
On geometrical properties of preconditioners in IPMs
for classes of block-angular problems

Jordi Castro Stefano Nasini

Dept. of Stat. and Oper. Res. Dept. of Prod., Tech. and Oper. Mngmt.

Universitat Politècnica de Catalunya IESE Business School

jordi.castro@upc.edu snasini@iese.edu

Research Report UPC-DEIO DR 2016-03

February 2016

Report available from http://www-eio.upc.es/˜jcastro

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41828268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




ON GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMS FOR
CLASSES OF BLOCK-ANGULAR PROBLEMS∗

JORDI CASTRO †
AND STEFANO NASINI ‡

Abstract. One of the most efficient interior-point methods for some classes of block-angular structured problems
solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient for,
respectively, the block and linking constraints. In this work we show that the choice of a good preconditioner depends
on geometrical properties of the constraints structure. In particular, it is seen that the principal angles between the
subspaces generated by the diagonal blocks and the linking constraints can be used to estimate ex-ante the efficiency
of the preconditioner. Numerical validation is provided with some generated optimization problems. An application
to the solution of multicommodity network flow problems with nodal capacities and equal flows of up to 127 million of
variables and up to 7.5 million of constraints is also presented.

Key words. interior-point methods, structured problems, preconditioned conjugate gradient, principal angles,
large-scale optimization

AMS subject classifications. 90C06, 90C08, 90C51

1. Introduction. Many real-world optimization problems exhibit a primal block-angular struc-
ture, where decision variables and constraints can be grouped in different blocks which are dependent
due to some linking constraints Applications of this class of problems can be found, for instance,
in multicommodity telecommunications networks, statistical data protection, multistage control and
planning, and complex networks.

Solution strategies to deal with this class of problems can be broadly classified into simplex-based
methods [14, 22], decomposition methods [16, 1, 2, 26], approximation methods [5], and interior-
point methods [10, 20] One of the most efficient interior-point methods (IPMs) for some classes of
block-angular problems solves normal equations by a combination of Cholesky factorizations for the
block constraints and preconditioned conjugate gradient (PCG) iterations for the linking constraints
[10, 11]. The spectral radius of a certain matrix in the preconditioner, which is always in [0, 1)
plays an important role in the efficiency of this approach. It was observed that for separable convex
problems with nonzero Hessians this spectral radius is reduced, and the PCG becomes more efficient
[13]. When the spectral radius approaches 1, switching to a suitable preconditioner may be an efficient
alternative [7]. It is worth noting that computing approximate Newton directions by PCG does not
destroy the good convergence properties of IPMs, as shown in [19]. There is an extensive literature
on the use of PCG within IPMs for other types of problems (e.g., [3, 4, 9, 17, 24, 27] to mention a
few).

However, it is not yet clear why for some classes of block-angular problems the above approach
may be very efficient (see, for instance, the results of [13, 12]), while it may need a large number of
PCG iterations in others. The spectral radius may be used to monitor the good or bad behaviour, but
an ex-ante explanation has to be found in the structural information of the block-angular constraints
matrix. The purpose of this paper is to provide such a explanation by considering geometrical
properties of the primal block-angular matrix structure which, in addition, may be used to improve the
preconditioning in some instances. It will be shown that the principal angles between the subspaces
generated by the diagonal blocks and the ones generated by the linking constraints play an important
role, explaining the efficiency of the approach and providing a proper choice of the preconditioner.

This paper is organized as follows. Section 2 outlines the specialized IPM for primal block-
angular problems. Section 3 analyses the quality of preconditioning techniques based on geometrical
and spectral properties. This analysis is used to obtain new complementary preconditioners to deal
with orthogonality and collinearity of the subspaces generated by the diagonal blocks and the ones
generated by the linking constraints. Section 4 provides a numerical validation of the analysis in
previous section. This is based on both a simulation analysis of the effect of geometrical relations
on PCG iterations—Subsection 4.1—and a real world application to multicommodity network flow
problems with nodal capacities—Subsection 4.2—, where the analyzed geometrical properties can be
fully exploited.

∗This work has been supported by grant MTM2012-31440 of the Spanish Scientific and Technical Research Program.
†Dept. of Statistics and Operations Research,Universitat Politècnica de Catalunya, Jordi Girona 1–3, 08034

Barcelona, Catalonia. jordi.castro@upc.edu
‡Dept. of Production, Technology and Operations Management, IESE Business School, University of Navarra, Av.

Pearson 21, 08034 Barcelona, Catalonia, Spain. snasini@iese.edu

1

mailto:jordi.castro@upc.edu
mailto:snasini@iese.edu


2 JORDI CASTRO AND STEFANO NASINI

2. Outline of the IPM for primal block-angular problems. The primal block-angular
formulation dealt with by the algorithm is

min

k∑

i=0

(ci)⊤xi(2.1a)

subject to




N1

N2

. . .

Nk

L1 L2 . . . Lk I







x1

x2

...
xk

x0



=




b1

b2

...
bk

b0




(2.1b)

0 ≤ xi ≤ ui i = 0, . . . , k.(2.1c)

Matrices Ni ∈ R
mi×ni and Li ∈ R

l×ni , i = 1, . . . , k, respectively define the block-diagonal and linking
constraints, k being the number of blocks. Vectors xi ∈ R

ni , i = 1, . . . , k, are the variables for each
block. x0 ∈ R

l are the slacks of the linking constraints. bi ∈ R
mi , i = 1, . . . , k, is the right-hand side

vector for each block of constraints, whereas b0 ∈ R
l is for the linking constraints. The upper bounds

for each group of variables are defined by ui ∈ R
ni , i = 0, . . . , k. Problems with equality linking

constraints can be formulated by setting u0 = 0. The total number of constraints and variables of
(2.1) is thus, respectively, m̃ = l+

∑k
i=1 mi and ñ = l+

∑k
i=1 ni. Formulation (2.1) is a very general

model which accommodates to several block-angular problems.
In this work we consider the specialized IPM of [10, 11]. Briefly, this approach requires the solution

at each interior-point iteration of the normal equations system AΘA⊤∆y = g, where A ∈ R
m̃×ñ is the

constraints matrix of (2.1b); Θ = (W (U−X)−1+ZX−1)−1 ∈ R
ñ is a diagonal matrix computed from

the values (x,w, z) ∈ R
3ñ of the current primal-dual point—w and z being the Lagrange multipliers

associated to, respectively, upper and lower bounds; ∆y ∈ R
m̃ is the direction of movement for the

Lagrange multipliers of equality constraints y; and g ∈ R
m̃ is some right-hand-side. A derivation of

the normal equations can be found in [28].
Exploiting the block structure of A and Θ we have

(2.2)

AΘA⊤∆y =




N1Θ1N
⊤
1 N1Θ1L

⊤
1

. . .
...

