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SUMMARY

This paper introduces a polyhedral approximation algorithm for set-valued estimation of
switching linear systems. The algorithm generates set-valued estimates for any possible sequence
of switching parameters, under the assumption that the system has unknown but bounded
disturbances and measurement noises. Our algorithm has practical implications; namely, set-
valued estimates were generated for the position and electrical current of a real-time automotive
electronic throttle valve, and the corresponding experimental data demonstrate the practical
benefits of our approach. Copyright c© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Switching linear systems comprise a class of dynamical systems that have solution driven by
switching signals. Much research in recent years has focused on the study of such systems,
see for instance the monograph [1] and the papers [2, 3, 4], for a brief account. The case
in which the switching signal is modified so as to stabilize the system has also attracted
attention, see [5], [6], [4], and [7], and the references therein. Although the study of stability
of switching linear systems has reached a relatively mature level, a little attention has been
paid to the estimation problem.
As an attempt to estimate the switching system state, we could use Bayesian filters [8]

and unscented Kalman filters [9, 10]. A drawback of these approaches is that they rely on
probabilistic methods, so that the estimated value can be far away from the real value. That
discrepancy in the estimation may lead the process to reach values that can damage the
underlying equipments.
On the contrary, set-valued estimation generates sets that assuredly contain the real

value of the system state—set-valued estimation thus seems to be a reasonable technique
to be used in practice. Note that the set-valued estimation allows us to check whether the
system state may assume undesirable values in practice. This finding has implications for
applications, as illustrated in Section 3.
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The papers [11] and [12] suggest to perform set-valued estimation for each subsystem and
next joining all of the corresponding sets into a single set; they consider feasible set outer
approximation for linear systems with some canonical forms, like ellipsoids [13, 14, 15, 16],
parallelotopes [17, 18, 19], and zonotopes [20]. These methods rely on computing set-valued
estimation through Minkowski sum and set intersection, accounted individually for each
subsystem.
In contrast, we construct set-valued estimates without Minkowski sum and intersection

by using polyhedral approximation. The polyhedral approximation has advantage of not
only allowing a polyhedra of any shape, but also decreasing the size of the corresponding
feasible set, thus mitigating the loss of accuracy. This sets the main theoretical contribution
of this paper.
Actually, our algorithm can construct polyhedrons of any shape so as to contain the system

state—the algorithm requires the system equations and some linear inequalities describing
disturbance and noise sets [21]. The solution of the algorithm is obtained by solving linear
programming problems.
Our theoretical contribution has practical implications. Indeed, real-time experiments

were carried out in a laboratory testbed to generate set-valued estimations for the position
and electrical current of an automotive electronic throttle device, a device largely used by
the automotive industry.
The position of the throttle device is measured by a sensor subject to measurement errors.

Considering only information from this sensor, we used our set-valued method to generate
estimations for both the position and current of the throttle. Thus, the paper contributes
not only for the theory of set-valued estimation but also for real-time applications.

2. ALGORITHM FOR SET-VALUED ESTIMATION

The discrete-time switching linear system under investigation is driven by the following
equations:

xk+1 = Aσ(k)xk +Bσ(k)uk + Fσ(k)wk

yk+1 = Cσ(k)xk+1 +Dσ(k)vk+1, k = 0, 1, ..., N, (1)

where xk ∈ R
nx is the system state vector, uk ∈ R

nu is the given input vector, wk ∈ R
nw

is the disturbance vector, yk ∈ R
ny is the measurement vector, and vk ∈ R

nv is the
measurement noise vector. For each k ≥ 0, the matrix Aσ(k) ∈ R

nx×nx belongs to a given set
{A1, ..., AM}, so that Aσ(k) = Am whenever σ(k) = m ∈ {1, . . . ,M}; the same applies for the
matrices Bσ(k), Fσ(k), Cσ(k) and Dσ(k). The initial state x0 ∈ R

nx , disturbances wk ∈ R
nw ,

and noises vk ∈ R
nv are defined by polyhedral sets, i.e.,

x0 ∈ X0 = {x0 ∈ R
nx |Hx0

x0 ≤ bx0
},

wk ∈ W = {w ∈ R
nw |Hwwk ≤ bw},

vk ∈ V = {v ∈ R
nv |Hvvk ≤ bv}, (2)

where Hx0
, Hw, and Hv are given matrices of appropriate dimensions.

