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Abstract

In bivariate density representation there is an extensive literature on level set
estimation when the level is fixed, but this is not so much the case when choos-
ing which level is (or which levels are) of most interest. This is an important
practical question which depends on the kind of problem one has to deal with
as well as the kind of feature one wishes to highlight in the density, the answer
to which requires both the definition of what the optimal level is and the con-
struction of a method for finding it. We consider two scenarios for this problem.
The first one corresponds to situations in which one has just a single density
function to be represented. However, as a result of the technical progress in
data collecting, problems are emerging in which one has to deal with a sample
of densities. In these situations, the need arises to develop joint representation
for all these densities, and this is the second scenario considered in this paper.
For each case, we provide consistency results for the estimated levels and present
wide Monte Carlo simulated experiments illustrating the interest and feasibility
of the proposed method.

Keywords: Bivariate density representation, functional data analysis,
minimum distance estimation, multidimensional scaling, nonparametric
density estimation.

1. Introduction

Let f be a bivariate probability density function. For α ∈]0, 1[ we define the
density level set with probability content α as

Cα = {x ∈ R2 : f(x) ≥ γα},

where γα is such that ∫
Cα

f(x)dx = α.
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When needed, we will write Cfα to make explicit the dependence of Cα on f . A
standard way to represent the bivariate density f graphically is by drawing in
the same graph density level sets corresponding to several values α1, . . . , αJ , or
just their boundaries (see, for instance, Bowman and Azzalini 1997 or Duong
2007 as well as the accompanying R packages sm and ks, respectively). Other
authors (Silverman 1986, Scott 1992, Wand and Jones 1995, Simonoff 1996)
draw the density contour levels at equally spaced heights (see also the R package
KernSmoth, associated with Wand and Jones 1995).

In this paper we consider the following problem: given a bivariate density
function f (respectively, N bivariate density functions f1, . . . , fN ) and fixed an
integer J ≥ 1, choose the combination of values α1, . . . , αJ defining the best (in
some sense) graphical representation of f (resp., f1, . . . , fN ). The exact meaning
of best graphical representation is specified in Sections 2 and 3. For the moment,
an informal way to express this concept is to say that the chosen density level
sets must reflect as well as possible the shape of f (resp., f1, . . . , fN ). It can
also be said that the visual distance between f (or f1, . . . , fN ) and its (their)
graphical representation using the chosen density level sets must be minimized.

Representing bivariate densities by one level set (in this case J = 1) allows
us to draw more than one bivariate density function in the same graph. This
kind of graphs is helpful in different situations, such as:

• Several samples of the same bivariate random variable X are taken at
different times (or in different regions, or more in general, in different con-
ditions). A nonparametric estimation of the density of X is derived from
each sample. A graph that enables possible changes in the distribution of
X across different scenarios to be visualized consists in representing the
estimated densities in the same graph, each by a density level set. A very
nice example can be found in Bowman and Azzalini (1997). They study
data on aircraft designs from the periods 1914-1935, 1936-1955 and 1956-
1984, originally explored in Bowman and Foster (1993). They obtain the
first two principal components (identified as “size” and “speed adjusted by
size”, respectively) and represent their joint density by using only a level
plot (corresponding to probability 0.75) for each period. The authors are
able to summarize the way in which aircraft designs have changed over the
last century in a single graph (reproduced here in Figure 1, top panel).

• Assume that a functional principal component analysis (FPCA) is per-
formed from the set of bivariate densities f1, . . . , fN . In FPCA, for one-
dimensional functions it is standard for representing the principal func-
tions graphically superposing three functions in the same plot: the mean
function and the mean function plus (and minus) the principal function
(multiplied by a constant). See, for instance, Ramsay and Silverman
(2005, Section 8.3.1). In order to plot a similar graph when addressing
with bivariate density functions, we need a way to represent three such
functions in the same graph. The use of a level set for representing each
function is a simple and effective choice. A related example (using multi-
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dimensional scaling instead of FPCA) can be found in Delicado (2011a).
The levels sets used there have a probability content of 0.75.

In other situations, it could be interesting to have more than one level set (in
this case J > 1) for depicting some feature of the density, as in the following
example in which J = 3:

• When the number of bivariate density functions to be represented is large,
and when each density is recorded at a different time and the elapsed time
between two consecutive densities is short, a convenient way to represent
them is by an animated graph, in which each image corresponds to the
graph of each bivariate density. In this case it is appropriate to represent
each density by just a few density level sets (for instance, 3). Therefore
the animated graph shows how the level sets evolve over time. Let us
consider the aircraft example once more. The animated graph provided
as supplementary material (see Appendix B) represents a set of 52 bi-
variate densities (we use the animate LATEX package from Holoček and
Sojka 2004). For i = 1, . . . , 52, the i-th density is estimated from data
corresponding to aircrafts produced between year min{i+1913, 1956} and
year max{i + 1932, 1935}, so that the periods 1914-1935, 1936-1955 and
1956-1984 are particular cases (i = 1, 23, 52). The density level sets cor-
responding to probabilities 0.25, 0.5 and 0.75 are drawn for each density.
This dynamic graph is an attractive way to visualize the development of
aircraft design and complements the static view (Figure 1, top panel).

However, for J = 1 as well as for more than one level set, an important open
question is to determine which level(s) should be used. Nowadays, it is standard
to represent a bivariate density function (either known or nonparametrically
estimated from a random sample) by plotting J = 3 of its density level sets,
usually those corresponding to α = 1/4, 1/2 and 3/4 (by analogy with the
univariate boxplots), as in the aircraft example discussed above. Bowman and
Azzalini (1997) call these plots ’sliceplots’, and refer the reader to Bowman and
Foster (1993) for further details. A relevant question is to determine whether
the choice of these three values of α is sensible (under some criterion) or if there
exists an alternative better choice. This of course depends on what is meant by
a good level set.

The paper is organized in two main sections (Sections 2 and 3), concluding
remarks (Section 4) and an Appendix (with two parts). Section 2 deals with the
case of having only one bivariate density function to be represented (N = 1).
In this case J > 1 is normally used (the choice of J will be given by computa-
tional or even aesthetic or perceptual considerations: too many level sets in the
same graph makes it difficult to appreciate). We develop two approaches for
quantifying the quality of a level set (and therefore for constructing the optimal
representation). The first one (subsection 2.1) uses distances between level sets,
while the second one (subsection 2.2) is based on distances between density
functions. In each case we discuss the methodologies, show their performance
on simulated data (in particular, when J = 3, one sees that the usual choices
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Figure 1: Aircraft data. The estimated bivariate densities of the first two principal components
are represented by density level sets.
Top panel: Level sets with content 0.75 for three periods.
Bottom left panel: Level sets with content 0.5 (optimal value according to (2.1) for J = 1).
Bottom right panel: Level sets with content 0.9 (optimal value according to (2.6) for J = 1
using Hellinger distance).
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α = 1/4, 1/2 and 3/4 are not always the most relevant) and give some asymp-
totic results, paying attention to the most current situation when the density to
be represented is not the real density but rather an estimated one. Subsection
2.3 points out that the proposals introduced in Section 2 are not well suited to
the case of having several density functions to be represented.

Consequently, in Section 3 we consider the representation of several densities
(N > 1). We deal first with the case of representing each density function with
only one level set (subsection 3.1) and then we consider the case of several level
sets (subsection 3.2). The main idea is that the distances between the bivariate
density functions f1, . . . , fN and the distances between their graphical represen-
tation using level sets must be as similar as possible. Subsection 3.3 shows that
our proposals are still valid when the real density functions are unknown. Sub-
section 3.4 gathers together the simulated examples corresponding to Section
3.