NkΘkN
⊤
k NkΘkL

⊤
k

L1Θ1N
⊤
1 . . . LkΘkN

⊤
k Θ0 +

∑k
i=1 LiΘiL

⊤
i




∆y

=

[
B C
C⊤ D

] [
∆y1
∆y2

]
= g,

where ∆y1 and ∆y2 are the components of ∆y associated to, respectively, block and linking con-
straints; and Θi = (Wi(Ui − Xi)

−1 + ZiX
−1
i )−1, i = 0, . . . , k, are the blocks of Θ. By eliminating

∆y1 from the first group of equations of (2.2), we obtain

(D − C⊤B−1C)∆y2 = g1(2.3a)

B∆y1 = g2,(2.3b)

for a proper partition of the right-hand side into g1 and g2. The specialized IPM for this class of
problems solves (2.3) by a combination of k Cholesky factorizations, for the systems involving B and
PCG for (2.3a). Indeed, matrix D − C⊤B−1C ∈ R

l×l of (2.3a), whose dimension is the number of
linking constraints, is symmetric and positive definite, since it is the Schur complement of the normal
equations (2.2), which are symmetric and positive definite. System (2.3a) can thus be solved by PCG.
A good preconditioner is instrumental. D − C⊤B−1C is a P -regular splitting, i.e., it is symmetric
and positive definite, D is nonsingular and D+C⊤B−1C is positive definite. Therefore the P -regular
splitting theorem [25] guarantees that

(2.4) 0 < ρ(D−1(C⊤B−1C)) < 1,

where ρ(·) denotes the spectral radius of a matrix (i.e., the maximum absolute eigenvalue). This
allows us to compute the inverse of D−C⊤B−1C as the following infinite power series (see [10, Prop.



GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 3

4] for a proof).

(2.5) (D − C⊤B−1C)−1 =

(
∞∑

i=0

(D−1(C⊤B−1C))i

)
D−1.

A preconditioner is thus obtained by truncating the infinite power series (2.5) at some term.
The more the terms included, the better the preconditioner will be, at the expense of increasing
the execution time of each PCG iteration. If we only include the first term, or the first and second
terms, of the infinite power series (2.5) the resulting preconditioners will be, respectively, D−1 or
(I +D−1(C⊤B−1C))D−1. As shown in [12], in most test problems D−1 was the best option for the
tradeoff between being a good and an efficient preconditioner. Thus, in this work we will focus on
the first term preconditioner D−1. Although the expected performance for a general primal block-
angular matrix is problem dependent, the effectiveness of the preconditioner obtained by truncating
the infinite power series (2.5) is governed by the spectral radius ρ(D−1(C⊤B−1C))—the farther from
1, the better [13]—and the structure of D, as each PCG iteration requires the solution of a system
with this matrix.

The spectral radius tends to approach 1 when the IPM is close to the optimal solution. For
this reason a hybrid preconditioner was introduced in [7]: the power series preconditioner (either
D−1 or (I + D−1(C⊤B−1C))D−1) is used in the initial IPM iterations, switching to the splitting
preconditioner [24] when the former becomes inefficient. The above hybrid scheme is supported by
the known good behaviour of the splitting preconditioner near the solution of the linear optimization
problem. Briefly, given the normal equations matrix AΘA⊤, the splitting preconditioner is based on a
partition of the columns of A into basic and nonbasic columns, forming the nonsingular basic matrix
AB ∈ R

m̃×m̃ and the nonbasic one AN ∈ R
m̃×(ñ−m̃), respectively. Applying the same partition to Θ,

the normal equations matrix can be rewritten as

(2.6) AΘA⊤ = ABΘBA
⊤
B +ANΘNA⊤

N .

The splitting preconditioner is thus Θ
−1/2
B A−1

B . The symmetric application of this preconditioner to
AΘA⊤ gives:

(2.7)
(Θ

−1/2
B A−1

B )(AΘA⊤)(Θ
−1/2
B A−1

B )⊤ = Θ
−1/2
B A−1

B (ABΘBA
⊤
B +ANΘNA⊤

N )A−T
B Θ

−1/2
B

= I + (Θ
−1/2
B A−1

B ANΘ
1/2
N )(Θ

−1/2
B A−1

B ANΘ
1/2
N )⊤.

Sufficiently close to an optimal solution, with a suitable choice of the columns of AB , the diagonal

entries of Θ−1
B and ΘN are very small and (Θ

−1/2
B A−1

B ANΘ
−1/2
N ) approaches the zero matrix. Some

strategies for identifying a suitable matrix AB are discussed in [24, 7].

This specialized IPM has been recently implemented in a software package called BlockIP [12],
that will be used for the computational results of this paper.

3. Analysis of preconditioning techniques for block-angular problems. The main source
of difficulty in solving a primal block-angular problem of the form (2.1) is the presence of linearly
independent linking constraints, L1x1 +L2x2 + . . .+Lkxk ≤ b0. Consider the lucky—and unlikely—
case where A is such that for every i = 1 . . . k each row vector of Li belongs to the column space of
N⊤

i (linearly dependent linking constraints). By the definition of B, C and D in (2.2), we may write

(3.1)

C⊤B−1C =

k∑

i=1

LiΘiN
⊤
i (NiΘiN

⊤
i )−1 NiΘiL

⊤
i

=

k∑

i=1

LiΘ
1/2
i PiΘ

1/2
i L⊤

i

where

(3.2) Pi = Θ
1/2
i N⊤

i (NiΘiN
⊤
i )−1 NiΘ

1/2
i i = 1, . . . , k

is the projection operator onto R(Θ1/2
i N⊤

i ), the range or column space of Θ
1/2
i N⊤

i . If each column

vector of Θ
1/2
i L⊤

i belongs to R(Θ1/2
i N⊤

i ) (which is equivalent to say that the row vectors of Li might

be written as a linear combination of the row vectors of Ni) then PiΘ
1/2
i L⊤

i = Θ
1/2
i L⊤

i , as Pi is the



4 JORDI CASTRO AND STEFANO NASINI

identity operator of the subspace generated by the columns of Θ
1/2
i N⊤

i , and

(3.3)

D − C⊤B−1C = D −
k∑

i=1

LiΘ
1/2
i PiΘ

1/2
i L⊤

i

= D −
k∑

i=1

LiΘiL
⊤
i = Θ0.

On the contrary, if each column vector of Θ
1/2
i L⊤

i belongs to N (NiΘ
1/2
i ), the null space of NiΘ

1/2
i ,

then PiΘ
1/2
i L⊤

i = 0 and

(3.4) D − C⊤B−1C = D −
k∑

i=1

LiΘ
1/2
i PiΘ

1/2
i L⊤

i = D

Thus Θ−1
0 and D−1 would be the inverse (i.e., the exact preconditioners) of D−C⊤B−1C when, for

i = 1 . . . k, each column vector of Θ
1/2
i L⊤

i belongs to either R(Θ1/2
i N⊤

i ) or N (NiΘ
1/2
i ), respectively.

Needless to say, these two extreme cases will rarely appear in a real problem; for instance, when

Θ
1/2
i L⊤

i belongs to R(Θ1/2
i N⊤

i ) the linking constraints are redundant and can be removed, obtaining
a block-separable problem. However, as seen in next subsection, they allow to decide whether D or
Θ0 will be a good preconditioner for (2.3a), and which of them will theoretically behave better.

