u L the A-automaton
obtained by removing from A all the vertices and edges which do not lie in some
successful path labelled by a word in L.

Proposition 2.3. Let A be a finite A-automaton and let L � A� be a rational
language. Then A u L is effectively constructible.
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30 P. V. Silva, X. Soler-Escrivà and E. Ventura

Proof. Write A D .Q; q0; T; E/ and let A0 D .Q0; q00; T
0; E 0/ be a finite A-auto-

maton recognizing L. The direct product

A00 D .Q �Q0; .q0; q
0
0/; T � T

0; E 00/

is defined by

E 00 D ¹..p; p0/; a; .q; q0// j .p; a; q/ 2 E; .p0; a; q0/ 2 E 0º:

Let B denote the trim part of A00 (by removing all vertices/edges which are not
part of successful paths in A00; this can be done effectively). Then, A u L can be
obtained by projecting onto the first component the various constituents of B.

Given an alphabet A, we denote by A�1 the set of formal inverses of A, and
write eA D A [ A�1. We say that eA is an involutive alphabet. We extend

�1
WA! A�1; a 7! a�1;

to an involution on eA� through

.a�1/�1 D a; .uv/�1 D v�1u�1 .a 2 A; u; v 2 eA�/:
An automaton A over an involutive alphabet eA is said to be involutive if, when-

ever .p; a; q/ is an edge of A, so is .q; a�1; p/. Therefore it suffices to depict just
the positively labelled edges (having label in A) in their graphical representation.

An involutive automaton is inverse if it is deterministic, trim and has a single
final state (note that for involutive automata, being trim is equivalent to being con-
nected). If the latter happens to be the initial state, it is called the basepoint.

The next result is folklore. For a proof, see [1, Proposition 2.2].

Proposition 2.4. Given inverse automata A and A0, then L.A/ � L.A0/ if and
only if there exists a morphism 'WA! A0. Moreover, such a morphism is unique.

Given an alphabet A, let � denote the congruence on eA� generated by the rela-
tion

¹.aa�1; 1/ j a 2 eAº: (2.1)

The quotient FA D eA�=� is the free group on A. We denote by � WeA� ! FA the
canonical morphism u 7! Œu��.

Alternatively, we can view (2.1) as a confluent length-reducing rewriting system
on eA�, where each word w 2 eA� can be transformed into a unique reduced word
w with no factor of the form aa�1. As a consequence, the equivalence

u � v ” u D v .u; v 2 eA�/
solves the word problem for FA. We shall use the notation RA D eA�.
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Finite automata for Schreier graphs of virtually free groups 31

We close this section with the following equivalent version of Benois’ Theorem,
relating rational languages with free group reduction:

Theorem 2.5 (Benois [2]). If L � eA� is rational, then L is an effectively con-
structible rational language.

3 Stallings sections

Let G be a (finitely generated) group generated by the finite set A. More precisely,
we consider an epimorphism � WeA� ! G satisfying

a�1� D .a�/�1 (3.1)

for every a 2 A. A homomorphism satisfying condition (3.1) is said to be matched.
Note that in this case (3.1) holds for arbitrary words. For short, we shall refer to
a matched epimorphism � WeA� ! G (with A finite) as an m-epi.

We shall call a language S � eA� a section (for �) if S� D G and S�1 D S .
For every X � G, we write

SX D X�
�1
\ S:

We say that an effectively constructible rational section S � RA is a Stallings
section for � if, for all g; h 2 G:

(S1) Sg is an effectively constructible rational language,

(S2) Sgh � SgSh.

Note that (S2) immediately yields

Sg1���gn � Sg1 � � �Sgn (3.2)

for all g1; : : : ; gn 2 G. Moreover, in (S1) it suffices to consider Sa� for a 2 A.
Indeed, by (3.2), and since S�1 D S and Sg� D g for every g 2 G, we may write

S.a1���an/� D Sa1� � � �San� \ S (3.3)

and
Sa�1

i
� D S

�1
ai�

for all ai 2 eA. Then, by Proposition 2.1 and Theorem 2.5, Sg is a rational language
for every g 2 G; furthermore, it is effectively constructible from Sa1� ; : : : ; San� .

Note that if S is a Stallings section, then S [ ¹1º is also a Stallings section.
Indeed, it is easy to see that conditions (S1) and (S2) are still verified: namely, if
gh D 1, then 1 2 SgS�1g D SgSh and so Sgh [ ¹1º � SgSh as required.

The next result shows that the existence of a Stallings section is independent
from the finite set A and the m-epi � WeA� ! G considered.
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32 P. V. Silva, X. Soler-Escrivà and E. Ventura

Proposition 3.1. Let � WeA� ! G and � 0W eA0� ! G be two m-epis. Then, G has
a Stallings section for � if and only if G has a Stallings section for � 0.

Proof. Let S � RA be a Stallings section for � . There exists an m-epi

'WeA� ! eA0�
such that '� 0 D � . Write S 0 D S'. By Proposition 2.1 (ii) and Theorem 2.5, S 0 is
an effectively constructible rational subset of RA0 . We claim that

S 0g D Sg' (3.4)

holds for every g 2 G.
Indeed, let u 2 S 0g . Then u D v' for some v 2 S and

v� D v'� 0 D v'� 0 D u� 0 D g:

Hence v 2 Sg and so S 0g � Sg'.
Conversely, let v 2 Sg . Then v' 2 S' D S 0 and

v'� 0 D v'� 0 D v� D g;

hence v' 2 S 0g and so (3.4) holds.
Since

.S 0/�1 D .S'/�1 D .S'/�1 D S�1' D S' D S 0;

it follows from (3.4) that S 0 is a section for � 0. Moreover, (S1) is inherited by S 0

from S by Proposition 2.1 (ii) and Theorem 2.5. Finally, for all g; h 2 G, we get

S 0gh D Sgh' � .SgSh/' D .SgSh/'

D .Sg'/.Sh'/ D .Sg'/.Sh'/ D S
0
gS
0
h
;

hence (S2) holds for S 0 and so S 0 is a Stallings section for � 0. By symmetry, we
get the required equivalence.

Proposition 3.2. Free groups of finite rank and finite groups have Stallings sec-
tions.

