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Figure 1: Comparison of downsampling filters for volumetric scalar fields. (a) shows the full resolution (5123) CT dataset.
Models on the right (1283) are produced using different filters. While (b) and (c) lose some structures (ureter, ribs, catheter. . . ),
(d) produces excessively noisy results. Our proposal (e) preserves most of these features and produces quality results.

Abstract

In the medical imaging field, interactive direct volume rendering of large volume datasets is a challenging task.
Multi-resolution techniques deal with this problem by downsampling the original dataset to produce coarser rep-
resentations. We present an evaluation of different downsampling filters with respect to their effectiveness at pre-
serving details of the original dataset. Moreover, we propose a new Gaussian-based filter that produces quality
lower-resolution representations and preserves small features that are prone to disappear.

Categories and Subject Descriptors (according to ACM CCS): I.4.10 [IMAGE PROCESSING AND COMPUTER
VISION]: Image Representation—Volumetric

1. Introduction

With the improvement in capture devices, medical image
datasets have grown continuously. The amount of mem-
ory of modern GPUs is also growing, but unfortunately the
increasing rate of the size of volumetric datasets is even
much higher. Different rendering techniques based on brick-
ing, LOD, multiresolution or data compression have been
proposed to obtain interactive visualizations [BRGIG∗14,
BHP14, HKRs∗06].

In this paper we focus our attention on building LOD res-
olution models of scalar data fields [LHJ99, GWGS02]. Al-
though more consistent coarser representations of a volume
dataset are generally produced by means of downsampling
color data [KB08], it is more convenient to store medical
data as scalar fields, where density values can be mapped to
opacity-weighted colors during post-classification by means
of a transfer function that can be modified interactively. To
deal with the memory size problem, commercial solutions
usually reduce the dataset by a factor of two in each di-
mension until it fits the available memory. Alternatively, a
well-known approach consists in pre-filtering and subsam-
pling the original volume at discrete resolution levels. How-
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ever, the visualization of coarser representations leads to in-
consistencies and the loss of information in relation to the
original data. Some authors strive to prevent this issue by
storing more information in coarser models or performing
costly pre-processes [YMC06, SHKM14]. Nevertheless, ef-
ficient approaches are desirable for the software/hardware
used in the clinical practice. Following this line, downsam-
pling by means of averaging voxels, or possibly filtering and
subsampling the original dataset, are the most common ap-
proaches [BNS01, LW90]. Also, a method to downsample
scalar data preserving topology is described in [KE01].

We have studied several downsampling techniques to an-
alyze both their effect in preserving the main structures of
the original datasets and the quality of the obtained models.
Based on these results, we propose a new fully automatic
feature preserving filter that locally adapts to structures that
are prone to disappear during simplification.

2. Feature-Preserving Downsampling

Given a volumetric scalar field Vn of resolution 2n, to com-
pute a coarser representation Vn−k (k > 0) our downsampling
technique proceeds in three steps:

• First, a temporary coarser volume Sn−k is computed by
means of Gaussian-filtering and subsampling.
• Next, the distance between Vn and Sn−k provides hints

about the loss of features in the first step. Using this infor-
mation we generate a filtered volume Fn using Local Fea-
ture Kernels, which better preserve original volume de-
tails that would otherwise disappear with standard Gaus-
sian filtering and subsampling.
• Finally, Fn is subsampled to obtain Vn−k.

To compute the filtered volume dataset Fn, we perform the
following convolution:

Fn(x) = ∑
i ∈Br

Vn(x+ i) · fx(i)

where fx is a normalized Local Feature Kernel with support
Br, a ball of radius r centered at the origin. fx is in turn a
product of a normalized global Gaussian kernel g and a dis-
tance kernel dx:

fx(i) =
1
α
·g(i) ·dx(i), ∀i ∈ Br

The denominator α = ∑ j∈Br
g( j) · dx( j) ensures the sum

of weights in fx equals one. The distance kernel dx is de-
fined as the normalized absolute distance of values in the
neighborhood of x between the original scalar field Vn and
the temporary Gaussian-downsampled scalar field Sn−k:

dx(i) =
1
β
|Vn(x+ i)−Sn−k(x+ i)|, ∀i ∈ Br

Again, the denominator β ensures the normalization of
weights in dx. Note that Vn and Sn−k have different resolu-
tions; sample positions in the kernel domain happen to be
aligned with the center of Vn’s voxels, but density values
from Sn−k must be computed by tri-linear interpolation.

The distance kernel assigns larger weights to those sam-
ples in Vn that are prone to disappear (those which most
differ with Sn−k). As both g and dx are combined into fx,
smoothing or sharpening is done depending on their weights,
which are local to the filtered sample position x; homoge-
neous regions will provoke homogeneous distance kernels,
thus giving gx greater influence, whereas feature regions will
provide more characteristic distance kernels for the feature
selection task.

3. Results and Discussion

We have compared our results with several other down-
sampling techniques: averaging 23 voxels into 1, flat sub-
sampling, subsampling after filtering (Gaussian and bilat-
eral) and Topology-Guided. Average downsampling usually
achieves acceptable results at the expense of little compu-
tational effort. Gaussian filtering provides smoother results
but excessive smoothing leads to information loss, as the
scalar field changes excessively and thus the original trans-
fer function mapping is no longer valid for the downsampled
volume. Bilateral filters are not especially well suited for
downsampling; while they perform edge-preserving smooth-
ing, they still produce aliasing similarly to flat subsam-
pling. Topology-Guided downsampling succeeds in preserv-
ing features at the expense of excessively noisy results. Fig-
ure 1 shows a comparison of some techniques; where other
approaches tend to make features disappear (ureter, ribs,
catheter, etc.), our method preserves them, yet in zones with
less fine structures our results are similar to using a Gaussian
kernel. The poster shows additional examples.

Without any optimization, running on a commodity PC
(Intel Core i7 CPU, 8GB RAM) our algorithm takes up to 4
minutes in order to compute the downsampling for the tho-
rax model from 5123 to 1283 voxels. Although it is a few
times more costly than standard Gaussian-downsampling, it
is affordable for a preprocess and scales linearly with the
size of the input dataset, plus it clearly achieves higher qual-
ity results.

We plan to extent our tests studying the effects of this new
filter with higher resolution datasets and increasing the num-
ber of downsampling iterations to see how far it can preserve
structures. Moreover, we will also optimize the algorithm by
taking advantage of the property of separability of the first
step.
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