3.1. Geometrical and spectral properties. According to previous discussion, the goodness
of the approximation of Θ−1

0 and D−1 to (D − C⊤B−1C)−1 might be measured by the principal

angles between the range spaces of Θ
1/2
i N⊤

i and Θ
1/2
i L⊤

i , for i = 1, . . . , k. The principal angles
provide information about the relative position of two subspaces of an inner product space. Consider
two subspaces LΘ and NΘ of Rn, with dimLΘ = l, dimNΘ = m, and q = min{l,m}. The principal
angles between LΘ and NΘ, denoted as 0 ≤ γ1 ≤ . . . ≤ γq ≤ π/2, are obtained by solving for
j = 1, . . . , q this sequence of optimization problems [6][18, Chapter 12]:

cos(γj) = max
u,v

u⊤v(3.5)

subject to‖u‖ = 1, ‖v‖ = 1(3.6)

u ∈ LΘ, v ∈ NΘ(3.7)

u⊤vk = 0, u⊤uk = 0, k = 1 . . . j − 1,(3.8)

uj ∈ R
n and vj ∈ R

n being the optimal vectors. In other words, for j = 1 the procedure finds
the unit vectors u1 ∈ LΘ and v1 ∈ NΘ which minimize the angle between them—named γ1. For
j > 1, the procedure considers the orthogonal complements of span{u1, . . . , uj−1} in LΘ and of
span{v1, . . . , vj−1} inNΘ, and computes a new pair of vectors uj , vj in the above subspaces minimizing

the angle γj . In our case, we have that LΘ = R(Θ1/2
i L⊤

i ) and NΘ = R(Θ1/2
i N⊤

i ). The vectors
{u1, . . . , uq} and {v1, . . . , vq} are called principal vectors, associated to principal angles {γ1, . . . , γq}.
The principal angles between subspaces can be graphically depicted as in Figure 1. If q = m = l, the
distance between the equidimensional subspaces LΘ and NΘ is defined as sin γq =

√
1− cos2 γq [18,

Chapter 2].

Principal angles between two subspaces can be computed by the singular value decomposition,
as shown by next theorem from [6] (procedure also described in [18, Chapter 12]):

Theorem 3.1. Let the columns of matrices QL ∈ R
n×l and QN ∈ R

n×m form orthonormal
bases for the subspaces L and N , correspondingly. Principal vectors u ∈ R

n and v ∈ R
n must verify

u = QLũ and v = QN ṽ, where ũ ∈ R
l and ṽ ∈ R

m are left and right singular vectors of Q⊤
LQN ,

associated to the singular value cos (γ(u, v)), that is to say, (Q⊤
LQN )ṽ = cos (γ(u, v)) ũ.

The algorithm of Figure 2 outlines how to compute the principal angles of column spaces of
matrices L⊤ ∈ R

n×l and N⊤ ∈ R
n×m. The algorithm is just provided for completeness; as it will be

shown later, it does not need to be used in practice. Indeed, its use would be prohibitive since the
required singular value decomposition may be computationally very expensive for large optimization
problems.

As Θi, i = 1, . . . , k, are different at each interior-point iteration, the principal angles between the
subspaces LΘi

and NΘi
also change. Accordingly, the goodness of the approximation of Θ−1

0 and
D−1 to (D − C⊤B−1C)−1 dynamically changes along the interior-point iterations. Proposition 3.2



GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 5

Fig. 1. Angles between subspaces.

Algorithm Computation of principal angles(L⊤ ∈ R
n×l, N⊤ ∈ R

n×m)
q = min(m, l)
//Compute orthonormal basis of R(L⊤) and R(N⊤) using QR factorizations
QL ← QR(L⊤), QL ∈ R

n×l

QN ← QR(N⊤), QN ∈ R
n×m

//Compute singular value decomposition of Q⊤
LQN : UΣV ⊤ = Q⊤

LQN

[U,Σ, V ]← SV D(Q⊤
LQN ), U ∈ R

l×q, V ∈ R
m×q orthonormal, Σ ∈ R

q×q

// Compute vector of principal angles γ
γ ← arccos(diag(Σ)), γ ∈ R

q

// Compute principal vectors WL and WN

WL ← QLU , WL ∈ R
n×q

WN ← QNV , WN ∈ R
n×q

Return: γ,WL,WN

End_algorithm

Fig. 2. Algorithm to compute principal angles between column spaces of L⊤ and N⊤.

below provides a lower bound of the cosine of principal angles of LΘ and NΘ as a function of the
principal angles of L and N .

Proposition 3.2. Consider the subspaces L = R(L⊤) ⊆ R
n and N = R(N⊤) ⊆ R

n and their
image sets LΘ = R(Θ1/2L⊤) ⊆ R

n and NΘ = R(Θ1/2N⊤) ⊆ R
n under the linear transformation

Θ1/2, where Θ is a positive diagonal matrix. Let γ(u, v) be the first principal angle between L and
N , associated to principal vectors u and v; and γΘ the first principal angle between LΘ and NΘ. If
L and N are not orthogonal, then

(3.9) cos(γΘ) ≥ max

{
0,

Θc

Θmax
cos (γ(u, v))

}
,

where Θmin and Θmax are the smallest and largest diagonal components of Θ, and Θc ∈ [−Θmax,Θmax].
If in addition uivi ≥ 0 for all i = 1, . . . , n then we have

(3.10) cos(γΘ) ≥
Θmin

Θmax
cos (γ(u, v)) > 0.

Proof. Let γ
(

Θ1/2u
‖Θ1/2u‖

, Θ1/2v
‖Θ1/2v‖

)
be the angle between the unitary transformed vectors Θ1/2u

‖Θ1/2u‖
∈

LΘ and Θ1/2v
‖Θ1/2v‖

∈ NΘ. From the definition of principal angles as resulting from the maximization

problem (3.5)–(3.8), and since vectors Θ1/2u
‖Θ1/2u‖

and Θ1/2v
‖Θ1/2v‖

are feasible for this problem, we have

(3.11) cos(γΘ) ≥ cos

(
γ

(
Θ1/2u

‖Θ1/2u‖ ,
Θ1/2v

‖Θ1/2v‖

))
.



6 JORDI CASTRO AND STEFANO NASINI

Since u, v are principal vectors, by (3.6) ‖u‖ = ‖v‖ = 1. Moreover, since principal angles are always
in [0, π/2], and we are assuming L and N are not orthogonal, we have

(3.12) 0 < u⊤v = ‖u‖ ‖v‖ cos(γ(u, v)) = cos(γ(u, v)) ≤ 1.

By definition of inner product, by (3.12), using that for any square matrix M and vector w ‖Mw‖ ≤
‖M‖ ‖w‖, and that

√
Θmax ≥ ‖Θ1/2‖,

(3.13)

cos

(
γ

(
Θ1/2u

‖Θ1/2u‖ ,
Θ1/2v

‖Θ1/2v‖

))
=

u⊤Θv

‖Θ1/2u‖ ‖Θ1/2v‖ ≥
u⊤Θv

‖Θ1/2‖2 ‖u‖ ‖v‖ ≥

≥ 1

Θmax

u⊤Θv

u⊤v
cos(γ(u, v)) ≥ u⊤Θv

Θmax
cos(γ(u, v)).

Defining the set P = {i ∈ {1, . . . , n} : uivi ≥ 0}, since ‖u‖ = ‖v‖ = 1 and u⊤v ≤ 1, we have that

(3.14) 0 ≤
∑

i∈P

uivi ≤ 1 and − 1 ≤
∑

i6∈P

uivi ≤ 0.

Then, by (3.14),

u⊤Θv =
∑

i∈P

Θiuivi +
∑

i6∈P

Θiuivi ≥ Θmax

∑

i6∈P

uivi ≥ −Θmax,

and similarly,

u⊤Θv =
∑

i∈P

Θiuivi +
∑

i6∈P

Θiuivi ≤ Θmax

∑

i∈P

uivi ≤ Θmax.

Then, there is a Θc ∈ [−Θmax,Θmax] such that

(3.15) Θc = u⊤Θv.

Applying (3.15) in (3.13), and since, by definition, cos(γΘ) ≥ 0, inequality (3.9) is proved.
If uivi ≥ 0 for all i = 1, . . . , n, we have

(3.16)
u⊤Θv

u⊤v
≥ Θminu

⊤v

u⊤v
= Θmin.