Proof. Let A be a finite set and consider the canonical m-epi � WeA� ! FA. Let

S D RA D eA�;
which is rational by Theorem 2.5. Since Sg D ¹gº for every g 2 FA, it is immedi-
ate that S is a Stallings section for � .
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Finite automata for Schreier graphs of virtually free groups 33

Assume now thatG is finite and � WeA� ! G is an m-epi. We show that S D RA
is a Stallings section for � . For every g 2 G, we have Sg D g��1 \RA D g��1.
Since both g��1 andRA are effectively constructible rational languages, so is their
intersection and so (S1) holds. Finally, let u 2 Sgh and take v 2 Sh. Then

.uv�1/� D ghh�1 D g

and so uv�1 2 g��1 D Sg . Hence

u D uv�1v D uv�1v 2 SgSh

and (S2) holds as well. Therefore RA is a Stallings section for � .

Given an m-epi � WeA� ! G and H 6 G, we define the Schreier automaton
�.G;H; �/ to be the eA-automaton having:

� the right cosets Hg (g 2 G) as vertices,
� H as the basepoint,
� edges Hg

a
�! Hg.a�/ for all g 2 G and a 2 eA.

It is immediate that �.G;H; �/ is always an inverseeA-automaton, but it is infinite
unless H has finite index in G. Moreover, L.�.G;H; �// D H��1.

We will prove that �.G;H; �/ u S is an effectively constructible finite inverse
automaton when S is a Stallings section for � . The following lemmas pave the
way for the construction of �.G;H; �/ u S :

Lemma 3.3. Let � WeA� ! G be an m-epi. Let A be a trim eA-automaton and let

p
a
��! q

be an edge of A for some a 2 eA. Let B be obtained by adding the edge

q
a�1

��! p

to A. Then .L.B//� � h.L.A//�i.

Proof. Write A D .Q; q0; T; E/. We can factor any u 2 L.B/ as

u D u0a
�1u1 � � � a

�1un;

where a�1 labels each visit to the new edge. We show that u� 2 h.L.A//�i by
induction on n. The case n D 0 being trivial, assume that n � 1 and the claim
holds for n � 1. Writing v D u0a�1u1 � � � a�1un�1, we have a path in B of the
form

q0
v
��! q

a�1

��! p
un
��! t 2 T:
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34 P. V. Silva, X. Soler-Escrivà and E. Ventura

Since A is trim, we also have a path

q0
w
�! p

a
�! q

z
�! t 0 2 T

in A. By the induction hypothesis, we get .vz/� 2 h.L.A//�i and so

u� D .va�1un/� D ..vz/.z
�1a�1w�1/.wun//� 2 h.L.A//�i

as claimed.

Lemma 3.4. Let � WeA� ! G be an m-epi, and let A D .Q; q0; T; E/ be a trimeA-automaton and let B be obtained by identifying q0 with some t 2 T . Then
.L.B//� � h.L.A//�i.

Proof. Let u 2 L.B/. We can factor it as u D u1 � � �un, where pi
ui
�! qi is a path

in A with pi ; qi 2 ¹q0; tº (i D 1; : : : ; n). In any case, there exist paths

q0
vi
��! pi ; qi

wi
��! t 2 T

in A with vi ; wi 2 L.A/ [ ¹1º. Since viuiwi 2 L.A/, we get

ui� D .v
�1
i .viuiwi /w

�1
i /� 2 h.L.A//�i

for every i and so u� 2 h.L.A//�i as well.

Lemma 3.5. Let � WeA� ! G be an m-epi. Let A be an involutive eA-automaton
and let p w

�! q be a path in A with w� D 1. Let B be obtained by identifying the
vertices p and q. Then L.A/ � L.B/ and .L.B//� D .L.A//� .

Proof. The first inclusion is clear. Since A is involutive, we have also a path

q
w�1

���! p

in A and w�1� D 1. Clearly, every u 2 L.B/ can be lifted to some v 2 L.A/
by inserting finitely many occurrences of the words w;w�1, that is, we can get
factorizations

u D u0u1 � � �un 2 L.B/; v D u0w
"1u1 � � �w

"nun 2 L.A/

with "1; : : : ; "n 2 ¹�1; 1º. Since u� D v� , it follows that .L.B//� � .L.A//� .
The opposite inclusion holds trivially.

Since .aa�1/� D 1 for every a 2 eA, this same argument proves:

Lemma 3.6. Let � WeA� ! G be an m-epi. Let A be a finite involutiveeA-automaton
and let B be obtained by successively folding pairs of edges in A. Then one has
L.A/ � L.B/ and .L.B//� D .L.A//� .
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Finite automata for Schreier graphs of virtually free groups 35

The next lemma reveals how the automaton �.G;H; �/ u S can be recognized.

Lemma 3.7. Let S � RA be a Stallings section for the m-epi � WeA� ! G, and
let H 6f:g: G. Let A be a finite inverse eA-automaton with a basepoint such that

SH � L.A/ � H�
�1 (3.5)

and
there is no path p

w
�! q in A with p ¤ q and w� D 1. (3.6)

Then �.G;H; �/ u S Š A u S .

Proof. Since A and � D �.G;H; �/ are both inverse automata with a basepoint,
and L.A/ � H��1 D L.�/, it follows from Proposition 2.4 that there exists
a morphism 'WA! � . Suppose that p' D q' for some vertices p; q in A. Take
geodesics

q0
u
�! p; q0

v
�! q

in A, where q0 denotes the basepoint. Since p' D q', we have

uv�1 2 L.�/ D H��1:

Let s0 2 S.uv�1/� � SH . Then s0 2 L.A/ by (3.5) and so there is a path

p
u�1s0v
�����! q

in A. Since .u�1s0v/� D .u�1uv�1v/� D 1, it follows from (3.6) that p D q.
Thus ' is injective.

It is immediate that ' restricts to an injective morphism '0WA u S ! � u S .
It remains to show that every edge of � u S is induced by some edge of A u S .
Assume that H s

�! H is a (successful) path in � with s 2 S . By (3.5), we have
s 2 L.A/ and the path q0

s
�! q0 is mapped by '0 onto H s

�! H . Since every edge
of � u S occurs in some path H s

�! H , it follows that '0 is an isomorphism.

Lemma 3.8. Let S � RA be a Stallings section for the m-epi � WeA� ! G, and
let H 6f:g: G. Let A be a finite inverse eA-automaton with a basepoint such that
SH � L.A/ � H�

�1. It is decidable, given two distinct vertices p and q of A,
whether or not there is some path p w

�! q in A with w� D 1.