Finally, Section 4 summarizes the main conclusions drawn from the paper.
To facilitate the reading of the paper, the technical issues (including the mathe-
matical assumptions and the proofs) are all addressed together in Appendix A.
Appendix B describes the on-line supplementary material.

2. Optimal level sets for a single density

We now consider the problem of representing only one density by some of its
density level sets. We assume that J has been fixed in advance and we wish to
make the best choice of α1, . . . , αJ . There is no single way for specifying what
best might mean. We consider two possibilities: the first chooses the J density
level sets that best represent the whole family of level sets {Cα : α ∈]0, 1[}, in
the sense that each non-plotted Cα is close to the nearest level among those
that are plotted: Cα1

, . . . , CαJ . This is developed in Section 2.1.
In the second approach, we argue that each collection of level sets Cα1

, . . . , CαJ
naturally defines a piecewise uniform bivariate density function. Our proposal
is to minimize in α1, . . . , αJ the distance between this piecewise uniform density
and the one we wish to represent by Cα1 , . . . , CαJ . Section 2.2 deals with this
idea. Some artificial data examples are used to illustrate both approaches in
practice.

In a different context Marron and Tsybakov (1995) proposed a visual dis-
tance between a univariate density functions and its nonparametric estimations,
that otherwise is difficult to be extended to the bivariate case.

2.1. Optimality based on distances between density level sets

We consider the following distances between sets A,B ⊆ R2:

dλ(A,B) =

∫
A∆B

dx = λ(A∆B), df (A,B) =

∫
A∆B

f(x)dx = µf (A∆B),

where ∆ denotes the symmetric difference between sets, λ is the Lebesgue mea-
sure in R2 and µf is the probability measure in R2 having f as a density
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function. There exist other distances between sets that could be used as an
alternative (Hausdorff’s distance, for instance, or its Lp version defined in Bad-
deley 1992; for more details on these and other distances between sets see, e.g.,
Cuevas 2009 or Cuevas and Fraiman 2010 and references therein).

A natural way to choose values α1, . . . , αJ is by solving this minimization
problem:

min
0<α1<···<αJ<1

∫ 1

0

d(Cu, Cαj(u))du (2.1)

where d is either dλ or df , and j(u) is such that

d(Cu, Cαj(u)) = min
j=1...J

d(Cu, Cαj ),

that is, Cαj(u) is the closest set to Cu among the sets Cα1 , . . . , Cαj .

Theorem 1. For d = df , the optimal solution to problem (2.1) is

αfj =
2j − 1

2J
, j = 1, . . . , J.

Assume now that the support of f , say C1, is compact. For d = dλ the optimal
solution to problem (2.1) is αλj , j = 1, . . . , J , such that

λ(Cαλj )

λ(C1)
=

2j − 1

2J
, j = 1, . . . , J.

The proof of this theorem (in the Appendix) shows that the choice of d = df
results in some kind of probability transform (for v > u, df (Cu, Cv) = µf (Cv)−
µf (Cu) = v − u) that ties our proposal with the k-median problem for the
uniform distribution over [0, 1] (see Lemma 4 in the Appendix). The main

implication of this fact is that αfj , the optimal values when using d = df , do not
depend on f , what is no longer true when using d = dλ, making the definition of
optimal αj ’s based on d = df much more appealing than the other alternative.

For the first values of J the optimal αfj are the following:

J αfj , j = 1, . . . , J

1 1/2
2 1/4, 3/4
3 1/6, 1/2, 5/6

We see that when J = 3 level sets are plotted, the optimal values (in this sense)
for αj are not those that are commonly used (0.25, 0.5 and 0.75). The lower
left panel of Figure 1 represents three bivariate densities (one corresponding
to each of the three periods defined by Bowman and Azzalini 1997) using the
optimal value of α for J = 1. The most notable difference with respect to the
top panel is that the rapid development between the first and second period is
now more apparent (the corresponding level sets are almost disjoint), while the
development between the second and third period took place in three directions:
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specialization in larger aircraft, specialization in faster aircraft, and recovering
smaller and slower aircraft, such as those manufactured at the beginning of the
century.

The bivariate density f it not commonly known in practice. We normally
observe n independent data coming from f and we define an estimator f̂n of
f based on these data (f̂n is usually a nonparametric estimator of the kernel
type). Then the level sets finally plotted are not those belonging to f but those

belonging to f̂n (which are known as plug-in density level estimators). Short
reviews on level set estimation can be found in Cuevas (2009) and Cuevas and
Fraiman (2010). Of particular interest for us are the works of Báıllo et al. (2001)
and Cadre (2006), which deal with the convergence of the plug-in density level

estimating sets Cα,n = {x ∈ R2 : f̂n(x) ≥ γα,n}, with
∫
Cα,n

f̂n(x)dx = α, to the

density level set Cα of f , where f̂n is a kernel density estimator of f based on n
independent copies of the random variable X with density f . Specifically, Báıllo
et al. (2001) obtain rates of convergence for P{Z ∈ Cα,n} − α, where Z ∼ f

is independent of f̂n (see Ren and Mojirsheibani 2008, for similar results under
weaker assumptions). Báıllo (2003) proves that dλ(Cα,n, Cα) converges almost
surely to 0 while Cadre (2006) finds the convergence rate. All these results give
theoretical support to the use of estimated level sets in Theorem 1.

Different approaches to density level sets estimation, not based on the plug-
in principle, have been explored by Polonik (1995), Tsybakov (1997) and Willett
and Nowak (2007). These authors fix the value of the density functions at the
boundary of the level set (instead of fixing the desired probability content) and
they estimate directly the level set, without be interested in the estimation of
the whole density. In these papers, as well as in Báıllo et al. (2001), Báıllo
(2003) or Cadre (2006), the level set estimation is the main objective, whereas
our main goal is to decide which level sets should be represented.

2.2. Optimality based on distances between bivariate densities

In the previous section we introduced an optimality criterion (see equation
(2.1)) based exclusively on distances between density level sets. In some sense
equation (2.1) is a kind of location problem in the set of all possible level sets.
Nevertheless this optimality criterion (2.1) disregards an important fact: when
we plot J density level sets in a graph we are seeking to represent a bivariate
probability density function f (or the induced probability measure µf ). There-
fore, it is desirable that the graph is as close as possible (in some sense) to
the target density f . A natural way to measure closeness between a graph of
density level sets and a density function is to regard such a graph as itself defin-
ing a bivariate density. Then distance measures between bivariate densities (or
bivariate distributions) can be used.

Let us assume that the support of f is a known compact set C1. To simplify
the exposition, we consider for the moment that we are looking for only one level
set (J = 1) with probability content α ∈ [0, 1]. We wish to associate a bivariate
density to the level set Cα and we are choosing it from among the family Gf,α of
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Table 1: Truncated standard bivariate normal. Values of α∗, the solution to Problem (2.2),
for different choices of distances between densities.

Symmetric
L1 L2 L2 norm Kullback- Kullback-

D: norm norm Hellinger of logs Leibler Leibler

α∗: 0.75 0.66 0.83 0.95 0.83 0.84

bivariate density functions having Cα as the level set with probability content
α:

Gf,α = {g density with support C1 : µg(Cα) = α,

g(x) ≥ g(y) for all x ∈ Cα, y ∈ C1 \ Cα}.