Applying (3.16) to the penultimate term of (3.13) we get (3.10).
An important consequence of Proposition 3.2 is that we have no information about the principal

angles in the final iterations, as Θmin/Θmax can approach 0 and Θc/Θmax can be any number in
[−1, 1] when the iterative process gets close to the optimal solution. In the worst case, it may even
happen that almost-collinear subspaces L and N become almost-orthogonal for some Θ.

It is worth noting that the two extreme cases have opposite behaviour:
• If L and N are orthogonal (that is, their principal angles are π/2), then, for a diagonal Θ

matrix such that some component Θi,i is very large, and for other components j 6= i Θjj ≈ 0,
the principal angles of LΘ and NΘ will become close to 0. This is a limit case of (3.10).

• If L ⊆ N , then the principal angles are 0. This means that, for some matrix Y ∈ R
m×l,

L⊤ = N⊤Y , thus (Θ1/2L⊤) = (Θ1/2N⊤)Y and the principal angles of LΘ and NΘ will also
be 0. However this case is not of practical interest, since if L ⊆ N then the linking constraints
are redundant and can be removed.

A downside of the use of principal angles between subspaces for this purpose appears when
R(L⊤

i ) = R
ni , for i = 1, . . . , k, such that Ni ⊆ Li. In such case the principal angles are always zero,

regardless of what R(N⊤
i ) is. This happens, for instance, in multicommodity network flow problems

[10] and edge-colored network problems [15], where Li = I, for i = 1, . . . , k. Since our interest is on
whether linking constraints belong to R(N⊤

i ), and not the opposite, a more sensible approach would
be to provide the average of the principal angles between the l constraints of Li and R(N⊤

i ). This
procedure has the added benefit that the computation of each single principal angle through (3.5)–
(3.8) is highly simplified. In particular, denoting by Li,j the vector associated to the j-th constraint
of Li, (3.5)–(3.8) reduces to

cos(γ) = max
x∈Rmi

c⊤x

subject to x⊤NiN
⊤
i x = 1

where c = Ni
Li,j

‖Li,j‖
,



GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 7

whose solution can be directly computed as

x = (NiN
⊤
i )−1 c

2λ
where λ =

1

2

√
c⊤(NiN⊤

i )−1c.

As shown below, the goodness of the dynamical approximation of Θ−1
0 and D−1 to (D −

C⊤B−1C)−1 along the interior-point iterations is related to the changes in the spectral radius of
matrix D−1(C⊤B−1C)—which is always in [0, 1) [10, Theorem 1]. Since D is the first term of the
power series (2.5), the farther away from 1 is the spectral radius of D−1(C⊤B−1C) the better is the
quality of the approximation of the first few terms of (2.5). Although the particular behavior of the
spectral radius value is problem dependent, in general, it comes closer to 1 as we approach the optimal
solution, because of the ill-conditioning of the Θ matrix. Next result provides a clear relationship
between the spectral radius of D−1(C⊤B−1C) and the projection operators in the subspaces LΘ and
NΘ.

Proposition 3.3. Let λ be an arbitrary eigenvalue of D−1(C⊤B−1C). If each column vector of

Θ
1/2
i L⊤

i belongs to R(Θ1/2
i N⊤

i ) then

(3.17) λ =
r⊤
(∑k

i=1 LiΘiL
⊤
i

)
r

r⊤Dr
,

where r is the corresponding eigenvector associated to λ. On the contrary, if each column vector of

Θ
1/2
i L⊤

i belongs to N (NiΘ
1/2
i ), the null space of NiΘ

1/2
i , then

(3.18) λ = 0.

Proof. Eigenvalue λ of D−1(C⊤B−1C) satisfies (C⊤B−1C)r = λDr for some eigenvector r. From
the definition of C,B,D in (2.2) and projection matrices Pi in (3.2) we have

(
k∑

i=1

LiΘiN
⊤
i

(
NiΘiN

⊤
i

)−1
NiΘiL

⊤
i

)
r = λDr

is equivalent to

(1− λ)Dr =

(
Θ0 +

k∑

i=1

LiΘiL
⊤
i

)
r −

(
k∑

i=1

LiΘiN
⊤
i

(
NiΘiN

⊤
i

)−1
NiΘiL

⊤
i

)
r,

which implies

(3.19) (1− λ) =

r⊤Θ0r + r⊤

(
k∑

i=1

LiΘ
1/2

i (I − Pi)Θ
1/2

i L⊤
i

)
r

r⊤Dr
.

From this expression and applying the definition of WR and WN

(3.20) WN =

k∑

i=1

LiΘ
1/2

i (I − Pi)Θ
1/2

i L⊤
i and WR =

k∑

i=1

LiΘ
1/2

i PiΘ
1/2

i L⊤
i ,

we find the following identities

(3.21) λ =
r⊤
(∑k

i=1 LiΘiL
⊤
i

)
r − r⊤WN r

r⊤Dr
=

r⊤WRr

r⊤Dr
.

It turns out that r⊤WN r = 0 when each column vector of Θ
1/2
i L⊤

i belongs to R(Θ1/2
i N⊤

i ); and

r⊤WRr = 0 when each column vector of Θ
1/2
i L⊤

i belongs to N (NiΘ
1/2
i ). The proof is complete.

Note that a clear lesson from Proposition 3.3 is that the spectral radius might be small even in the

case of almost collinearity between the row vectors of LiΘ
1/2

i and their projections into R(Θ1/2
i N⊤

i ),

when r⊤Θ0r≫ r⊤(
∑k

i=1 LiΘiL
⊤
i )r. This means that, although Θ0 is in theory a better preconditioner

in case of almost collinearity, in practice it can be even outperformed by D. This is consistent with



8 JORDI CASTRO AND STEFANO NASINI

Table 1

CPU time of BlockIP using D−1 and Θ
−1

0
preconditioners. The instances have l = 100 linking constraints and

k = 100 equal diagonal block matrices N ∈ R
10×50.

α r
CPU time IPM iterations PCG iterations

Θ
−1

0
D−1 Θ

−1

0
D−1 Θ

−1

0
D−1

π/14 2 0.99 1.47 30 43 2.84 5.87
π/10 4 1.27 1.54 38 44 4.94 6.29
π/6 6 1.30 1.58 36 46 9.00 6.05
π/2 8 1.29 1.27 35 39 8.91 5.05

Table 2

CPU time of BlockIP using D−1 and Θ
−1

0
preconditioners. The instances have l = 200 linking constraints and

k = 1000 equal diagonal block matrices N ∈ R
20×200.

α r
CPU time IPM iterations PCG iterations

Θ
−1

0
D−1 Θ

−1

0
D−1 Θ

−1

0
D−1

π/14 2 191.52 547.21 28 77 1.85 7.08
π/10 4 512.61 479.12 80 61 6.40 12.05
π/6 6 496.39 574.33 64 76 17.50 11.75
π/2 8 565.52 497.19 67 70 26.29 11.85

some of the computational results of sections 4–4.2, and with Theorem 1 of [13], which stated that
the spectral radius ρ of D−1(C⊤B−1C) is bounded by

(3.22) 0 ≤ ρ ≤ max
j∈{1,...,l}

γj(
uj

vj

)2
Θ0j + γj

< 1,

where u is the eigenvector (or one of the eigenvectors) of D−1(C⊤B−1C) for ρ; γj , j = 1, . . . , l, and

V = [V1 . . . Vl], are respectively the eigenvalues and matrix of columnwise eigenvectors of
∑k

i=1 LiΘiLi
⊤;

v = V ⊤u (and, abusing of notation, we assume that for vj = 0, (uj/vj)
2 = +∞). Clearly, from (3.22),

the larger Θ0, the closer ρ to 0, which it is also concluded from (3.17).