Proof. Let p; q be distinct vertices of A and let q0 denote its basepoint. Take
geodesics q0

u
�! p and q0

v
�! q, and let s 2 S.uv�1/� . We claim that there is a path

p
w
�! q in A with w� D 1 if and only if s 2 L.A/.
Indeed, assume that p w

�! q is such a path. Then uwv�1 2 L.A/ and so we
have s� D .uv�1/� D .uwv�1/� 2 H . Thus s 2 SH � L.A/.
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36 P. V. Silva, X. Soler-Escrivà and E. Ventura

Conversely, assume that s 2 L.A/. Then there is a path p
u�1sv
����! q in A. Since

.u�1sv/� D .u�1uv�1v/� D 1, the lemma is proved.

Theorem 3.9. Let S � RA be a Stallings section for the m-epi � WeA� ! G and
let H 6f:g: G. Then �.G;H; �/ u S is an effectively constructible finite inverseeA-automaton with a basepoint such that

SH � L.�.G;H; �/ u S/ � H�
�1: (3.7)

Proof. Assume thatH D hh1; : : : ; hmi. For i D 1; : : : ; m, let Ai D .Qi ; qi ; ti ; Ei /

be a finite trimeA-automaton with a single initial and a single terminal vertex satis-
fying

Shi � L.Ai / � hi�
�1 (3.8)

(in the next section we shall discuss how to define such an automaton with the
lowest possible complexity). Let B0 be the eA-automaton obtained by taking the
disjoint union of the Ai and then identifying all the qi into a single initial vertex q0.

Suppose that qi
u
�! qi is a path in Ai . Take v 2 L.Ai /. Then

uv 2 L.Ai / � hi�
�1

and so u� D .uvv�1/� D hih�1i D 1. It follows easily that

.L.B0//� � .Sh1 [ � � � [ Shm/� � H:

Let B1 be the finite, trim, involutive eA-automaton obtained from B0 by ad-
joining edges .q; a�1; p/ for all edges .p; a; q/ in B0 (a 2 eA). It follows from
Lemma 3.3 that

.L.B1//� � h.L.B0//�i � H:

Next, let B2 be the eA-automaton obtained from B1 by identifying all terminal
vertices with the initial vertex q0. By Lemma 3.4, we get

.L.B2//� � h.L.B1//�i � H:

Finally, let B3 be the finite, inverse eA-automaton with a basepoint obtained by
complete folding of B2. By Lemma 3.6, we have .L.B3//� D .L.B2//� � H

and so L.B3/ � H�
�1. Moreover,

Sh1 [ � � � [ Shm � L.A1/ [ � � � [ L.Am/ � L.B0/ � L.B3/

and S�1 D S yield

.Sh1 [ � � � [ Shm [ Sh�11
[ � � � [ Sh�1m /

� � L.B3/

since B3 is involutive and has a basepoint, and therefore

.Sh1 [ � � � [ Shm [ Sh�11
[ � � � [ Sh�1m /

� � L.B3/
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Finite automata for Schreier graphs of virtually free groups 37

since B3 is inverse (the language of an inverse automaton is closed under reduc-
tion since a word aa�1 must label only loops). In view of (3.2), it follows that
Sh � L.B3/ for every h 2 H and so SH � L.B3/. Therefore, (3.5) holds for B3.

However, (3.6) may not hold. Assume that the vertex set Q0 of B3 is totally
ordered. By Lemma 3.8, we can decide if that happens, and find all concrete
instances

J D ¹.p; q/ 2 Q0 �Q0 j p < q; there is some path p
w
�! q in B3 with w� D 1º:

Let B4 be the finite inverse eA-automaton with a basepoint obtained by identifying
all pairs of vertices in J followed by complete folding. Since the existence of
a path with label in 1��1 is preserved through the identification process, it follows
from Lemmas 3.5 and 3.6 that B4 still satisfies (3.5).

Suppose that there exists a path

p0
w 0

�! q0 (�)

in B4 with p0 ¤ q0 and w0� D 1. We can lift p0 and q0 to vertices p and q in B3,
respectively. It is straightforward to check that the path (�) can be lifted to a path
p
w
�! q in B3 by successively inserting in w0 factors of the form:

� aa�1 (a 2 eA) (undoing the folding operations),

� z 2 1��1 (undoing the identification arising from r
z
�! s ).

Since w0� D w� , it follows that either .p; q/ 2 J or .q; p/ 2 J , and so p0 D q0,
a contradiction. Therefore B4 satisfies (3.6). Now the theorem follows from Propo-
sition 2.3 and Lemma 3.7.

We call �.G;H; �/ u S the Stallings automaton of H (for a given Stallings
section S ). Note that �.FA;H; �/ uRA is the classical Stallings automaton of
H �f:g: FA when we take RA as Stallings section (for the canonical m-epi � ).

Stallings automata provide a natural decision procedure for the generalized
word problem:

Corollary 3.10. Let S � RA be a Stallings section for the m-epi � WeA� ! G and
let H 6f:g: G. Then the following conditions are equivalent for every g 2 G:

(a) g 2 H ,

(b) Sg � L.�.G;H; �/ u S/,

(c) Sg \ L.�.G;H; �/ u S/ ¤ ;.

Furthermore, the generalized word problem is decidable for G.
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Proof. For (a)) (b), observe that if g 2 H , then Sg � SH � L.�.G;H; �/uS/
by Theorem 3.9. The implication (b)) (c) is immediate since Sg ¤ ; due to S
being a section. And (c)) (a) is true because

Sg \ L.�.G;H; �/ u S/ � g�
�1
\H��1:

Finally, decidability follows from (S1) and Theorem 3.9.

We can also prove the following generalization of Theorem 2.5:

Theorem 3.11. Let S � RA be a Stallings section for the m-epi � WeA� ! G and
letL � eA� be rational. Then SL� is an effectively constructible rational language.

Proof. Let 'WeA� ! RateA� be the rational substitution defined by a' D Sa� ,
for a 2 eA (note that 1' D ¹1º and, for u D a1 � � � an (ai 2 eA), u' is not Su� but
just Sa1� � � �San� ). We claim that

Su� D S \ u' (3.9)

holds for every u 2 L n ¹1º. Let u D a1 � � � an 2 L (ai 2 eA). Then by (3.2) we get

Su� D S.a1�/���.an�/ � Sa1� � � �San� D .a1'/ � � � .an'/ D u'

and so Su� � S \ u'.
Since a'� D Sa�� D a� holds for every a 2 eA, the inclusion S \ u' � Su�

follows from u'� D u'� D u� . Therefore (3.9) holds.
Now it becomes clear that

SL� D S \

� [
u2L

u'

�
D S \ L'

if 1 … L and
SL� D .S \ L'/ [ S1

if 1 2 L. And L' is an effectively constructible rational language by (S1) and
Proposition 2.1 (ii), and so is L' by Theorem 2.5. Since S; S1 are rational, it fol-
lows from Proposition 2.1 (i) that SL� is rational and effectively constructible.