In this family, the maximum entropy distribution is that having the piecewise
uniform distribution at Cα and C1 \ Cα as density function (see, for instance,
Bernardo and Smith 1994, pages 208-209):

gf,α(x) =
α

λ(Cα)
ICα(x) +

1− α
λ(C1)− λ(Cα)

IC1\Cα(x).

Observe that gf,0 = gf,1 are both equal to the density of the uniform distribution
over C1. Given that gf,α(x) is, in some sense, the least informative density in
Gf,α, this is the density function that we associate to level set Cα.

Let D be a distance function between bivariate density functions. In order
to choose an optimal value of α we propose solving the following minimization
problem:

min
0≤α≤1

D(f, gf,α). (2.2)

Observe that our goal is to represent the density f by the level set that defines
the piecewise uniform distribution that is as close as possible to f . There are
many ways to define a distance between two bivariate density functions (see
Delicado 2011b for a commented bibliography on this topic).

Let us give a numerical example of the resolution of problem (2.2). Consider
the probability density function of a truncated standard bivariate normal ran-
dom variable, truncated at the square [−3.035, 3.035]×
[−3.035, 3.035], having probability 0.99 under the standard bivariate normal
distribution. Problem (2.2) has been solved for several choices of distance D in
order to obtain the optimal value α∗. The results are shown in Table 1. Ob-
serve that optimal αs are always over 0.66, the value obtained using L2 norm.
For L1 distance the optimal value α∗ is 0.75, the value used by Bowman and
Azzalini (1997) to produce Figure 1 (top panel). The other distances produce
larger values of α∗. This indicates that these distances are especially sensitive
to discrepancies in low density areas, an unsurprising fact given that three of
them involve the logs of density values.
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The problem (2.2) is a population problem (it assumes that density f is
known). Let us consider its sampling version, obtained by replacing f by an
estimation. Let {fn}n be a sequence of random density functions approximating

f (the most common case being that fn = f̂n is a nonparametric estimation of
f derived from a size n sample from a random variable with density f). Let α∗

be the solution to (2.2) and let α̂n be the solution to the following minimization
problem:

min
0<α<1

D(fn, gfn,α). (2.3)

The next theorem establishes the convergence of α̂n to α∗. Technical assump-
tions as well as the proof are reported in the Appendix.

Theorem 2. Let f be a bivariate density function with compact support C1 and
let fn be a sequence of random bivariate density functions with support C1. Let
D be a distance between density functions for which assumptions Ass.1, Ass.2,
Ass.3 and Ass.4 are verified. Let α∗ be the solution to problem (2.2) and let
{α̂n}n be a sequence of solutions for problem (2.3). Then

lim
n→∞

α̂n = α∗ almost surely.

Compactness assumption for the support of f in the previous theorem is
required to define the piecewise uniform density functions gf,α. For the case of
non-compact support we recommend to work with a version of f truncated to
the level set Cf1−ε, for ε small enough, namely f1−ε, that does have compact
support so Theorem 2 applies to it. The relationship between the level sets of

f and f1−ε is that Cfα = C
f1−ε
α/(1−ε), for α < 1− ε, because when X ∼ f

Pr(X ∈ Cfα|X ∈ C
f
1−ε) =

α

1− ε
.

Theorem 2 can be extended to the case of choosing J ≥ 1 level sets. Let
Θ = {θ = (α1, . . . , αJ) ∈ RJ : 0 ≤ α1 ≤ · · · ≤ αJ ≤ 1}. For θ ∈ Θ define

gf,θ =

J∑
j=0

αj+1 − αj
λ(Cαj+1

)− λ(Cαj )
ICαj+1

\Cαj (x),

where α0 = 0, αJ+1 = 1 and Cα0
= ∅. Observe that the functions gf,θ is

the density function of a piecewise uniform distribution. Now the analogue to
problem (2.2) is

min
θ∈Θ

D(f, gf,θ) (2.4)

with optimum θ∗, and the version of (2.3) is

min
θ∈Θ

D(fn, gfn,θ) (2.5)

with solution θ̂n. In this context it can be proved that limn θ̂n = θ∗ (almost
surely) following the same arguments used in the proof of Theorem 2.

9



Table 2: Truncated standard bivariate normal. Values of α∗
j , j = 1, . . . , J , for J = 1, . . . , 4,

the solutions to Problem (2.4), for different choices of distances between densities.

Symmetric L2 norm
L1 norm Kullback-Leibler of logs

J α∗j , j = 1, . . . , J α∗j , j = 1, . . . , J α∗j , j = 1, . . . , J

1 0.75 0.84 0.95
2 0.55, 0.88 0.67, 0.94 0.77, 0.95
3 0.43, 0.73, 0.93 0.51, 0.80, 0.95 0.63, 0.86, 0.95
4 0.32, 0.61, 0.82, 0.95 0.25, 0.61, 0.83, 0.95 0.53, 0.78, 0.89, 0.95

Let us now give an example of solution to problem (2.4). Consider again
the density function of the truncated standard bivariate normal. We solved the
problem (2.4) for the same distances used before when solving problem (2.2)
and J going from 1 to 4. In general we can say that for J=1,2,3, the optimal α
values are ordered as follows, according to the distance used,

L2 < L1 < Hellinger ≈ K-L ≈ Sym. K-L < L2logs.

For J = 4, all the distances lead to similar optimal α values, except L2 norm
between logs, which gives larger values. In general, the optimal α values are
in [0.3, 0.95]. The lowest value found for an optimal α is 0.20 (using Hellinger
distance and J = 4). Table 2 shows a representative part of the results obtained.

Observe that the probability contents of the optimal level sets (the opti-
mal solution to problems (2.2) or (2.4)) depend on the density f that we are
representing. Therefore, if two or more densities must be represented in the
same graph it would not to be a good idea to choose the optimal αs by solving
problems (2.2) or (2.4) separately for each density. It would be much more
sensible to look for a common α value (or a common θ = (α1, . . . , αJ)) and use
it to represent all the densities available. The next subsection shows how the
proposals put forward in this section for one density can be adapted when we
have two or more densities. Nevertheless, this adaptation has some limitations
that are overcome in Section 3.

2.3. Difficulties with managing several densities

Consider now the case of N density functions, f1, . . . , fN , each to be rep-
resented by J level sets, having common probability contents α1 ≤ · · · ≤ αJ .
For i = 1, . . . , N , let {f in}n be a sequence of density functions approaching f i.
Then we consider the minimization problem

min
θ∈Θ

N∑
i=1

D(f in, gfin,θ), (2.6)

10



Table 3: Aircraft data. Kernel density estimation for three periods. Values of αN
n (with

N = 3), solutions to Problem (2.6), for different choices of distances between densities.

Symmetric
L1 L2 L2 norm Kullback- Kullback-

D: norm norm Hellinger of logs Leibler Leibler

α̂Nn : 0.81 0.72 0.90 0.95 0.88 0.95

with optimum solution θ̂Nn . An appropriate modification of Theorem 2 would

guarantee that θ̂Nn converges (almost surely) to the solution θ∗N of

min
θ∈Θ

N∑
i=1

D(f i, gfi,θ). (2.7)

As an application of problem (2.6), consider again the example of the Aircraft
data classified into three periods. We wish to represent N = 3 densities (one
for each period) with one level set (J = 1). Table 3 shows the optimal αNn for
different choices of distances between densities. Observe that the results are
similar to those obtained for the bivariate truncated normal (see Table 1). The
lower right panel of Figure 1 shows the level sets with probability content 0.9
(optimal value according to Hellinger distance) for the three densities.