The set-valued estimation technique involves a construction of feasible sets Xk, which are
guaranteed to contain all the possible values of the system state, i.e., xk ∈ Xk for each k ≥ 0
[15]. Such sets are constructed by using the following equations, for each k ≥ 0:

Xk+1\k = Aσ(k)Xk +Bσ(k)uk + Fσ(k)W,

X [yk+1] = {x ∈ R
nx |Cσ(k)x+Dσ(k)v = yk+1, ∀v ∈ V },

Xk+1 = Xk+1\k ∩X [yk+1]. (3)

Remark 1

All operations in (3) are set operations, that is, linear transformation of sets, Minkowski
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sum of sets, and set intersection. The reachable set Xk+1\k denotes set of states accessible

from previous feasible set Xk.
Given (1) and (2), each new measurement yk+1 allows us to compute the corresponding

state set X [yk+1]. Both sets Xk+1\k and X [yk+1] contain the real state of the system; and

the intersection of both sets generate the feasible set Xk+1 (see (3)).

Computing the feasible setXk+1 is a difficult task. To overcome such drawback, we present
the next polyhedral approximation algorithm.
Algorithm

Step 1. Set the iterations counter at k = 0.
Step 2. At the sample time k, the input uk and measurement yk+1 are given, but the

terms xk+1, xk, wk and vk+1 are unknown. After rearranging the unknown parameters, we
have from (1) that

[

I −Am −Fm 0
Cm 0 0 Dm

]







xk+1

xk

wk

vk+1






=

[

Bmuk

yk+1

]

, m = 1, ...,M. (4)

Step 3. From (2), we obtain the following set of restrictions:





0 Hxk
0 0

0 0 Hw 0
0 0 0 Hv











xk+1

xk

wk

vk+1






≤





bxk

bw
bv



 . (5)

Step 4. The systems in (4) and (5) implicitly describe the feasible set Xk+1. It is necessary to
present the explicit description. To this end, we calculate upper polyhedral approximation
Xk+1 of the feasible set Xk+1 ⊆ Xk+1 as a linear inequality system:

Xk+1 = {xk+1|Hxk+1
xk+1 ≤ bxk+1

}. (6)

Matrix Hxk+1
is given, that is, it is chosen according to the directions in which the values of

the system state are the mostly significant. For instance, when we need bounds of coordinates

for the vector xk, the matrix Hxk+1
can describe a parallelepiped, i.e., Hxk+1

≡

[

I
−I

]

, where

I denotes the identity matrix of dimension nx × nx. To get the values of bxk+1
, it is necessary

to solve a row of linear programming problems. For each m ∈ {1, ...,M} and for each hi (i-th
row of matrix Hxk+1

), the following problems are solved:

x∗ = argmax
xk+1

〈hi, xk+1〉 subject to (4) and (5), (7)

where 〈·, ·〉 is a scalar product of vectors. Then

bxk+1,m(i) = 〈hi, x
∗〉, (8)

The value of bxk+1
can be calculated the following way:

bxk+1
(i) = max

m∈{1,...,M}
bxk+1,m

(i). (9)

Step 5. If k = N , then the algorithm stops; otherwise set k = k + 1 and go to Step 2.

Remark 2

If some information about the switching rule σ(k) is known in advance, then this information
can be used to alleviate the computational burden of the algorithm. For instance, instead of
computing the sets for every m ∈ {1, ...,M}, we can compute subsets S ⊂ {1, ...,M} driven
by the rule σ(k).
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Figure 1. Automotive electronic throttle device used in the experiments described in Section 3.

Since the sets W , V and X0 are closed and bounded, the resulting feasible sets Xk,
k ≥ 0, and their upper approximations Xk, k ≥ 0, are also closed and bounded. Besides, in
most of the applications, the autonomous switching linear system xk+1 = Aσ(k)xk is globally
asymptotically stable; thus the influence of the disturbance set W in the feasible set Xk

diminishes as the time evolves, and Xk remains bounded when k → ∞. Notice that the
accuracy of set-valued estimate Xk depends not only on the size of the sets W , V and X0,
but also on the disturbance and noise realization.

3. SET-VALUED ESTIMATION FOR AN AUTOMOTIVE ELECTRONIC THROTTLE
VALVE

This section presents an application of the set-valued algorithm in Steps 1–5. Actually, the
algorithm of Steps 1–5 was used in practice to estimate both position and electrical current
consumed by an automotive throttle device, as detailed next.
The automotive electronic throttle body is a device largely used by the automotive

industry to regulate the power generated by spark-ignition combustion engines [22, 23,
24, 25]. Applying a voltage in the throttle’s input terminals makes the internal valve spin
accordingly, and a sensor of position measures the angular movement made by the valve. In
the throttle’s model, the voltage represents the input and the angular position of the valve
represents the output.
Two points motivated us to perform the experiments. First, the sensor used to measure

the position was modified to produce an error of 9/256 Volts (quantization error of 8 bits to
represent 9 Volts). Second, there is no sensor for measuring the electrical current consumed
by the throttle; however, the peak values in the current can damage the involved electronic
circuitry. Because our algorithm can assure the minimum and maximum values taken by the
electrical current, even under quantization errors, our algorithm can detect extreme values
of electrical current, as detailed next.