4. Numerical validation. The numerical validation of the proposed preconditioning technique
is based on two types of computational experiments: i) assessing the effect of the described geometrical
relations to the number of PCG iterations; ii) analyzing the global numerical performance of both
preconditioning techniques, when applied to classes of multicommodity network flow problems. All
the runs were carried out on a Fujitsu Primergy RX300 server with 3.33 GHz Intel Xeon X5680
CPUs (24 cores) and 144 GB of RAM, under a GNU/Linux operating system (Suse 11.4), without
exploitation of multithreading capabilities.

4.1. Geometrical relations and PCG iterations. Consider two full rank matrices N ∈
R

m×n, n > m, and Y ∈ R
l×m, n > l, and let L = Y N . The rows of L ∈ R

l×n are linear combinations
of the rows of N and the principal angles between the subspaces generated by L⊤ and N⊤ are
zero. Each vector in R(L⊤) can be rotated an angle α around the ith and jth coordinate axes by
pre-multiplying L⊤ by the n× n rotation matrix:

(4.1) Rij(α) =




1 · · · 0 0 · · · 0 0 · · · 0
...

. . .
... 0 · · · 0

...
. . .

...
0 · · · cos(α) 0 · · · 0 − sin(α) · · · 0
0 · · · 0 1 · · · 0 0 · · · 0
...

. . .
...

... · · ·
...

...
. . .

...
0 · · · 0 0 · · · 1 0 · · · 0
0 · · · − sin(α) 0 · · · 0 cos(α) · · · 0
...

. . .
...

... · · ·
...

...
. . .

...
0 · · · 0 0 · · · 0 0 · · · 1




.

If we consider H = {(i, j) : 1 ≤ i ≤ n− 1, i < j ≤ n}, the set of all possible pairs of coordinate axes,
the n(n−1)/2 distinct Rij(α) rotation matrices may be concatenated in some order to produce a new
rotation matrix such as

∏
(i,j)∈S Rij(α), where S ⊆ H. (Rotations in three dimensions and higher do

not commute, so that different orderings give different rotations.)
We are interested in showing the performance of the PCG method at each interior-point itera-

tion when changing the geometrical relations between the diagonal block and the linking constraint



GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 9

small instances big instances

Fig. 3. PCG iterations along the IPM iterations for α = π/16, r = 2, with preconditioners Θ
−1

0
and D−1. Plots

have to be read from right to left.

small instances big instances

Fig. 4. PCG iterations along the IPM iterations for α = π/12, r = 2, with preconditioners Θ
−1

0
and D−1. Plots

have to be read from right to left.

matrices, in accordance with specified rotations. To do so we randomly draw Ni ∈ R
m×n and

Yi ∈ R
l×m, i = 1, . . . , k, from a uniform probability distribution. Then S ⊆ H is also randomly

selected to compute the rotation matrix
∏

(i,j)∈S Rij(α). Finally, we obtain the linking constraint

matrices Li = YiNi

(∏
(i,j)∈S Rij(α)

)
, for i = 1, . . . , k. This procedure relies on the number r = |S|

of concatenated rotation matrices and the angle of rotation α to evaluate the associated changes in
the PCG iterations using Θ−1

0 and D−1 as preconditioners.

The BlockIP package [12] implementing the specialized interior-point method has been extended
with the Θ−1

0 preconditioner introduced in this work. Tables 1 and 2 show the computational results
obtained with BlockIP using D−1 and Θ−1

0 preconditioners. Instances of Table 1 are “small”, with
l = 100 linking constraints, and k = 100 equal diagonal block matrices N ∈ R

10×50. For the “big”
instances of Table 2 these dimensions are l = 200, k = 1000, and N ∈ R

20×200. The first column of
these tables show the angle α of each rotation, whereas the second column reports the number r of
rotation matrices considered. The remaining columns give the CPU time, number of IPM iterations,
and average number of PCG iterations per IPM iteration, for both preconditioners.

It is observed that the performance of the specialized IPM strongly relies on those angles for both
the small and big instances. Indeed, the average number of PCG iterations appears to increase or
decrease depending on the angles and the particular preconditioner. For Θ−1

0 , the smaller the angle,
the better the preconditioner, whereas the opposite holds for the small instances and D (this is not so
clearly observed for the big instances). This numerical evidence supports the previous discussion on
the effect of the geometrical relations between the diagonal blocks and the linking constraint matrices
on the quality of the preconditioner.

The plots of figures 3, 4, 5 and 6 illustrate the evolution of the number of PCG iterations (vertical
axis) at each IPM iteration (horizontal axis) for both preconditioners. Small and large instances of



10 JORDI CASTRO AND STEFANO NASINI

small instances big instances

Fig. 5. PCG iterations along the IPM iterations for α = π/8, r = 2, with preconditioners Θ
−1

0
and D−1. Plots

have to be read from right to left.

small instances big instances

Fig. 6. PCG iterations along the IPM iterations for α = π/4, r = 2, with preconditioners Θ
−1

0
and D−1. Plots

have to be read from right to left.

the same dimensions as in tables 1 and 2 have been used, but with different angles and always with
r = 2 rotations matrices. The horizontal axis shows the value of log µ (the natural logarithm of
the barrier parameter), such that the plots have to be read from right to left (the first and last
IPM iterations correspond respectively to the rightmost and leftmost points). The blue and green
dots are related to Θ−1

0 and D−1 respectively. The corresponding lines show polynomial curves of
degree four which have been fitted to the observed number of PCG iterations. It is observed that
for small angles (figures 3 and 4), as expected by the theory, the preconditioner D−1 usually requires
more PCG iterations than Θ−1

0 ; this difference increases as we approach the optimal solution, for the
small instances. However, for the “larger” angles of figures 5 and 6, again in accordance with theory,
preconditioner D−1 becomes more efficient than Θ−1

0 after some IPM iteration. The message should
then be that, for problems with small angles, Θ−1

0 should be preferred in general, and D−1 otherwise.
It is worth noting that a benefit of Θ−1

0 is that it is always a diagonal preconditioner, independently
of the problem, unlike D−1, which may require a Cholesky factorization.

4.2. Multicommodity network flow problem with nodal capacities and equal flows.
Let G = (V,A) be a directed graph, where V is a set of n vertices or nodes and A is a set of n′ arcs,
and let K be a set of k commodities. The multicommodity network flow problem with nodal capacities
(MNFPNC from now on) looks for the minimum cost routing of the flows for all the commodities
from some source to some destination nodes, imposing capacities on the total outflow at some nodes
h ∈ C ⊆ V. This problem differs from the standard multicommodity flow problem in that capacities
are imposed at nodes, instead of at arcs. The node capacities constraints are

(4.2)
∑

i∈K

∑

j∈V

xi
hj ≤ bh0 , h ∈ C,



GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 11

Table 3

CPU time and iterations (within parenthesis) of BlockIP (using D−1 and Θ
−1

0
preconditioners) and CPLEX

available LP methods (Primal Simplex, Dual Simplex, Barrier Method) when solving MNFPNCs. Only 20% of nodes
are constrained to have an outflow capacity, i.e., l = 0.2n.