This approach for when N densities must be represented simultaneously has
the following characteristic: the common θ = (α1, . . . , αJ) that we are seeking
tries only to provide a good individual representation of the densities involved:
it does not attempt to highlight the differences between them. An extreme
case arises when N different bivariate density functions share the same density
level set with probability content α1 but they differ from each other in the level
set corresponding to probability content α2 (for an example of this situation,
see Case 1 of simulated density functions in Section 3.4). Assume additionally
that the value of α1 is the optimal one for each individual representation (that
is, α1 solves the N individual optimization problems (2.2)). Then α1 is also
the solution of the optimization problem (2.7) for J = 1. Nevertheless the
representation of the N density functions by their α1 level set only produces
the superposition of N identical level sets, leading to the false conclusion that
the N density functions are similar. A better global representation is obtained
using, for instance, the N level sets with probability contents α2, because these
sets are different as the density functions are (see Figure 3 for such an example).

We address this problem in the following Section 3, where we propose an
alternative approach.

3. Optimal representation of several densities by level sets

Let us considerN bivariate density functions, f1, . . . , fN ; it could be the case
that they form a random sample corresponding to observations of a common
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stochastic process. Given D, a distance function between bivariate density
functions, we define the distance matrix

D =
(
dij = D(f i, f j)

)
i,j=1,...,N

reflecting the inter-distances between any pair of density functions f i and f j in
the previous list.

First we deal with the problem of representing the density functions using
only a level set (J = 1). Secondly we look into the case of using several level
sets for representing each density (J > 1).

3.1. Representation with a single level set

Let α ∈ [0, 1] and let Ciα be the level set of fi with probability content α,
for i = 1, . . . , n. For a pair of density functions fi and fj we define

δα,dij = d(Ciα, C
j
α)

where d is a distance function between sets (see Section 2.1). For the case of d
being the distance in probability, that depends on the specific density function
in use, we take

d(Ciα, C
j
α) = dfi(C

i
α, C

j
α) + dfj (C

i
α, C

j
α). (3.1)

Alternatively, we can use the density functions corresponding to piecewise uni-
form distributions, defined in Section 2.2, to define

δα,Dij = D(gfi,α, gfj ,α),

where D is a distance between bivariate density functions.
Let δα be the N×N distance matrix whose elements are δαij computed as δα,dij

or as δα,Dij . Our objective is to represent the N density functions f1, . . . , fN by
their level set having common probability content α, choosing α in an optimal
way according to a specified criterion.

A first natural criterion for choosing α comes from borrowing ideas from
Multidimensional Scaling (MDS; see, for instance, Borg and Groenen 2005).
Given a N×N distance matrix, the objective of MDS is to find a low dimensional
configuration X (that is, a N × p matrix, with p small) such that the Euclidean
distance between rows i and j inX is as similar as possible to the element (i, j) in
the starting distance matrix. Then the i-th object (associated with the i-th row
and column of the distance matrix) is represented in Rp with coordinates given
by the i-th row of X. We propose accordingly to choose α in such a way that the
distance matrix δα between the level set representations is as similar as possible
to the distance matrix D between bivariate density functions. Essentially, our
proposal is in the same line as the Generalized MDS introduced by Bronstein
et al. (2006), where the objective is to find configurations in two different metric
spaces with similar distance matrices.

12



One way to specify the meaning of similar in MDS is through the normalized
Stress, a measure of the relative error made when the distance matrix D is
approximated by δα, defined as

σn(δα,D) =

∑
i<j(δ

α
ij −Dij)

2∑
i<j D

2
ij

.

Allowing for scale changes, a more convenient measure is minb>0 σn(bδα,D). It
can be proved (Borg and Groenen 2005) that

min
b∈R

σn(bδα,D) = 1− c(δα,D)2

where

c(δα,D) =

∑
i<j δ

α
ijDij(∑

i<j(δ
α
ij)

2
∑
i<j D

2
ij

)1/2
, (3.2)

is known as Tucker’s coefficient of congruence between the elements of both
distance matrices (see, for instance, Borg and Groenen 2005, page 248). This
implies that c(δα,D)2, the square of the Tucker’s coefficient of congruence, is
the coefficient of determination R2 of the least squares linear regression passing
by the origin of the elements of D against the elements of δα (Borg and Groenen
2005).

Therefore, a first approach to choose an optimal α, according to the normal-
ized Strees (with possibly a change of scale) is to solve one of the two following
equivalent optimization problems:

min
α∈[0,1]

min
b∈R

σn(bδα,D)⇐⇒ max
α∈[0,1]

c(δα,D)2. (3.3)

Nevertheless this approach suffers from a practical disadvantage: The range
of values c(δα,D) that are observed in practice is narrower than the theoretical
one ([0, 1], for non-negative quantities). As an example, consider m pairs of data
(ui, vi) coming from a random variable (U, V ), U and V being independent and
uniformly distributed on [0, 1]. For large values of m the Tucker’s coefficient of
congruence for these data will be close to E(UV )/E(U2) = 3/4. Therefore the
relevant range of the coefficient of congruence is [0.75, 1] when the data have
uniform marginals.

Alternatives to the Tucker’s coefficient of congruence with better practical
performance are the Pearson’s correlation coefficient or the Spearman’s rank cor-
relation coefficient (the last one being able to detect positive relations between
pairs of variables, even if they are non-linear). Given the m = N(N − 1)/2
elements δαij , i < j, we define rαij as the rank of δαij among the m elements.
Analogously, we define Rij as the rank of Dij among the m elements over the
diagonal of matrix D. The Spearman’s rank correlation coefficient of δαij and
Dij , with i > j, is defined as the Pearson’s correlation coefficient between rαij
and Rij , with i < j, and it can be computed as (Gibbons and Chakraborti 2003,
page 423)

S(δα,D) =
12
∑
i<j r

α
ijRij

m(m2 − 1)
− 3(m+ 1)

m− 1
.

13



It is easy to see that the Tucker’s coefficient of congruence between rαij and Rij ,
with i < j, is also a monotone increasing function of

∑
i<j r

α
ijRij . Therefore to

look for the value of α maximizing the Spearman’s rank correlation coefficient
is equivalent to look for the value of α maximizing the Tucker’s coefficient of
congruence between the ranks of distances (nevertheless, a Spearman’s rank
correlation coefficient equal to 0 corresponds to a Tucker’s coefficient equal to
(3/4)(1 + 1/(2m+ 1)), close to 0.75 for large m).

Taking into account the previous considerations, our proposal is to look for
the value of α that solves the following optimization problem:

max
α∈[0,1]

S(δα,D)2. (3.4)

In practice, this is equivalent to maximize S(δα,D) (this is the case, for instance,
when all the densities have the same support; then for α = 1 all the level sets are
equal and Dij = 0 for all i, j; then S(δ1,D) = 0). The advantage of squaring in
(3.4) is that this way the objective function can be computed as the coefficient
of determination R2 of the simple linear regression of Rij , i > j, against rαij ,
i > j.

3.2. Representation with more than one level sets

Now we consider the case of using several level sets for representing each
density fi, i = 1, . . . , N . Let 0 ≤ α1 ≤ · · · ≤ αJ ≤ 1 be J probability contents,
for a given J . We call θ = (α1, . . . , αJ), as in Section 2.2. For a given bivariate
density function f we define

Cf
θ = (Cfα1

, . . . , CfαJ ),

the family of level sets of f with probability contents given by the elements of

θ. For i = 1, . . . , N , we denote Cfi

θ by Ci
θ.

Given two families of level sets, Ci
θ and Cj

θ, there are several ways to define
a distance between them. For instance, for a given distance function d between
sets (see Section 2.1), we can define

δθ,dij = δd(Ci
θ,C

j
θ) =

∑
αh∈θ

δαhij ,

with δαhij = d(Cf
i

αh
, Cf

j

αh
).