A natural question to ask at this stage is if we can identify a Stallings automa-
ton for a given Stallings section S . In the classical case of a free group FA with
S D RA this is an elementary thing to do: in this case, aneA-automaton A is of the
form �.FA;H; �/ uRA D SH for some H 6f:g: FA if and only if A is inverse,
has a basepoint, and has no vertex of outdegree one except possibly the basepoint.

Proposition 3.12. Let S � RA be a Stallings section for an m-epi � WeA� ! G. It is
decidable, given a finiteeA-automaton A, whether or not A Š �.G;H; �/ u S for
some H 6f:g: G.
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Proof. We may assume that A is inverse and has a basepoint. Write

A D .Q; q0; q0; E/:

The equality A D A u S is an obvious necessary condition, decidable by Lem-
ma 2.3. Thus we may assume that A D A u S (in particular, A is trim).

Since S � RA and A is trim, it follows that only the basepoint may have out-
degree 1, and so

A Š S.K/ Š �.FA; K; �/ uRA

for some K 6f:g: FA, see [1, Proposition 2.12]: the standard algorithm [1, Propo-
sition 2.6] actually computes a finite subset X � RA projecting onto a basis X�
of K. Let K 0 D hX�i 6f:g: G. We claim that A Š �.G;H; �/ u S for some
H 6f:g: G if and only if A Š �.G;K 0; �/ u S , a decidable condition in view
of Theorem 3.9.

The converse implication being trivial, assume that A D �.G;H; �/ u S for
some H 6f:g: G. Since words of 1��1 can only label loops in �.G;H; �/, it
follows from Lemma 3.7 that we only need to show that

SK0 � L.A/ � K
0��1: (3.10)

Since A Š �.FA; K; �/ uRA, it follows from Theorem 3.9 that

X � RA \K�
�1
� L.A/ � K��1:

Since K��1 � K 0��1, we get

L.A/ � K 0��1:

Finally, X � L.A/ � H��1 yields X� � H and so K 0 6 H . Hence,

SK0 � SH � L.A/

by (3.7) and so (3.10) holds. Thus A Š �.G;K 0; �/ u S and we are done.

4 Complexity

In this section we discuss, for a given Stallings section, an efficient way (from the
viewpoint of complexity) of constructing the automata Ai in the proof of Theo-
rem 3.9 and compute an upper bound for the complexity of the construction of the
Stallings automata �.G;H; �/ u S .

We say that an eA-automaton is uniterminal if it has a single terminal vertex.
It is easy to see that there exist rational languages which fail to be recognized
by any uniterminal automaton (e.g. RA, since regular languages recognizable by
uniterminal automata and containing the empty word must have a basepoint and
so they are submonoids). However, we can prove the following lemma.
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Lemma 4.1. Let S � RA be a Stallings section for the m-epi � WeA� ! G and let
g 2 G. Then there exists a finite trim uniterminal eA-automaton Cg satisfying

Sg � L.Cg/ � g�
�1:

Proof. Let C D .Q; i; T; E/ be the minimum automaton of Sg (or any other finite
trim automaton with a single initial vertex recognizing Sg ) and let Cg be obtained
by identifying all the terminal vertices of C . Clearly, Cg is a finite trim unitermi-
nal automaton and Sg D L.C/ � L.Cg/ yields Sg D Sg � L.Cg/. It remains to
prove that .L.Cg//� D g.

Let u 2 L.Cg/. Then there exists a factorization u D u0u1 � � �uk such that

i
u0
�! t0; s1

u1
�! t1; : : : ; sk

uk
��! tk

are paths in C with sj ; tj 2 T . Take a path i
vj
�! sj in C , for j D 1; : : : ; k. Then

vj ; vjuj 2 L.C/ and so vj� D .vjuj /� D g. Hence,

uj� D .v
�1
j vjuj /� D g

�1g D 1

and so
u� D .u0u1 � � �uk/� D u0� D g

since u0 2 L.C/ D Sg . Thus, .L.Cg//� D g and so

L.Cg/ � g�
�1

as required.

Next we introduce a multiplication of (finite trim) uniterminal automata: given
(finite trim) uniterminaleA-automata A D .Q; i; t; E/ and A0 D .Q0; i 0; t 0; E 0/, let
A �A0 D .Q00; i; t 0; E 00/ be the (finite trim) uniterminaleA-automaton obtained by
taking the disjoint union of the underlying graphs of A and A0 and identifying t
with i 0.

Lemma 4.2. Let S � RA be a Stallings section for the m-epi � WeA� ! G, and let
g; g0 2 G. Let A and A0 be finite trim uniterminal eA-automata satisfying

Sg � L.A/ � g�
�1; Sg 0 � L.A0/ � g

0��1:

Then
Sgg 0 � L.A �A0/ � .gg0/��1:

Proof. Since L.A/L.A0/ � L.A �A0/, we get in view of (S2)

Sgg 0 � SgSg 0 � L.A/L.A0/ � L.A �A0/:
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Now let u 2 L.A �A0/. Then u labels a path in A �A0 of the form

i
u0
���! p

u1
���! p

u2
���! � � �

uk�1
���! p

uk
���! t 0;

where we emphasize all the occurrences of the vertex p obtained through the iden-
tification of t and i 0. Now it is easy to see that there exist paths

i
u0
�! t and i 0

uk
��! t 0

in A and A0, respectively. Moreover, for each j D 1; : : : ; k � 1, there exists either
a path

t
uj
�! t

in A or a path

i 0
uj
�! i 0

in A0. Now, in view of .L.A//� D g and .L.A0//� D g0, we can use the same ar-
gument as in the proof of Lemma 4.1 to show that uj� D 1 for j D 1; : : : ; k � 1.
Hence u� D .u0u1 � � �uk/� D .u0uk/� D gg0 and so L.A �A0/ � .gg0/��1

as required.