n k n. var. n. con.
CPLEX BlockIP

Primal Simplex Dual Simplex Barrier Θ
−1

0
D−1

150 200 1788000 29830 57.5 (997332) 5.5 (85732) 5.8 (13) 5.7 (29) 5.6 (29)
150 400 3576000 59630 242.2 (428032) 14.0 (163391) 12.9 (14) 12.2 (30) 12.1 (30)
150 600 5364000 89430 362.2 (444258) 25.9 (249271) 19.7 (15) 19.6 (31) 18.8 (31)
150 800 7152000 119230 590.5 (575356) 38.0 (329632) 30.5 (16) 24.1 (29) 26.8 (32)
300 200 7176000 59860 459.3 (4676110) 27.5 (203873) 29.8 (15) 30.3 (30) 32.2 (32)
300 400 14352000 119660 > 3600 (8306650) 69.5 (415156) 57.2 (15) 57.4 (30) 59.1 (30)
300 600 21528000 179460 > 3600 (8453150) 112.7 (571964) 102.7 (17) 99.0 (31) 94.9 (30)
300 800 28704000 239260 > 3600 (9071240) 178.5 (784104) 140.3 (18) 123.1 (30) 133.8 (31)

Table 4

CPU time and iterations (within parenthesis) of BlockIP (using D−1 and Θ
−1

0
preconditioners) and CPLEX

available LP methods (Primal Simplex, Dual Simplex, Barrier Method) when solving MNFPNCs. All the nodes have
an outflow capacity, i.e., l = n.

n k n. var. n. con.
CPLEX BlockIP

Primal Simplex Dual Simplex Barrier Θ
−1

0
D−1

150 200 1788000 29950 75.1 (967177) 6.7 (86446) 11.8 (17) 5.9 (29) 5.8 (29)
150 400 3576000 59750 257.0 (607837) 18.6 (163574) 23.8 (17) 14.0 (32) 12.9 (31)
150 600 5364000 89550 426.9 (729617) 32.3 (249227) 33.6 (17) 21.9 (34) 20.0 (33)
150 800 7152000 119350 585.4 (476154) 52.8 (330616) 52.0 (19) 29.9 (33) 27.9 (32)
300 200 7176000 60100 682.9 (4310028) 28.3 (203780) 85.4 (16) 54.9 (33) 30.4 (34)
300 400 14352000 119900 > 3600 (8226752) 72.2 (413460) 120.3 (13) 78.9 (37) 66.5 (33)
300 600 21528000 179700 > 3600 (8489927) 118.5 (567590) 205.6 (15) 140.5 (32) 140.1 (33)
300 800 28704000 239500 > 3600 (8408703) 181.6 (779265) 284.7 (16) 141.2 (32) 140.8 (40)

where bh0 denotes the capacity of node h ∈ C. MNFPNC matches the standard formulation (2.1)
of primal block-angular problems, by considering mi = n, ni = n′, Ni = N ∈ R

(n−1)×n′

for all
i = 1, . . . , k, where N is the node-arc incidence matrix associated to G; and l = |C|, Li = L ∈ R

l×n′

for all i = 1, . . . , k, are derived from N by considering only positive coefficients to obtain (4.2).
Tables 3 and 4 report two computational experiments associated to MNFPNCs of different sizes.

The eight instances of Table 3 correspond to problems where l = 0.2n (i.e., only 20% of nodes
are constrained to have an outflow capacity), whereas the eight instances of Table 4 correspond to
problems where l = n (all the nodes have capacities). For each instance, the tables provide the
number of nodes n, number of commodities k, the total number of variables (“n.var”), total number
of constraints (“n.con.”), and the CPU time and (within parentheses) total number of iterations for
all the solvers considered: primal simplex, dual simplex and barrier for CPLEX; and BlockIP with
both Θ−1

0 and D−1 preconditioners. A time limit of 3600 seconds was considered.
It can be seen from tables 3 and 4 that the CPU time associated to the primal simplex is always

far greater than the ones of the other solvers. The dual simplex is quite competitive and in some
instances outperforms CPLEX barrier method and BlockIP. BlockIP with both preconditioners is in
general more efficient than CPLEX barrier, although it requires more IPM iterations because—since
it uses PCG—it computes Newton directions instead of second or higher order ones. The network size
n does not seem to have a substantial effect on the comparative efficiency of the five solvers. Instead
the increase in the number of linking constraints (either l = 0.2n, in Table 3 or l = n, in Table 4)
almost double the CPU time of the CPLEX barrier method, whereas slightly affects the specialized
IPM.

Let us consider a slight modification of the MNFPNCs, obtained by introducing to each com-
modity a set of equal flow constraints, i.e. constraints requiring that each arc in a specified set Rr

must carry the same amount of flow, for every group of arcs r ∈ R; that is, xi
aj

= xi
ah

, for i = 1 . . . k,
aj , ah ∈ Rr, r = 1 . . . R (where aj , ah denote two particular arcs in the network). These constraints
arose while modeling some real-life problems, such as water resource system management [21]. We
call this problem multicommodity equal flow problem with nodal capacities (MEFPNC from now on).
Here we are considering MEFPNCs of different sizes with R = EF · n groups of arcs having the same
flows per each commodity and |Rr| = EF · 100 number of arcs in each group r = 1 . . . R, where EF
is a given parameter to control the number of equal flow constraints.

Tables 5 and 6 report two computational experiments associated to these MEFPNCs. As before,
the eight instances of Table 5 correspond to problems with l = 0.2n, whereas l = n in Table 6. The
parameter EF was set to 0.1 in these instances. The meaning of the columns is the same as in tables



12 JORDI CASTRO AND STEFANO NASINI

Table 5

CPU time and iterations (within parenthesis) of BlockIP (using D−1 and Θ
−1

0
preconditioner) and CPLEX

available LP methods (Primal Simplex, Dual Simplex, Barrier Method) when solving MEFPNCs. Only 20% of nodes
are constrained to have an outflow capacity, i.e., l = 0.2n.

n k n. var. n. con.
CPLEX BlockIP

Primal Simplex Dual Simplex Barrier Θ
−1

0
D−1

150 200 1788000 56830 59.3 (989973) 5.9 (90369) 7.7 (16) 6.5 (30) 6.8 (32)
150 400 3576000 113630 239.0 (516211) 19.5 (222725) 17.6 (18) 11.5 (32) 11.5 (33)
150 600 5364000 170430 514.1 (563073) 33.9 (280339) 42.2 (27) 25.4 (34) 24.0 (33)
150 800 7152000 227230 635.4 (650626) 52.0 (406268) 54.1 (26) 30.9 (32) 30.5 (32)
300 200 7176000 113860 1357.0 (958439) 37.9 (232976) 44.9 (20) 39.6 (37) 34.8 (34)
300 400 14352000 227660 > 3600.0 (1325388) 85.3 (456233) 118.2 (29) 70.7 (32) 70.1 (32)
300 600 21528000 341460 > 3600.0 (1213005) 142.5 (665822) 155.7 (25) 109.2 (33) 108.7 (34)
300 800 28704000 455260 > 3600.0 (1179502) 204.8 (860729) 239.8 (30) 152.8 (34) 150.8 (34)

Table 6

CPU time and iterations (within parenthesis) of BlockIP (using D−1 and Θ
−1

0
preconditioner) and CPLEX

available LP methods (Primal Simplex, Dual Simplex, Barrier Method) when solving MEFPNCs. All the nodes have
an outflow capacity, i.e., l = n.