Another alternative is to use the density functions corresponding to piecewise
uniform distributions, defined in Section 2.2, to define

δθ,Dij = δD(Ci
θ,C

j
θ) = D(gfi,θ, gfi,θ),

where gf,θ has been defined after Theorem 2 and D is a distance between bi-

variate density functions. Let be δθ the N ×N distance matrix whose elements
are δθij computed as δθ,dij or as δθ,Dij . Following the previous reasoning that led
us to equation (3.4), we propose to solve the following problem:

max
θ∈Θ

S(δθ,D)2. (3.5)
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Nevertheless we set out the following alternative approach to choose the op-
timal θ. Recall that S(δα,D)2 is the coefficient of determination R2 of a simple
linear regression involving ranks of distances. Therefore, instead of pooling the
distances δαhij , αh ∈ θ, to define δθ,dij , we propose to fit a multiple linear regres-
sion involving ranks of distances, and to take the coefficient of determination as
the objective function to be maximized. To be specific, consider the multiple
linear regression where the response is the set of ranks Rij , i < j, defined before,
with J explanatory variables, the ranks rαhij of the J distances δαhij , αh ∈ θ. Let

R2
S(θ) the corresponding coefficient of determination. Our second proposal is

to solve the following optimization problem:

max
θ∈Θ

R2
S(θ). (3.6)

3.3. Case of estimated densities

Let us add a few lines about the common case of not knowing exactly the
densities fi, i = 1, . . . , N . Instead we assume that for i = 1, . . . , N , there is
a sequence {f in}n of density functions approaching fi as n goes to infinity. As

in Section 2 the most frequent situation is that f in = f̂i,n is a nonparametric
estimation of fi derived from a size mi,n sample from a random variable with
density fi, with lim infn minimi,n/n > 0 and lim supn maximi,n/n <∞.

Consider the following version of problem (3.4), where δα and D, defined
from fi, i = 1, . . . , N , has been substituted by their counterparts, say δαn and
Dn, defined from f in, i = 1, . . . , N :

max
α∈[0,1]

S(δαn,Dn)2. (3.7)

The following Theorem tells us that solving problem (3.7) is asymptotically
equivalent to solving problem (3.4). The main idea is that the number of densi-
ties N is fixed, even if n goes to infinity. The proof is reported in the Appendix.
Extensions of this result for covering problems (3.5) and (3.6) are straightfor-
ward.

Theorem 3. Let D and d be distances between density functions and level sets,
respectively, for which assumptions Ass.1 and Ass.5 are verified for any density
function fi and sequence {f in}n, i = 1, . . . , N . Assume that there are no ties
in distances: for i < j and k < l, with (i, j) 6= (k, l), we have that D(fi, fj) 6=
D(fk, fl) and that

inf
0<α<1

|d(Cfiα , C
fj
α )− d(Cfkα , Cflα )| > 0.

Let α∗ be the solution to problem (3.4) and let α̂n be the solution to problem
(3.7). Then

lim
n→∞

α̂n = α∗ almost surely.
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3.4. Some Monte Carlo experiments

The examples we present consist of sets of N bivariate density functions fi,
i = 1, . . . , N = 50, such that fi is a mixture of three bivariate normal densities,
truncated at the square [−3.035, 3.035]× [−3.035, 3.035]. The generic expression
for these densities (before truncation) is

f(x, y) =

2∑
j=0

ηjφ2(x, y;µ1,j , µ2,j , σ
2
j I2), (3.8)

where I2 is the identity matrix of size 2 and we denote by φ2(x, y;µ1, µ2,Σ) the
density function of a bivariate normal centered at (µ1, µ2) with variance matrix
Σ, evaluated at (x, y) ∈ R2. The mean vectors are defined as (µ1,0, µ2,0) = (0, 0)
and for j = 1, 2,

(µ1,j , µ2,j) = ρj(cos θj , sin θj).

The way we generate random densities according to (3.8) is by taking inde-
pendent random values of θj and ρj , for j = 1, 2. Specifically, θj ∼ U(0, 2π),
ρj ∼ U(rj − .1, rj + .1) (rj is a fixed value in {0, 1, 2}). We have considered
3 different cases (or models) to generate random densities according to (3.8),
corresponding to specific choices of rj , σj and ηj , for j = 1, 2 (η0 = 1− η1 − η2

and we use always σ0 = 1). The left hand side column of Table 4 shows the
parameters used to generate the different cases of mixture densities. The left
column of panels in Figure 2 shows an example of fi for each considered case.
The level sets used for the representation of fi are those with probability con-
tents α equal to 0.05, 0.1 (this level set has two non-connected subsets for Cases
1 and 2), 0.25, 0.5, 0.75 and 0.95.

Let us remark several characteristics of densities f(x, y) defined by (3.8). We
start examining those corresponding to Case 1 (upper left panel in Figure 2 is an
example). Densities corresponding to this case are very close to a mixture of two
bivariate normal densities, those corresponding to j = 0 and j = 2 in (3.8), while
the component corresponding to j = 1 acts as a slight random perturbation.
They are bimodal indeed. Given two of these densities, their difference depends
mainly on how different their parameters θ2 are. Their level sets with probability
content α ≥ 0.75 are almost equal, while those corresponding to small values of
α (say α ≤ 0.25) present large differences.

Densities corresponding to Case 2 (middle left panel in Figure 2) are clearly
the mixture of 3 bivariate normal densities, with centers at distances 0, 2 and 1
from the origin, respectively. They are bimodal because the mixture component
in (3.8) corresponding to j = 1 does not produce a third mode. The differences
in parameters θ1 and θ2 are the responsible of the distances between densities
corresponding to Case 2. Two generic densities following this model have all
their level sets different. Differences between levels sets with small probability
contents (say α ≤ 0.5) reflect differences in parameter θ2, while dissimilarity
between levels sets with larger probability contents respond to differences in
parameter θ1.
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Figure 2: Mixture of three bivariate normal densities according to model (3.8). First, second
and third rows correspond respectively to Cases 1, 2 and 3 described in Table 4. Left column:
For each case, level sets corresponding to one of the N = 50 simulated densities. Right column:
For each case, graphic of R2

S(α) as a function of α.
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Regarding Case 3 (lower left panel in Figure 2), it is similar to Case 2 when
removing the main mode, one unit length far from origin. Densities following
Case 3 are unimodal and they differ mainly in level sets with large probability
content (say α ≥ 0.7). Parameter θ1 is the main responsible of differences
between densities.

For each of the three sets of density functions following Cases 1, 2 and 3,
respectively, using L1 distance as the distance D between densities and distance
in probability (3.1) as the distance d between level sets, we are interested in the
coefficients of determination R2

S(θ), where θ = (α1, . . . , αJ), and J ∈ {1, 2, 3, 4}
is the number of level sets we are looking for. For J = 1, the graphics at the
right column of Figure 2 show the values of R2

S(α) for α going from 0.02 to 0.98,
with increments of 0.02.

For Case 1 (upper right panel in Figure 2) the maximum of R2
S(α) is achieved

at α∗ = 0.24, with a value of R2
S(α∗) = 0.8609. For Case 2 (middle right panel

in Figure 2) the function R2
S(α) has its maximum at α∗ = 0.58 and it is equal

to 0.4822 (much lower than in Case 1). There is an additional local maximum
at α = 0.2, with almost the same value as the global maximum. A third local
maximum is at α = 0.74. Regarding Case 3 (lower right panel in Figure 2) the
maximum (0.6638) is at α∗ = 0.78. There is another local maximum around
α = 0.4.