In view of the preceding two lemmas, we can now set an algorithm to construct
the automata Ai in the proof of Theorem 3.9. All we need for a start are the
minimum automata of Sa� for each a 2 A (or any other finite trim automaton
with a single initial vertex recognizing Sa� ; this can be effectively constructed
by (S1)). Following the argument in the proof of Lemma 4.1, we may identify all
the terminal vertices to get finite trim uniterminal eA-automata Ca� satisfying

Sa� � L.Ca�/ � a��
�1:

Note that, since S�1 D S , we get finite trim uniterminal eA-automata Ca�1� satis-
fying

Sa�1� � L.Ca�1�/ � a
�1���1

by exchanging the initial and the terminal vertices in Ca� and replacing each edge

p
b
��! q

by an edge

q
b�1

��! p:

Now, given an element hi 2 G, we may represent it by some reduced word
a1 � � � an (ai 2 eA), and may compute

Ai D ..� � � .Ca1� � Ca2�/ � Ca3�/ � � � � / � Can� :
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By Lemma 4.2, Ai is a finite trim uniterminal eA-automaton satisfying

Shi � L.Ai / � hi�
�1:

What is the maximum size of Ai relatively to jhi j? What is the time complexity
of the algorithm for its construction? Note that we start with only finitely many
“atomic” automata Ca� (a 2 A). Hence the number of vertices (edges) in Ai is
a bounded multiple of jhi j, therefore is O.jhi j/, and the time complexity of the
construction (disjoint union followed by identification of two vertices, jhi j � 1
times) is also clearly O.jhi j/. This is why we gave ourselves (and the reader)
the trouble of constructing the Ai this way instead of just taking the minimum
automaton of Shi , whatever that may be!

But what is the time complexity of the full algorithm leading to the Stallings
automaton �.G;H; �/ u S? It is also useful to discuss the complexity of the
important intermediate B3 in the proof of Theorem 3.9 since B3 suffices for such
applications as the generalized word problem: indeed, since B3 satisfies (3.5), we
may replace �.G;H; �/ u S by B3 in Corollary 3.10.

Let n D jh1j C � � � C jhmj. It follows easily from our previous discussion of the
time complexity of the construction of the Ai that B0 (and therefore B1 and B2)
can be constructed in time O.n/. Since we get to B3 through complete folding,
the complexity of constructing B3 is that of the classical Stallings construction in
the free group.

The Ackermann hierarchy is a sequence .Ak/k of transformations of N defined
by A1.n/ D n and Ak.n/ D Ank�1.1/ for k > 1 (where An

k�1
denotes the n-fold

composition of Ak�1). Following Nivatsch [15], we can define the Ackermann
function AWN ! N by

A.n/ D An.3/:

The inverse Ackermann function ˛W Œ0;C1Œ! N is then defined by

˛.x/ D min¹n 2 N j A.n/ � xº:

The inverse Ackermann function grows extremely slowly.
Using a famous result of Tarjan on Union-Find [20] (see also [4]) Touikan

proved in [21] that such complexity is O.n˛.n//, i.e. very close to linear. There-
fore B3 can be constructed in time O.n˛.n//.

We shall now discuss the complexity of the construction of the Stallings auto-
mata:

Theorem 4.3. Let S � RA be a Stallings section for the m-epi � WeA� ! G and
let H D hh1; : : : ; hmi 6f:g: G. Then �.G;H; �/ u S can be constructed in time
O.n3˛.n//, where n D jh1j C � � � C jhmj.
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Proof. We go back to the proof of Theorem 3.9, starting at B3.
The number of vertices of B3 is O.n/ and therefore we have O.n2/ candidate

pairs to J . For each one of these pairs, we must decide whether or not they belong
to J . This involves bounding the complexity of the algorithm described in the
proof of Lemma 3.8.

Let p; q be distinct vertices of B3 and let q0 denote its basepoint. Take two geo-
desics q0

u
�! p and q0

v
�! q. Clearly, g D .uv�1/� can be represented by a word

of length O.n/. It follows from the previous discussion on the complexity of the
construction of Ai that we may construct a finite trim uniterminaleA-automaton Cg
satisfying

Sg � L.Cg/ � g�
�1

in time O.n/. Performing a complete folding on Cg (in time O.n˛.n//), we get
a finite inverse eA-automaton Dg satisfying

Sg � L.Dg/ � g�
�1:

Since S is a constant for our problem, we can compute an element

s 2 S \ L.Dg/ D Sg

in time O.n/ and check if s 2 L.B3/ in time O.n/. Therefore, by the proof of
Lemma 3.8, we can decide whether or not .p; q/ 2 J in time O.n˛.n//. Since we
had O.n2/ candidates to consider, we may compute J in time O.n3˛.n//. It is
very likely that this upper bound can be improved.

Since B4 is obtained from B3 by identifying the pairs in J followed by com-
plete folding, and B3 has O.n/ vertices, it follows that B4 can be constructed in
time O.n3˛.n// in view of Touikan’s bound.

For the last step, we must discuss the time complexity of the algorithm in the
proof of Proposition 2.3. Note that B4 has O.n/ vertices and therefore (since the
alphabet is fixed) O.n/ edges. Since S is a constant for our problem, we can build
the direct product of B4 by some deterministic automaton recognizing S in time
O.n/ and compute its trim part in time O.n/ (we have O.n/ vertices and O.n/
edges), and the final projection can also be performed in linear time. Therefore
�.G;H; �/ u S can be constructed in time O.n3˛.n//, which means very close
to cubic complexity.

We should stress that the above discussion of time complexity was performed
for a fixed Stallings section of a fixed group. But the computation of a Stallings
section for a (virtually free) group can be in itself a costly procedure, particularly
if it is supported by Bass–Serre theory as in the present case. This will become
more evident throughout the next section.
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5 Virtually free groups

A group is virtually free if it has a free subgroup of finite index. Some recent papers
involving virtually free groups include [5, 9, 10, 18].

Next we recall the concept of graph of groups, central in Bass–Serre theory [17].
In Serre’s viewpoint, a graph is a structure of the form � D .V;E; �; N/, where:
� V is a nonempty set (vertices),
� E is a set (edges),
� � WE ! V is a mapping (target mapping),
� NWE ! E is an involution without fixed points.

Concepts such as cycle, connectedness, tree or subgraph are defined in the obvi-
ous way. If � is connected and T � E defines a subtree of � connecting all the
vertices, we say that T is a spanning tree of � .