n k n. var. n. con.
CPLEX BlockIP

Primal Simplex Dual Simplex Barrier Θ
−1

0
D−1

150 200 1788000 56950 79.0 (2320414) 7.5 (86446) 11.3 (16) 5.9 (32) 5.0 (32)
150 400 3576000 113750 296.9 (964870) 26.7 (163574) 26.7 (18) 15.1 (33) 14.6 (33)
150 600 5364000 170550 619.9 (1839715) 43.0 (230553) 96.7 (27) 29.6 (34) 26.5 (33)
150 800 7152000 227350 891.7 (1061339) 74.7 (249227) 68.0 (22) 35.8 (33) 34.5 (32)
300 200 7176000 114100 820.8 (1184579) 36.9 (330616) 87.6 (18) 51.1 (36) 43.7 (34)
300 400 14352000 227900 > 3600.0 (4906436) 88.6 (203780) 232.8 (22) 98.8 (34) 80.2 (34)
300 600 21528000 341700 > 3600.0 (4701108) 177.3 (413460) 288.5 (21) 125.5 (35) 119.0 (36)
300 800 28704000 455500 > 3600.0 (4904433) 364.9 (1278588) 480.1 (25) 240.0 (35) 206.6 (34)

3 and 4. It is worth to mention that, for every set Rr = {a1, a2, . . . , a|Rr|}, and i ∈ K, the equal flow
constraints are formulated as xi

aj
= xi

aj+1
, j = 1, . . . , |Rr| − 1, instead of xi

a1
= xi

aj
, j = 2, . . . , |Rr|.

With this formulation we avoid a “dense column” for variables xi
a1

, which makes BlockIP more efficient.
CPLEX barrier is not affected by this different reformulation due to its presolving capabilities. The
principal angles between linking and block constraints are the same for both formulations, since they
span the same subspace (it is easy to show that given the constraints matrices for the two formulations,
one can obtain one from the other by simple linear manipulations).

The inclusion of equal flow constraints negatively affects the computational performance of all the
considered solvers, though in different proportions. The dual simplex and barrier almost double its
CPU times in the largest instances with respect to the MNFPNCs, whereas the ones associated to the
specialized IPM slightly increase. In fact, the specialized IPM becomes the most efficient algorithm
for this class of problems from k = 400. Also for the MEFPNCs, as it was for the MNFPNCs, the
network size n does not seem to have a substantial effect on the ranking of the five solvers.

As for the two preconditioners of BlockIP, results with Θ−1
0 and D−1 are very similar in solving

MEFPNCs with l = 0.2n, as shown in Table 5. Instead D−1 results to be slightly a better precondi-
tioner when l = n. In both cases BlockIP outperforms the CPLEX available LP methods. It is worth
noting that BlockIP uses an out-of-date sparse linear algebra package for the Cholesky factorization
[23], while CPLEX implements highly tuned state-of-the-art factorization routines. Therefore, the
performance of BlockIP could be significantly improved by the use of a more recent Cholesky solver.

The information of the average principal angles between the subspaces generated by the columns
of L⊤ and N⊤ of the instances of tables 3–6 are reported in Table 7, differentiating for the 150 and
300 nodes instances. The first information we obtain from Table 7 is that the average principal angles
are generally stable with respect to the number of nodes. We also see that average principal angles
are in general far from 0, which may explain why preconditioner D−1 outperforms Θ−1

0 in general in
tables 3–6.

We finally generated and solved a set of large instances, considering only the CPLEX barrier
solver, and BlockIP with the two preconditioners, with a time limit of 3600 seconds. The correspond-
ing results are reported in tables 8 and 9, for small dense and big sparse networks correspondingly.
In these tables columns “density” provide the fraction “number of arcs/maximum number of arcs
(n(n − 1))”; columns “NC” show the fraction of nodal capacity constraints, i.e., “number of node
capacities/n”; and columns “EF” provide the parameter considered for the equal flow constraints.



GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 13

Table 7

Average principal angles between the subspaces generated by the columns of L⊤ and N⊤, for each instance of
multi-commodity network flow problems with nodal capacities in tables 3, 4, 5 and 6.

n
average principal angles

Table 3 Table 4 Table 5 Table 6
150 0.8774 0.8319 0.7958 0.8225
300 0.8544 0.8297 0.7732 0.8247

Table 8

CPU time of BlockIP (using D−1 and Θ
−1

0
preconditioner) and CPLEX barrier for MEFPNCs with small and

dense networks.

Instance properties CPU time

n k density NC EF n. var. n. con. Barrier BlockIP Θ
−1

0
BlockIP D−1

400 2000 0.20 0.10 0.00 63840000 798040 354.67 417.66 427.94
400 2000 0.20 0.10 0.05 63840000 958040 463.99 460.15 442.50
400 2000 0.20 0.10 0.10 63840000 1518040 699.63 550.11 531.12
400 2000 0.20 0.10 0.15 63840000 2478040 756.76 624.15 591.94
400 2000 0.20 0.10 0.20 63840000 3838040 671.20 685.70 694.74
400 2000 0.20 0.20 0.00 63840000 798080 401.50 432.82 427.62
400 2000 0.20 0.20 0.05 63840000 958080 504.83 471.38 455.42
400 2000 0.20 0.20 0.10 63840000 1518080 872.29 548.11 540.28
400 2000 0.20 0.20 0.15 63840000 2478080 704.73 621.72 617.27
400 2000 0.20 0.20 0.20 63840000 3838080 1008.74 750.51 736.59
400 2000 0.20 0.30 0.00 63840000 798120 477.00 442.55 429.09
400 2000 0.20 0.30 0.05 63840000 958120 529.90 498.52 455.59
400 2000 0.20 0.30 0.10 63840000 1518120 957.16 548.99 535.46
400 2000 0.20 0.30 0.15 63840000 2478120 865.097 640.99 611.09
400 2000 0.20 0.30 0.20 63840000 3838120 1291.96 749.23 718.98
400 2000 0.40 0.10 0.00 127680000 798040 918.03 636.26 629.18
400 2000 0.40 0.10 0.05 127680000 958040 1257.28 701.16 684.76
400 2000 0.40 0.10 0.10 127680000 1518040 1305.01 751.08 733.99
400 2000 0.40 0.10 0.15 127680000 2478040 1671.77 846.74 806.96
400 2000 0.40 0.10 0.20 127680000 3838040 1719.14 947.46 877.82
400 2000 0.40 0.20 0.00 127680000 798080 895.98 709.45 694.45
400 2000 0.40 0.20 0.05 127680000 958080 1078.44 714.52 698.59
400 2000 0.40 0.20 0.10 127680000 1518080 1842.88 764.32 768.55
400 2000 0.40 0.20 0.15 127680000 2478080 1480.11 880.15 850.83
400 2000 0.40 0.20 0.20 127680000 3838080 1665.74 925.35 892.44
400 2000 0.40 0.30 0.00 127680000 798120 1307.54 780.33 751.15
400 2000 0.40 0.30 0.05 127680000 998120 1333.14 759.27 717.97
400 2000 0.40 0.30 0.10 127680000 1598120 1842.15 760.14 730.76
400 2000 0.40 0.30 0.15 127680000 2598120 1651.68 899.92 840.19
400 2000 0.40 0.30 0.20 127680000 3838080 1765.22 929.24 879.18

The rest of columns have the same meaning as in previous tables.