3.1. Modelling and identification

The laboratory testbed used to perform the experiments was equipped with the following
devices: a unity of Quanser Q4 Real-Time Control Board that implemented the data
communication with a computer; a unity of Quanser UPM180-25-B-PWM Power Amplifier
that supplied the voltage and electrical current consumed by the equipments; and a unity
of the automotive electronic throttle body made up by Continental Siemens VDO, Model
A2C59511705, P.N. 06F133062J (Fig. 1). For more details about the setup of the laboratory,
see [26].
The literature suggests a three-dimensional system to represent the automotive electronic

throttle body [27, 25]: (i) the angular position of the throttle valve; (ii) the angular velocity of
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the throttle valve; and (iii) the electrical current consumed by the throttle’s internal motor.
Because the throttle is equipped with just one sensor to measure the angular position of
the valve, applying numerical derivative to the angular position yields the angular velocity.
However, there is no sensor to measure the electrical current consumed by the throttle, the
third element of the system state.
To measure the electrical current, one must use an external circuitry, completely detached

from the throttle structure, which can be costly and inconvenient. Interestingly, our
algorithm in Steps 1–5 can be used to estimate intervals of the electrical current, a clear
advantage of our approach for the practical point of view.
Although it has been known that the throttle is a nonlinear device [22, 25, 28], we decided

to represent it as a piecewise linear system, an idea borrowed from [29] and [30]. The
traditional nonlinear continuous-time model of the throttle can be written as (e.g., [31, Eq.
(6)],[25, Eq. (6)], [27, Eq. (8)]),

θ̇t = a12ωt,

ω̇t = a21ωt + a22θt + a23yt + c+ f(θt, ωt),

ẏt = a32ωt + a33yt + but,

where θt denotes the angular position, ωt denotes the angular velocity, and yt denotes the
electrical current; here, f is a nonlinear function, and the constants a12, . . . , a33, c, are fixed.
Setting xt ≡ [θt ωt yt]

′ ∈ R
3, neglecting the nonlinear term f(θ, ωt), and applying the

usual Euler discretization in the resulting model, we obtain the discrete-time piecewise
linear system

xk+1 =







1 a
(m)
12 0

a
(m)
21 a

(m)
22 a

(m)
23

0 a
(m)
32 a

(m)
33







xk +





0
0

b(m)



uk + wk +





0

c(m)

0



 ,

yk = [1 0 0]xk + vk, x1,k ∈ Γm, m = 1, . . . , 3, (10)

where the values of a
(m)
12 , . . . , a

(m)
33 , b(m), c(m), m = 1, . . . , 3, are available in Table I. Note that

xk ≡ [x1,k x2,k x3,k]
′ ∈ R

3 stands for the system state with x1,k as position (rescaled by a
factor of 0.1 hereafter), x2,k as angular velocity, and x3,k as electrical current.
The sets Γ1, Γ2, and Γ3 denote the partition for the position, so that x1,k takes values

from the sets Γ1 = [0, 0.8], Γ2 = (0.8, 1.6], and Γ3 = (1.6, 9]. Additionally, the m-th mode is
active in (10) when x1,k belongs to Γm.
To identify the values presented in Table I, persistent excitation signals were applied

in practice in the input uk, and the corresponding data for xk were recorded. In such a
procedure, we carefully selected and used a total of 80, 000 points. By minimizing the mean
square error between the simulated and real-time data, we obtained the values shown in
Table I. Afterwards, the obtained model was compared with the remaining part of the
real-time data for verification and validation.

Table I. Parameters for the piecewise linear system modelling an automotive throttle body.

Parameter m = 1 m = 2 m = 3

a
(m)
12 −3.4483 −2.8017 −0.12381

a
(m)
21 0.00012 0.002 0.0938

a
(m)
22 0.9358 −0.1677 −0.6864

a
(m)
23 −0.0006 −0.0221 −1.9807

a
(m)
32 −0.3913 −1.193 −0.0128

a
(m)
33 0.94486 0.9494 0.9394
b
(m) 0.07179 0.04182 0.02607
c(m) 0.0001 0.0037 0.1728
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Figure 2. Error in the model that represents an automotive electronic throttle valve. The
trajectory of the error is bounded by a parallelepiped, which in turn represents the disturbance

set W in (10).