We write v e
�! w if e� D w and Ne� D v. This allows us to view � as anE-auto-

maton whenever convenient. Note that v e
�! w if and only if w Ne

�! v.
A (finite) graph of groups over a (finite) connected graph � is a structure of

the form
G D ..Gv/v2V ; .Ge/e2E ; .�e/e2E /; (5.1)

where:
� Gv is a group for every v 2 V (vertex groups),
� Ge is a group for every e 2 E satisfying G Ne D Ge (edge groups),
� �eWGe ! Ge� is a monomorphism for every edge e 2 E (boundary monomor-

phisms).

Let P.G / denote the quotient of the free product .�v2VGv/ � FE by the normal
subgroup generated by the elements of the form

e.g�e/ Ne.g� Ne/
�1 .e 2 E; g 2 Ge D G Ne/:

Note that e Ne arises from the particular case g D 1.
Serre presents two alternative constructions for the fundamental group of G :

The cycle construction. Fix v0 2 V . Let C.G ; v0/ denote the set of all closed
paths of the form

vn D v0
e1
// v1

e2

""

vn�1

en
88

en�1

oo v2
e3

oo

in � (including the trivial path).
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The fundamental group �1.G ; v0/ of the graph of groups (5.1) with respect to
v0 2 V is the subgroup of P.G / consisting of the following elements: for every
closed path of the above form, �1.G ; v0/ contains all the elements of the form

g0e1g1 : : : engn; with gi 2 Gvi for i D 0; : : : ; n: (5.2)

We shall use the notation .g0e1g1 � � � engn/� D e1 � � � en.

The spanning tree construction. Let T be a spanning tree of the graph � . The
fundamental group �1.G ; T / is the quotient of P.G / by the normal subgroup gen-
erated by the edges in T .

Serre shows that the canonical projection P.G /! �1.G ; T / induces an iso-
morphism from �1.G ; v0/ to �1.G ; T /, which implies in particular that both
constructions are independent from the choice of v0 and T . Therefore, we can
benefit from the best of both worlds: �1.G; T / provides a nice canonical generat-
ing set, while �1.G; v0/ provides the concept of reduced word (S-reduced in this
text (S from Serre), to avoid confusion with free group reduced), which makes the
cycle construction the preferred option, most of the time.

A word of the form (5.2) is said to be S-reduced if the following two conditions
hold:

� If n D 0, then g0 ¤ 1.

� If 1 � i < n and eiC1 D Nei , then gi … Gei �ei .

Note that S-reduced words play a major role in the theory of graphs of groups due
to the following two well-known properties:

� every element of �1.G ; v0/ n ¹1º can be represented by some S-reduced word,

� no S-reduced word represents the identity in P.G / (nor �1.G ; v0/).

It follows that the group Gv0 (and therefore every vertex group) is naturally em-
bedded into �1.G ; v0/.

HNN extensions and amalgamated free products arise as important particular
cases of graphs of groups, by taking graphs with two edges, respectively of the
form

�e
77 Ne
ww

�

e
++
�.

Ne

kk

Moreover, whenever � is finite, the fundamental group �1.G ; v0/ can be built from
the vertex groups using a finite number of HNN extensions and amalgamated free
products, where the associated/amalgamated subgroups are of the form Ge�e.
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The nature of �1.G ; v0/ is conditioned by the nature of the vertex and edge
groups. By a well-known theorem of Karrass, Pietrowski and Solitar [8] (see
also [16, Theorem 7.3]), a finitely generated group is virtually free if and only
if it is the fundamental group of a finite graph of finite groups. This important
result provides the key to our main theorem:

Theorem 5.1. A finitely generated group admits a Stallings section if and only if
it is virtually free.

Proof. Let G be a finitely generated group. Assume that S is a Stallings section
for the m-epi � WeA� ! G. We will show that the word problem submonoid 1��1

is context-free. By Muller–Schupp’s Theorem [14], this is equivalent to G being
virtually free.

By the remark following the definition of Stallings section in Section 3, we can
assume that 1 2 S1. Let � WeA� ! FA denote the canonical morphism, as usual. We
show that

a1 � � � an 2 1�
�1
” Sa1 � � �San \ .1�

�1/ ¤ ; (5.3)

holds for all a1; : : : ; an 2 eA. Indeed, since 1 2 Sg if and only if g D 1, we have
a1 � � � an 2 1�

�1 if and only if 1 2 S.a1���an/� . By equation (3.3), this is equivalent
to 1 2 Sa1 � � �San , i.e.

Sa1 � � �San \ .1�
�1/ ¤ ;:

Therefore (5.3) holds.
We define now a transduction � WeA� ! 2eA� by

.a1 � � � an/� D Sa1 � � �San

for a1; : : : ; an 2 eA and 1� D 1. Since

�� D ¹¹aº � Sa j a 2 eAº�
is clearly a rational subset of A� � A�, then � is a rational transduction, and so
must be ��1.

Let L D 1��1. By Muller–Schupp’s Theorem [14], L is context-free and so
L��1 is also context-free by Proposition 2.2.

By (5.3), we have

a1 � � � an 2 1�
�1
” .a1 � � � an/� \ L ¤ ; ” a1 � � � an 2 L�

�1

for all a1; : : : ; an 2 eA. Since 1 2 1��1 \ L��1, it follows that 1��1 D L��1 and
is therefore context-free. By Muller–Schupp’s Theorem, G is virtually free.
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Conversely, assume that G is virtually free. By the theorem ([8]) of Karrass,
Pietrowski and Solitar, we may assume that G D �1.G ; v0/, where

G D ..Gv/v2V ; .Ge/e2E ; .�e/e2E /

is a graph of groups over a finite connected graph � D .V;E; �; N/, with finite
vertex and edge groups.

For every v 2 V , consider an alphabet Av D Gv n ¹1º and take A to be the
disjoint union

A D E [

� [
v2V

Av

�
:

We shall consider the involutive alphabet eA, hence it is convenient to set

e�1� D Ne�

for every e 2 E. For every v 2 V , let 'vWfAv� ! Gv be the canonical m-epi. Fix
a spanning tree T of � and v0 2 V . We have a canonical m-epi 'WeA� ! �1.G ; T /.
Composing with the canonical isomorphism �1.G ; T /! �1.G ; v0/, we obtain an
m-epi eA� ! �1.G ; v0/ which, by abuse of notation, shall also be denoted by '.