We have solved the optimization problem (3.6) for J , the dimension of θ, in
{1, 2, 3, 4}. We have used a quasi-Newton method which allows box constraints
for the optimization variables. Specifically we have used the implementation of
the algorithm proposed by Byrd et al. (1995) provided by the function optim

of R (R Core Team 2013) when the method ‘‘L-BFGS-B’’ is selected.
The results of the optimization procedure are shown at the right hand side

of Table 4. For each case and each J , the optimal value θ∗ = (α∗1, . . . , α
∗
J) and

the corresponding value of the objective function R2
S(θ∗) are printed. We can

see that for Case 1 the optimum values do not vary very much when J goes from
1 to 4. Then we conclude that for this case it is enough to use only one level
set to have a good representation of the density functions. On the contrary,
Cases 2 and 3 seems to require two level sets for doing the task, and Case 2
may need even a third level set. In general, the values of α∗j are close to the

local maximums of the functions R2
S(α) (Figure 2, right column) but there are

exceptions to this rule.
We conclude this section by comparing the results presented above with

those obtained when using the proposals made in Section 2. When we consider
a single density function according to the model (3.8), and on applying the
techniques described in Section 2 for the choice of the optimal level sets to
represent this function, the results we obtain are very similar to those obtained
for the truncated standard bivariate normal (see Tables 1 and 2), the mixture
density being (at least) 90% equal to the density of the standard bivariate
normal. In particular, the methods proposed in Section 2 do not give rise to
the representation of any level set with probability content α < 0.3. Similar
conclusions are drawn when solving problem (2.5) jointly for the N densities in
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Table 4: Mixture of three bivariate normal densities according to model (3.8). The left hand
side of the table shows the parameters rj , σj and ηj , for j = 1, 2 (η0 = 1 − η1 − η2) used to
generate 3 different types of mixtures densities. The optimum θ∗ = (α∗

1, . . . , α
∗
J ) when solving

the optimization problem (3.6) and the value of the objective function for it, are shown on
the right-hand side of the table.

Case Parameters J α∗1 α∗2 α∗3 α∗4 R2
S(θ)

1 r1 = 0 r2 = 1 1 0.244 0.8753
σ1 = 1 σ2 = 0.25 2 0.209 0.340 0.8960
η1 = 0.05 η2 = 0.05 3 0.197 0.290 0.431 0.9017

4 0.212 0.404 0.595 0.787 0.9254

2 r1 = 2 r2 = 1 1 0.571 0.4840
σ1 = 0.4 σ2 = 0.25 2 0.228 0.763 0.7572
η1 = 0.025 η2 = 0.025 3 0.199 0.622 0.800 0.8326

4 0.191 0.407 0.614 0.845 0.8446

3 r1 = 2 r2 = 0 1 0.780 0.6638
σ1 = 0.4 σ2 = 1 2 0.409 0.816 0.8312
η1 = 0.025 η2 = 0.05 3 0.230 0.653 0.869 0.8366

4 0.184 0.831 0.837 0.860 0.8600

the samples.
As an example, we consider Case 1 of densities according to (3.8) and repli-

cate the analysis we have reported in Table 4 for J = 1. In this case, we use the
value for α that were found to be optimal when solving problem (2.7) for these
densities and L1 distance, which coincides (up to the second decimal digit) with
that reported for the truncated bivariate normal (Table 2): 0.75. We compute
then R2

S(α) for α = 0.75 and we obtain a value of the coefficient of determination
in the regression involving ranks of distances equal to 0.0021. Comparing this
very low value with the value 0.8753 in Table 4 (last column, first row) confirms
that solving problem (3.6) provides values of αj leading to grater coefficient of
determination than when using proposals introduced in Section 2, which were
not designed for this purpose (see subsection 2.3).

In addition to the expected high coefficients of determination, the proposals
put forward in this Section 3 also possess a remarkable descriptive power when
representing a large number N of densities in a single graph, as may be observed
in panels (a) and (b) of Figure 3. They represent N = 50 densities according
to model (3.8), Case 1. One level set is used for each density (J = 1). Panel
(a) uses the value α = .75 obtained when solving problem (2.7), whereas in
panel (b) α is 0.244, the solution of problem (3.6). Panel (b) clearly shows
that these densities have a common mode around the origin and an additional
mode at distance approximately 1 from the origin, very different from density
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Figure 3: (a) Representation of N = 50 densities according to (3.8), Case 1, using the value
α = .75 obtained when solving problem (2.5). (b) The same as (a) when using α = 0.244,
the solution of problem (3.6). (In the interest of a better visualization both graphics use the
frame [−2, 2] × [−2, 2] instead of [−3, 3] × [−3, 3], as in Figure 2.)

to density. Little can be learned from panel (a) about the differences between
these densities.

An analogous simulation study has been done solving problem (3.5) instead

of problem (3.6). We have used δθi,j = δθ,Di,j and D equal to the L1 distance
between densities. The results (not reported here) are qualitatively similar to
those presented in this Section. In particular the graphics of the squared rank
correlations S(δα,D)2 as functions of α for Cases 1, 2 and 3 are similar to those
displayed in the right column of Figure 2.

4. Conclusions

Level sets are known to be nice graphical tools for visualizing density func-
tions. Usually, levels are fixed arbitrarily (most usual choices being those with
probability contents 0.25, 0.5 and 0.75), but changing the levels may lead to
different conclusions from the same data. To the best of our knowledge, this
paper is the first to respond to the natural questions: How can levels be chosen?
Can such a choice be made in some data-driven way to take into account both
the specificity of the available data and the kind of statistical problem one has
to deal with?

We study separately two scenarios. In both cases we show that our proposals
provide good theoretical properties and ease of implementation as well as a
satisfactory practical finite sample performance. In particular, emphasis is given
to the fact that our selected levels can detect information that standard level
choices (like those with probability contents 0.25, 0.5 and 0.75) may hide.
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In the first scenario we deal with the case when there is only one density
function to be represented. Our proposals here are based on the minimum dis-
tance between sets or between density functions. Our main findings are the
following. We have presented a quick method to choose the J optimal proba-
bility contents that does not depend on the specific density to be represented
(for instance, for J = 3 they are 1/6, 1/2 and 5/6); in general, higher values
for probability contents α are obtained when using methods that depend on the
density to be represented, and they also depend on the specific distance in use
(L1 distance leading to not so high values of α).

In the second scenario we consider the case of many densities to be repre-
sented. Our approach here is related with generalized MDS. Several possibilities
have been analyzed and, finally, our proposal consists on maximizing the coef-
ficient of determination of a linear regression involving the ranks of distances
between the densities to be represented and the ranks of the distances between
their level sets. As practical advice, we recommend to solve the problem (3.6)
using L1 distance between density functions and distance in probability between
level sets. Moreover using only one level set for each density function usually
gives good results when representing several densities in the same graphic.

Appendix A. Theoretical issues

Theoretical issues in Section 2

We need the following Lemma to prove Theorem 1:

Lemma 4. Let β0 = 0, βJ = 1. Consider the problem

min
0<α1<β1···<βJ−1<αJ<1

J∑
j=1

∫ βj

βj−1

|u− αj |du.

The optimal solution is

β̂j =
j

J
, j = 1, . . . , J − 1, α̂j =

β̂j−1 + β̂j
2

=
2j − 1

2J
, j = 1, . . . , J.