Next, the data acquisition board was configured to work under 8-bit resolution in order
to emulate a sensor of position with quantization error of 8 bits. For this reason the error
disturbance vk in (10) was defined by the set V , as in (2), with vectors

Hv =

[

1
−1

]

, bv =

[

9/256
9/256

]

.

The setW that defines the disturbance the term wk in (10) was characterized as follows. A
total of 40, 000 new points were collected in the laboratory; we used these points to calculate
the error ek = xk − x̃k, where xk denotes the solution of (10) with wk ≡ 0 and x̃k denotes
the corresponding point measured in practice. The error points generated the trajectory of
wk; we suggested a form of parallelepiped for W in (2) in order to obtain wk ∈ W , see Fig.
2.
The matrices of W are

Hw =















−0.0408 0 −0.02
0 0.001989 −0.0663

0.0408 0 0.02
0 −0.001989 0.0663
0 0 1
0 0 −1















, bw =















0.0008456
0.0010608
0.0007456
0.0005704
0.024
0.028















.

3.2. Experimental results for set-valued estimation

The code for computing the algorithm in Steps 1–5 was written in Matlab R2010a and tested
on a computer with 2.20GHz CPU Intel(R) Core(TM) i7-4702MQ and 8Gb RAM. In this
computer, the time necessary to compute each estimation set was close to 52 milliseconds.
The algorithm of Steps 1–5 was used to estimate the sets containing the real-time

state of the automotive electronic throttle device. In the practical experiments with the
throttle, both the voltage input uk and the measured position yk were used to feed the
algorithm of Steps 1–5. The initial state was kept fixed at x0 = [0 0 0]′. To simplify the
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Figure 3. Examples of set-valued estimates Xk for some iterations (k = 20, 40, ..., 100, 400), where
x1,k, x2,k, x3,k represent position, angular velocity and electrical current correspondingly.

visualization of the results, the feasible sets were approximated with parallelepipeds, i.e.,

we set Hxk+1
=

[

I3×3

−I3×3

]

for all k > 0.

More than one hundred thousand points were collected and stored. Afterwards, the
collected data were applied into the algorithm of Steps 1–5.
Fig. 3 illustrates the feasible set approximations for some distinct iteration values.
Fig. 4 illustrates the estimated values for the first 2500 points. As expected, all the

practical values laid within the corresponding estimated sets. As can be seen, even under
quantization error, the estimated bounds for the position are quite narrow.
Note also in Fig. 4 that the electrical current of the throttle kept within the limits

calculated by the set-valued estimation of Steps 1–5; this finding illustrates the usefulness
of our approach for detecting extreme values of the current consumed by the throttle.
The experimental data suggest that our algorithm obey the constraints in (5) and (4).
In summary, the experimental data confirmed the correctness of the estimation procedure,

a clear indication that our set-valued estimation technique can be useful in practice.

4. CONCLUDING REMARKS

We have presented an algorithm for set-valued estimation of switching linear systems. The
switching system accounts bounded disturbances for the input and output. An advantage
of our approach is that the system state assuredly keeps within the estimated set.
Our findings have practical implications. In reality, practical experiments were carried

out in a laboratory testbed to generate set-valued estimation for the position and electrical
current of an automotive electronic throttle device. The position was measured through a
sensor with quantization errors; using such measurement, we produced set-valued estimation
for the electrical current consumed by the throttle. The experiments illustrate the potential
benefits of our algorithm for applications.

Copyright c© 2015 John Wiley & Sons, Ltd. Int. J. Numer. Model. (2015)
Prepared using jnmauth.cls DOI: 10.1002/jnm



8 E. PODIVILOVA, A.N. VARGAS, V. SHIRYAEV, L. ACHO

P
o
si
ti
o
n

[×
1
0
◦
]

C
u
rr
e
n
t
(A

)
In

p
u
t
[×

1
0
]

Iterations

Iterations

Iterations

0

0

0
0

0
0

5

500

500

500

1000

1000

1000

1500

1500

1500

2000

2000

2000

2500

2500

2500

10

1

1

2

2

−1

Figure 4. Experimental data for an automotive electronic throttle device. Real-time values from
the input uk (Volts) and output yk (Angular degree) were used to generate the sets that estimated
the position of the throttle x1,k (Angular degree) and the electrical current x3,k (A). The bold
black lines correspond to real-time data, and these lie within tubes that represent the estimated

sets (sampling time of 1 ms for each iteration).
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