We define S � RA to be the union of RAv0 with the languages of the form

.g0'
�1
v0
/e
"1
1 .g1'

�1
v1
/ � � � e"nn .gn'

�1
vn
/ \RA;

where "i D ˙1, e"ii � D vi , i D 1; : : : ; n, and g0e
"1
1 g1 � � � e

"n
n gn is an S-reduced

word of the form (5.2). We shall prove that S is a Stallings section for the m-epi
'WeA� ! �1.G ; v0/.

Since every element of �1.G ; v0/ can be represented by an S-reduced word, it
follows easily that S' D �1.G ; v0/. Since S-reduced words are well known to be
closed under inversion, we have S�1 D S . Thus S is a section for '.

We may view � as an E-automaton .V; v0; v0; E 0/ by taking

E 0 D ¹. Ne�; e; e�/ j e 2 Eº:

The language of this automaton is precisely the set of closed paths with base-
point v0, i.e. C.G ; v0/. We define now a rational transducer .V; v0; v0; E 00/ by
replacing each label e in the edges of E 0 by ¹eº � ¹e; Ne�1ºA�e� (note that we must
admit the double representation of edges when we go from E to eE). This defines
a rational transduction �WE� ! 2A

�

. By Proposition 2.1 (ii), .C.G ; v0//� is a rati-
onal language. Now it is easy to check that

S D .A�v0.C.G ; v0//� n L/ \RA;

where L denotes the language of all words in A� having some factor of the form

eue�1 or eu Ne; with u 2 .Ge�e/'�1e� ;
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for some e 2 E. Note that the languages .Ge�e/'�1e� are rational by Proposi-
tion 2.1 (iii). Since RA is also rational, it follows easily from Proposition 2.1 (i)
that S is a rational section for '. Moreover, the construction of S is effective.

Let g 2 �1.G ; v0/. We must show that Sg is an effectively constructible rational
language. If g ¤ 1, then it is well known that all the S-reduced words representing
g arise from the same closed path

v0
e1
�! v1

e2
�! � � �

en
�! vn D v0:

As vertex groups are finite, it follows that there exist only finitely many S-reduced
words representing g. Using the transduction built to prove the rationality of S ,
adapted in the obvious way, we deduce that Sg is a finite union of rational
languages, hence rational. If g D 1, we get S1 D 1'�1v0 \RAv0 , also rational in
view of Proposition 2.1. All the constructions are effective, so Sg is an effectively
constructible rational language for every g.

Finally, let g; h 2 �1.G ; v0/. We must show that Sgh � SgSh. Note that the
mapping � defined above for S-reduced words extends naturally to S , taking values
on the free monoid on E (identifying e�1 with Ne).

Fix u 2 Sg and w 2 Sh. We can compute some word .uw/ 2 Sgh by succes-
sively lifting the substitutions

e.g�e/ Ne �! g� Ne .e 2 E; g 2 Ge D G Ne/:

Note that .uw/ is not unique, so we fix one of the possible choices. We may
write u� D u0p, w� D p�1w0 and .uw/ � D u0w0 for some u0; w0; p. Indeed,
we may assume that  WS � S ! S is a mapping defined in the above terms.

Without loss of generality, we shall assume that u0; w0 ¤ 1. The remaining cases
constitute mere simplifications of this general case.

Let z 2 Sgh. Then z� D u0w0. If we compute .zw�1/ , this implies that we
must remove precisely jw0�j edges from each of the words z and w�1, hence the
prefixes of z and .zw�1/ ending at edge number ju0j must coincide. Denote this
prefix by z1 and write .zw�1/ D z1s1. Similarly, the suffixes of z and .u�1z/ 
starting at edge number jw0�j (counting in reverse order) must also coincide.
Denote this by z2 and write .u�1z/ D s2z2. Now we have .zw�1/ � D u0p
and .u�1z/ � D p�1w0, hence on computing x D ..zw�1/ .u�1z/ / 2 Sgh
we must cancel p edges from each word. It follows that s2� D .s1�/�1 and the
words x and z differ at most in the factor between the occurrence of edge number
ju0j and the next edge.

Write z D z1qz2. Note that, since every element of a vertex group has finite
order and we have at our disposal an involutive alphabet, we can always, if neces-
sary, replace the last vertex component of s1 by an equivalent word so that s�11 q is
reduced.
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Let y D s�11 qz2. We have

y' D .s�11 qz2/' D .s
�1
1 z�11 z/' D .wz�1z/' D w' D h:

Since w 2 Sh arises from an S-reduced word, it follows that jw�j is minimum
possible among ¹jt�j j t 2 h'�1º and so

jy�j � jw�j D j.u�1z/ �j D js2�j C jz2�j D js
�1
1 �j C jz2�j D jy�j;

whence jy�j D jw�j. It follows from minimality that the word y must arise from
an S-reduced word. Since y 2 RA by our preprocessing of s1 (recall also that the
first letter of z2 is in eE), it follows that y 2 S and so y 2 Sh. Therefore

z D z1qz2 D z1s1s
�1
1 qz2 D ..zw�1/ /y 2 SgSh

and so we have Sgh � SgSh. This completes the proof that S is a Stallings section
for '.

6 Sections with good properties

Having established that finitely generated virtually free groups are precisely the
groups with a Stallings section, we shall now discuss the possibility of imposing
stronger conditions on their Stallings sections, with the purpose of allowing further
applications of the Stallings automata �.G;H; �/ u S .

We start with the concept of extendable Stallings section, which will turn out to
be useful to characterize finite index subgroups.

Let S be a Stallings section for the m-epi � WeA� ! G. We say that S is extend-
able if, for every u 2 S , there exists some w 2 RA such that uw� � S and

u 2 Pref.S.uwnu�1/�/ (6.1)

for almost all n 2 N.

Proposition 6.1. Every finitely generated virtually free group has an extendable
Stallings section.

Proof. Let G be a finitely generated virtually free group. Assume first that G is
finite. Let � WeA� ! G be an m-epi. By the proof of Proposition 3.2, we may take
S D RA and w D 1 for every u 2 S . Hence uw� � S . We have Sg D g��1 for
every g 2 G. Next we show that Pref.Sg/ D RA.