Proof of the Lemma 4: For α1, . . . , αJ fixed, the optimal values of βj are

βj =
αj + αj+1

2
, j = 1, . . . , J − 1.

For β1, . . . , βJ−1 fixed, the optimal values of αj are

αj =
βj−1 + βj

2
, j = 1, . . . , J.

Then, using both equations we have for j = 1, . . . , J − 1 that

2βj =
βj−1 + βj

2
+
βj + βj+1

2
,
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then

βj =
βj−1 + βj+1

2
, j = 1, . . . , J − 1,

and then
βj − βj−1 = c, j = 1, . . . , J,

for some constant c. This, jointly with the boundary conditions β0 = 0 and
βJ = 1, leads to the solution: β̂j = j/J, j = 1, . . . , J−1. The values for optimal
α are easily derived and the proof finishes.

Proof of Theorem 1. We start by assuming that d = df . Taking into account
that Cu ⊆ Cv for all 0 < u < v < 1 and that df (A,B) = µf (B \ A) =
µf (B)− µf (A) when A ⊆ B, we have that for all 0 < u < v < 1

df (Cu, Cv) = µf (Cv)− µf (Cu) = v − u = |u− v|.

Then the minimization problem (2.1) is equivalent to the following:

min
0<α1<···<αJ<1

∫ 1

0

|u− αj(u)|du = min
0<α1<···<αJ<1

{∫ (α1+α2)/2

0

|u− α1|du

+

J−1∑
j=1

(∫ (αj+αj+1)/2

(αj+αj−1)/2

|u− αj |du

)
+

∫ 1

(αJ−1+αJ )/2

|u− αJ |du

}
.

This problem is equivalent to the k-median problem for the uniform distribution
over [0, 1] (in this case with k = J). The solution to this problem is easily found
(see Lemma 4) to be

α∗j =
2j − 1

2J
, j = 1, . . . , J.

Let now d = dλ. Observe that problem (2.1) in this case is

min
0<α1<···<αJ<1

∫ 1

0

dλ(Cu, Cαj(u))du.

This problem only depends on f because the definition of the collection of level
sets Cu, u ∈]0, 1] is based on f . Let us assume that there exists a density
g 6= f , but sharing the collection of level sets with f : for each u ∈]0, 1] there
exists a unique v ∈]0, 1] such that Cu = Cgv , where Cgv is the level set of g with
probability content v. The relation between u and v is one-to-one. In this case,
the solution to problem (2.1) when using Lebesgue measure is the same for both
f and g.

Let us define a bivariate distribution sharing with f the collection of level
sets. For each β ∈]0, 1] define C∗β = Cα(β), where α(β) is the unique value such
that

λ(Cα(β)) = βλ(C1).

Observe that C∗1 = C1. Then the collection

{C∗β : β ∈]0, 1]}
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identifies a probability measure µλ in R2 having these sets as density level sets
and verifying

µλ(C∗β) = β =
λ(C∗β)

λ(C∗1 )
, for all β ∈]0, 1].

Therefore, for this measure µλ the solution to problem (2.1) is the same as if we
use either distances between level sets: the Lebesgue measure or the measure in
probability µλ. Applying then the first part of the theorem we obtain that the
optimal values for βj , j = 1, . . . , J , are

βµλj = βλj =
2j − 1

2J
, j = 1, . . . , J.

However, we have seen before that the solution to problem (2.1) when using
the Lebesgue measure is the same as that for all distributions that share the same
collection of density level sets. Therefore, the optimal solution αλj , j = 1, . . . , J ,
is

αλj = α(βµλj ) = α

(
2j − 1

2J

)
, j = 1, . . . , J,

and the proof concludes.

Commented assumptions for Theorem 2. Before dealing with the proof
of Theorem 2, establishing the convergence of α̂n to α∗ as n goes to infinity, let
us introduce the following notation. Given a bivariate density φ with compact
support C1, we define the statistical parametric model

Fφ =

{
gφ,α(x) =

α

λ(Cφα)
ICφα(x) +

1− α
λ(C1)− λ(Cφα)

IC1\Cφα(x) : α ∈]0, 1[

}

∪
{
gφ,0(x) = gφ,1(x) =

1

λ(C1)
IC1

(x)

}
.

Then we can rewrite α∗ and α̂n as

α∗ = arg min
α∈[0,1]

{D(f, gf,α) : gf,α ∈ Ff},

α̂n = arg min
α∈[0,1]

{D(fn, gfn,α) : gfn,α ∈ Ffn}.

Observe that α∗ determines the closest distribution in the parametric model Ff
to the true distribution f . On the other hand α̂n is not a minimum distance
estimator because the parametric model used for each n, Ffn , changes with n.
Let us define a real minimum distance estimator related with α∗ and Ffn :

α̃n = arg min
α∈[0,1]

{D(fn, gf,α) : gf,α ∈ Ff}.

In the definition of α̃n, the parametric model is fixed for every n. Cao et al.
(1995) study minimum distance parametric estimation when fn = f̂n are kernel
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estimators of f , based on previous results from Parr and Schucany (1982). These
two works use a slightly more general definition of the sequence of minimum
distance estimator α̃n as any sequence verifying

D(fn, gf,α̃n) ≤ inf
α∈[0,1]

D(fn, gf,α) + εn, (A.1)

where {εn} is a sequence of real numbers tending to zero as n goes to infinity.
Let us state three assumptions (essentially the same assumed in Cao et al.

1995) that imply the convergence of minimum distance estimator α̃n to the
target parameter value α∗:

Ass.1 D(fn, f)→ 0 almost surely as n→∞.

Ass.2 D(α) = D(f, gf,α) has a unique minimum α∗.

Ass.3 For all α0 in [0, 1] and {αr} ⊂ [0, 1] we have that

lim
r→∞

D(f, gf,αr ) = D(f, gf,α0) implies lim
r→∞

αr = α0.

Under assumptions Ass.1, Ass.2 and Ass.3, Theorem 1 of Cao et al. (1995) and
Theorem 1 of Parr and Schucany (1982) apply, and it follows that

lim
n→∞

α̃n = α∗

where {α̃n} is any sequence verifying (A.1).
In order to prove that {α̂n} is converging to α∗ as n goes to ∞, in addition

to the previous assumptions concerning minimum distance estimation, we need
assumptions about the behavior of the level sets of fn as plug-in estimators of
those of f , when distance d between sets and distance D between densities are
considered:

Ass.4 Whenever Assumption Ass.1 is fulfilled, the following is also verified:

lim
n→∞

sup
α∈[0,1]

D(gfn,α, gf,α) = 0 almost surely.

Ass.5 Whenever Assumption Ass.1 is fulfilled, the following is also verified:

lim
n→∞

sup
α∈[0,1]

d(Cfnα , Cfα) = 0 almost surely.

The following proposition (with immediate proof) establishes a relationship
between the last two assumptions.

Proposition 5. If there exists a constant M such that for all densities f1 and
f2

D(gf1,α, gf2,α) ≤Md(Cf1α , C
f1
α ).

then Ass.5 is a sufficient condition for Ass.4.
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Let us now give some remarks about these technical assumptions.

• In practice the most usual choice for approximating sequence {fn}n is
given by the kernel density estimator of f , based on n i.i.d. random
variables X1, . . . , Xn with common density f , defined as

f̂n(x;h) =
1

nh2

n∑
i=1

K

(
x−Xi

h

)
, x ∈ R2,

where the kernel K is a bivariate probability density, and h = h(n) > 0
is known as the bandwidth or smoothing parameter (for more details see,
for instance, Silverman 1986, Scott 1992, Wand and Jones 1995, Simonoff
1996 or Bowman and Azzalini 1997).