Let z 2 RA and take a 2 eA such that za 2 RA. Since G is finite, there exists
some m 2 N such that every element of G can be represented by some word of
length<m. In particular, there exists some x 2RA such that ..a�mz�1/�/gD x�
and jxj < m. Hence .zamx/� D g and so zamx 2 g��1 D Sg . Since zam 2 RA
and jxj < m, we get z 2 Pref.Sg/ and so Pref.Sg/ D RA.
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Therefore condition (6.1) holds and so RA is an extendable Stallings section for
� WeA� ! G when G is finite. Let us assume from now on that G is infinite.

By the theorem of Karrass, Pietrowski and Solitar, we have thatG D �1.G ; v0/,
where

G D ..Gv/v2V ; .Ge/e2E ; .�e/e2E /

is a graph of groups over a finite connected graph � D .V;E; �; N/, with finite
vertex and edge groups. Moreover, we may assume that none of the boundary
monomorphisms �e is surjective. Indeed, if �e were surjective, then Ge� Š Ge
would embed in G Ne� and we could replace our graph of groups by a graph of
groups with isomorphic fundamental group and one less vertex.

We consider the same m-epi 'WeA� ! G of the proof of the opposite implication
in Theorem 5.1 and the same Stallings section S .

Let u 2 S . If u … RAv0 , write u D u0e"u00 with u00 2 RAv0 . Then there exists
some x 2 RAv0 such that u00x 2 RAv0 nGe�e"'

�1
v0

. This follows from our assump-
tion on the nonsurjectivity of the boundary maps, and also from the fact (remarked
in the proof of Theorem 5.1 above) that we can always change the first/last letter
of a representative of an element of a vertex group. On the other hand, let y be
an element of RAe�"� nGe�e�"'

�1
e�"� and write w D xe�"ye"u00. It is routine to

check that uw� � S and (6.1) holds (only finitely many of the edge letters can be
affected by multiplying by u�1 on the right).

If u 2 RAv0 , we proceed with a straightforward adaptation of the preceding
case, using any edge of the form v0

e
�! v1 (� must have edges since we are assum-

ing G to be infinite).
Therefore S is extendable as claimed.

We can now derive the following application of the concept of extendable
Stallings section:

Theorem 6.2. Let S be an extendable Stallings section for the m-epi � WeA� ! G

and let H be a finitely generated subgroup of G. Then the following conditions
are equivalent:

(a) H has finite index in G,

(b) S � Pref.SH /,

(c) every word of S labels a path out of the basepoint of �.G;H; �/ u S .

Proof. (a)) (b) Suppose that u 2 S n Pref.SH /. Since S is extendable, there
exist some v 2 RA and m 2 N such that uv� � S and u 2 Pref.S.uvnu�1/�/ for
n � m. We claim that

H.uvj /� ¤ H.uvi /� if j � i Cm: (6.2)
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Indeed, assume that j � iCm. IfH.uvj /� D H.uvi /� , then .uvj�iu�1/� 2H
and so

u 2 Pref.S.uvj�iu�1/�/ � Pref.SH /;

a contradiction. Therefore (6.2) holds and so H has infinite index in G.
(b)) (c) This implications is clear since SH � L.�.G;H; �/ u S/ by Theo-

rem 3.9.
(c)) (a) Assume now that every word of S labels a path out of the basepoint q0

of A D �.G;H; �/uS . LetQ denote the (finite) vertex set of A. For every q 2 Q,
fix a path

q0
wq
��! q:

We claim that
G D

[
q2Q

H.wq�/: (6.3)

Indeed, let g 2 G, and take u 2 Sg . Then there is a path in A of the form q0
u
�! q

for some q 2 Q. Hence uw�1q 2 L.A/ � H�
�1 by Theorem 3.9 and so we have

g D u� 2 H.wq�/. Thus (6.3) holds and so H has finite index in G.

A natural question to ask is whether or not one could replace condition (S2) in
the definition of Stallings section by the stronger condition

(S2’) Sgh D SgSh for all g; h 2 G.

However, we can prove that this condition can only be assumed in the simplest
cases:

Proposition 6.3. The following conditions are equivalent for a group G:

(a) there exist an m-epi � WeA� ! G and a Stallings section S for � satisfying
condition (S2’),

(b) G is either finite or free of finite rank,

(c) RA is a Stallings section for some m-epi � WeA� ! G.

Proof. (a)) (b) Let S be a Stallings section S for � WeA� ! G satisfying (S2’).
Then S�11 D S1 D S

2
1 and so we can view .S1; ı/ as a subgroup of .RA; ı/ Š FA,

where u ı v D uv. The same holds for .S; ı/ since S�1 D S D S2, and .S1; ı/
is then a subgroup of .S; ı/. Now .S; ı/ must be free by Nielsen’s Theorem.
Since S , being a Stallings section, is rational, so is .S; ı/ (a rational expression
for S as a subset of eA� translates through reduction to a rational expression for S
as a subset of .RA; ı/). The same happens with S1, so it follows from Anisimov
and Seifert’s Theorem [1, Theorem 3.1] that both .S; ı/ and .S1; ı/ are finitely
generated groups. Hence .S; ı/ is a free group of finite rank.
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For every u 2 S , we have

uS1u�1 � Su�S1Su�1� D S1;

hence .S1; ı/ is a finitely generated normal subgroup of the free group .S; ı/.
By [11, Proposition 3.12], .S1; ı/ is either trivial or has finite index in .S; ı/. On
the other hand, we claim that

uS1 D vS1 ” u� D v� (6.4)

holds for all u; v 2 S . The direct implication follows from S1� D 1. Conversely,
assume that u� D v� . Then

v�1u 2 Sv�1�Su� D S1

and so u 2 vS1 and uS1 � vS1. By symmetry, we get uS1 D vS1 and so (6.4)
holds.

It is now straightforward to check that

.S; ı/=.S1; ı/! G; uS1 7! u�;

is a group isomorphism. Hence either G Š .S; ı/ is a free group of finite rank, or
G Š .S; ı/=.S1; ı/ is a finite group.

(b)) (c) Immediate from the proof of Proposition 3.2.
(c)) (a) Assume that S D RA is a Stallings section for the m-epi � WeA� ! G.

Let u 2 Sg and v 2 Sh for some g; h 2 G. Since uv� D .uv/� D gh, we get
uv 2 Sgh and so SgSh � Sgh. Therefore Sgh D SgSh and so RA satisfies condi-
tion (S2’).

Acknowledgments. We are grateful to the anonymous referee for suggesting sub-
stantial simplifications of the proof of Theorem 5.1 with respect to the original
version.
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