Several conditions on h = h(n) are known to guarantee that D(f̂n, f) con-
verges almost surely to zero with n for certain choices of distance D. Then
the assumption Ass.1 is satisfied. For instance, for the density estimation
in Rd Devroye and Györfi (1985, Theorem 3.1) establish that almost surely
consistency in L1 distance is equivalent to limn h = 0 and limn nh

d =∞,
and Bertrand-Retali (1978) proves that almost surely consistency in L∞
is equivalent to limn h = 0 and limn(n/ log n)hd = ∞ for any uniformly
continuous density f .

• Let the distance between densities D be the L1 norm. Assume Ass.1 and
consider α ∈]0, 1[. Then,

D(gfn,α, gf,α) = D

(
α

λ(Cfnα )
ICfnα (x) +

1− α
λ(C1)− λ(Cfnα )

IC1\Cfnα (x),

α

λ(Cfα)
ICfα(x) +

1− α
λ(C1)− λ(Cfα)

IC1\Cfα(x)

)

= α

∣∣∣∣∣ 1

λ(Cfnα )
− 1

λ(Cfα)

∣∣∣∣∣λ(Cfnα ∩ Cfα)

+

∣∣∣∣∣ α

λ(Cfnα )
− 1− α
λ(C1)− λ(Cfα)

∣∣∣∣∣λ(Cfnα \ ∩Cfα)

+

∣∣∣∣∣ 1− α
λ(C1)− λ(Cfnα )

− α

λ(Cfα)

∣∣∣∣∣λ(Cfα \ ∩Cfnα )

+(1− α)

∣∣∣∣∣ 1

λ(C1)− λ(Cfnα )
− 1

λ(C1)− λ(Cfα)

∣∣∣∣∣λ(C1 \ (Cfnα ∪ Cfα)) =

S1 + S2 + S3 + S4.
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Consider α ∈]0, 1[ and assume that

lim
n→∞

λ(Cfnα ∆Cfα) = 0 almost surely. (A.2)

This implies that

λ(Cfnα )→ λ(Cfnα ), λ(C1 \ (Cfnα ∪ Cfα))→ λ(C1 \ ∪Cfα),

λ((Cfnα \ Cfα))→ 0, λ((Cfα \ Cfnα ))→ 0,

as n→∞. Then Si → 0, i = 1, 2, 3, 4. We conclude that

lim
n→∞

D(gfn,α, gf,α) = 0 almost surely for all α ∈]0, 1[.

Consider now, as in the previous remark, that fn = f̂n are kernel den-
sity estimators of f based on n independent observations of X ∼ f . In
this context Báıllo (2003) proves that (A.2) occurs for α ∈]0, 1[ under cer-
tain conditions on f (uniform continuity, no existence of flat parts, having
level sets smooth enough, existence of some moment), on the kernel func-
tion (Lipschitz, compact support and having no flat parts) and on the
bandwidth h = h(n) (implying limn h = 0 and limn(n/ log n)hd = ∞).
Under these assumptions Báıllo (2003) also obtains convergence rates for

λf (C f̂nα ∆Cfα). See also Polonik (1995), Tsybakov (1997), Cadre (2006),
Willett and Nowak (2007) and Mason and Polonik (2009) for alternative
approaches.

Additional conditions must be assumed in order to have a uniform version
of A.2, which would imply that for kernel density estimators assumptions
Ass.4 and Ass.1 are verified (see again the previous remark). Nevertheless,
in practice the supremum over α ∈ [0, 1] can be replaced by the maximum
over a finite fine grid {α1, . . . , αK} ⊂]0, 1[. Then the work of Báıllo (2003)
guarantees that, under the conditions cited above,

lim
n→∞

max
k=1...K

λ(C f̂nαk∆Cfαk) = 0 almost surely.

Proof of Theorem 2. We will show that the sequence {α̂n}n verifies the
definition of the minimum distance estimator of α∗ given in equation (A.1).
Then Theorem 1 by Cao et al. (1995) and Theorem 1 by Parr and Schucany
(1982) ends the proof.

Let {α̃n} be a minimum distance estimator sequence of α∗ verifying (A.1).
Observe that

D(fn, gf,α̂n) = D(fn, gf,α̃n) + (D(fn, gf,α̂n)−D(fn, gf,α̃n))

≤ inf
α∈[0,1]

D(fn, gf,α) + εn + an = inf
α∈[0,1]

D(fn, gf,α) + ε∗n,
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where an = D(fn, gf,α̂n)−D(fn, gf,α̃n) and ε∗n = εn + an. So it is sufficient to
prove that an goes to zero almost surely as n goes to infinity. The definitions
of α̃n and α̂n imply that

0 ≤ D(fn, gf,α̂n)−D(fn, gf,α̃n) + εn =

D(fn, gfn,α̃n)−D(fn, gf,α̃n) +D(fn, gf,α̂n)−D(fn, gfn,α̃n) + εn ≤

D(fn, gfn,α̃n)−D(fn, gf,α̃n) +D(fn, gf,α̂n)−D(fn, gfn,α̂n) + εn ≤

2 sup
α∈[0,1]

|D(fn, gfn,α)−D(fn, gf,α)|+ εn ≤ 2 sup
α∈[0,1]

|D(gfn,α, gf,α)|+ εn.

The last inequality follows by the reverse triangle inequality. Then, for all n,

−εn ≤ an ≤ 2 sup
α∈[0,1]

|D(gfn,α, gf,α)| .

The right term goes to zero almost surely with n by assumptions Ass.1 and
Ass.4. This and the fact that limn εn = 0 imply that limn an = 0 almost surely
and the proof concludes.
Proof of Theorem 3. Observe that

D(fi, fj) ≤ D(fi, f
i
n) +D(f in, f

j
n) +D(fj , f

j
n),

D(f in, f
j
n) ≤ D(fi, f

i
n) +D(fi, fj) +D(fj , f

j
n).

For all i < j, by Assumption Ass.1, with probability 1 the random sequences
{f in}n and {f jn}n will verify that

|D(f in, f
j
n)−D(fi, fj)| ≤ D(fi, f

i
n) +D(fj , f

j
n)→n 0.

Let ε = 0.5∗min{|D(fi, fj)−D(fk, fl)| : i < j, k < l, (i, j) 6= (k, l)}. Then, with
probability 1, there exists nε such that for all n ≥ nε, and all i < j

|D(f in, f
j
n)−D(fi, fj)| < ε.

Then, with probability 1, the ranks Rij obtained when ordering the distances
D(fi, fj) coincide with those obtained when ordering the distances D(f in, f

j
n)

for n ≥ nε. An analogous argument uses Assumption Ass.5 to prove that,
with probability 1, for all α ∈ (0, 1) the ranks rαij obtained when ordering the

distances d(Cfiα , C
fj
α ) coincide with those obtained when ordering the distances

d(C
fin
α , C

fjn
α ) when n ≥ nν , where

ν = 0.5 ∗min{ inf
0<α<1

|d(Cfiα , C
fj
α )− d(Cfkα , Cflα )| : i < j, k < l, (i, j) 6= (k, l)}.

As a consequence, with probability 1, for n ≥ max{nε, nν} we have that α̂n = α∗

and the proof concludes.
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Appendix B. Supplementary material

For the Aircraft data example a dynamic graph is provided as supplementary
material. It represents 52 different periods that go smoothly from the first to
the last periods in the left panel. Each density is represented by 3 level sets
(with probability contents 0.25, 0.5 and 0.75). The control buttons below the
animation allow interaction.
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