Among the 60 instances of tables 8–9, CPLEX barrier resulted to be the most efficient strategy
in 17 instances, whereas BlockIP outperformed CPLEX in the remaining 43. Within these latter
instances, D−1 was a better preconditioner in 33, against the 10 corresponding to Θ−1

0 . However, it
must be noted that in all the instances where D−1 behaved comparatively poorly, its total CPU time
has been significantly high (> 3600). By contrast, Θ−1

0 has been outperformed by a more moderated
comparative advantage in the aforementioned 33 instances. Unexpectedly, CPLEX barrier was the
most efficient solver for some of the instances with a larger number of equal flow constraints of Table
9; this may be explained by its highly efficient factorization and presolving routines—which reduce
the number of constraints and variable due to the equal flows. It is also worth to remark that BlockIP
with Θ−1

0 was the only approach that solved all the instances within the time limit.

It must be noted that instances where CPLEX barrier resulted particularly efficient are associated
to the big and sparse networks (n = 800, density≤ 0.04), of Table 9. Higher density matrices seem to
favor BlockIP and to penalize CPLEX barrier, as observed in Table 8. However, the final behaviour
is problem dependent, such that if the number of nodes is large enough, BlockIP can outperform
CPLEX even for sparse networks. For instance, in a tough instance (not included in the above
tables) of n = 4000, k = 2000, density= 0.001, NC=0.2, with no equal flow constraints, and without
any time limit, CPLEX barrier spent about 37000 seconds (requiring 85 Gigabytes of memory), while
BlockIP found a solution in 11000 seconds (using 15 Gigabytes of memory).

5. Conclusions. This work showed that the angles between the subspaces generated by the
diagonal blocks and the linking constraints may explain the effectiveness of two complementary pre-



14 JORDI CASTRO AND STEFANO NASINI

Table 9

CPU time of BlockIP (using D−1 and Θ
−1

0
preconditioner) and CPLEX barrier for MEFPNCs with large and

sparse networks.

Instance properties CPU time

n k density NC EF n. var. n. con. Barrier BlockIP Θ
−1

0
BlockIP D−1

800 2000 0.02 0.10 0.00 25568000 1598080 487.21 860.17 916.84
800 2000 0.02 0.10 0.05 25568000 1918080 881.14 1001.97 984.47
800 2000 0.02 0.10 0.10 25568000 3038080 658.97 1211.42 1811.51
800 2000 0.02 0.10 0.15 25568000 4958080 1373.59 1901.41 2662.31
800 2000 0.02 0.10 0.20 25568000 7678080 2838.81 2203.28 > 3600
800 2000 0.02 0.20 0.00 25568000 1598160 565.29 987.79 > 3600
800 2000 0.02 0.20 0.05 25568000 1918160 1026.30 980.45 957.53
800 2000 0.02 0.20 0.10 25568000 3038160 1395.69 1296.92 1785.35
800 2000 0.02 0.20 0.15 25568000 4958160 1561.79 1870.65 > 3600
800 2000 0.02 0.20 0.20 25568000 7678160 3478.80 2136.35 > 3600
800 2000 0.02 0.30 0.00 25568000 1598240 1105.07 921.55 906.83
800 2000 0.02 0.30 0.05 25568000 1918240 1124.72 1018.78 988.78
800 2000 0.02 0.30 0.10 25568000 3038240 1040.20 1300.24 1888.08
800 2000 0.02 0.30 0.15 25568000 4958240 2021.58 2217.12 > 3600
800 2000 0.02 0.30 0.20 25568000 7678240 > 3600 3403.11 > 3600
800 2000 0.04 0.10 0.00 51136000 1598080 749.51 1290.82 1277.48
800 2000 0.04 0.10 0.05 51136000 1918080 1654.57 1340.82 1297.48
800 2000 0.04 0.10 0.10 51136000 3038080 1867.48 1826.23 1925.71
800 2000 0.04 0.10 0.15 51136000 4958080 1046.38 2236.19 2739.54
800 2000 0.04 0.10 0.20 51136000 7678080 1167.11 2695.33 > 3600
800 2000 0.04 0.20 0.00 51136000 1598160 846.26 1250.58 1247.37
800 2000 0.04 0.20 0.05 51136000 1918160 1814.96 1540.54 1525.10
800 2000 0.04 0.20 0.10 51136000 3038160 2146.20 1806.08 > 3600
800 2000 0.04 0.20 0.15 51136000 4958160 2709.08 2202.42 3201.02
800 2000 0.04 0.20 0.20 51136000 7678160 2267.28 2460.35 > 3600
800 2000 0.04 0.30 0.00 51136000 1598240 2473.51 1549.03 1506.47
800 2000 0.04 0.30 0.05 51136000 1918240 2579.88 1552.49 1521.36
800 2000 0.04 0.30 0.10 51136000 3038240 2765.23 1787.62 1874.88
800 2000 0.04 0.30 0.15 51136000 4958240 2712.73 2264.38 3083.99
800 2000 0.04 0.30 0.20 51136000 7678240 2378.00 2603.55 > 3600

conditioners, namely Θ−1
0 and D−1, in the specialized IPM for block-angular problems. It was also

shown that the evolution of principal angles along the IPM iterations rely on the diagonal Θ matrix.
Algebraical properties of the two complementary preconditioners were supported by numerical results.
We also analyzed the performance of the specialized IPM with the two preconditioners in the solution
of the multicommodity network flow problem with nodal capacities and equal flows, observing that
it outperforms all of the available CPLEX methods in some of the largest instances.

Θ−1
0 and D−1 have shown to be the exact preconditioners when a linking constraint belongs to

respectively the range and null space of the matrix of block constraints. Since any vector defining a
linking constraint can be decomposed as the sum of two orthogonal vectors belonging to the range
and null space of the matrix of block constraints, it would be worth to exploit this fact to see whether
a multipreconditioner based on the two above can be obtained, following for instance [8]. This is part
of the further research to be done.

REFERENCES

[1] F. Babonneau, O. du Merle, and J.-P. Vial, Solving large-scale linear multicommodity flow problems with
an active set strategy and proximal-ACCPM, Oper. Res., 54 (2006), pp. 184–197.

[2] F. Babonneau and J.-P. Vial, ACCPM with a nonlinear constraint and an active set strategy to solve nonlinear
multicommodity flow problems, Math. Prog., 120 (2009), pp. 179-210.

[3] S. Bellavia, J. Gondzio, and B. Morini, B., A matrix-free preconditioner for sparse symmetric positive
definite systems and least-squares problems, SIAM J. Sci. Comp., 35 (2013), pp. A192-A211.

[4] L. Bergamaschi, J. Gondzio, J., and G. Zilli, Preconditioning indefinite systems in interior point methods
for optimization, Comput. Optim. Appl., 28 (2004), pp. 149–171.

[5] D. Bienstock, Potential Function Methods for Approximately Solving Linear Programming Problems. Theory
and Practice, Kluwer, Boston, MA, 2002.

[6] A. Bjorck and G.H. Golub, Numerical methods for computing angles between linear subspaces, Math. Comp.,
27 (1977), pp. 579–594.

[7] S. Bocanegra, J. Castro, and A.R.L. Oliveira, Improving an interior-point approach for large block-angular
problems by hybrid preconditioners, Eur. J. Oper. Res., 231 (2013), pp. 263–273.

[8] R. Bridson and C. Greif, A multipreconditioned conjugate gradient algorithm, SIAM J Matrix Anal. Appl.,
27 (2006), pp. 1056–1068.

[9] Y. Cao, C.D. Laird, and V.M. Zavala, Clustering-based preconditioning for stochastic programs, Preprint



GEOMETRICAL PROPERTIES OF PRECONDITIONERS IN IPMs 15

ANL/MCS-P3050-1112, Argonne National Laboratory, Argonne, IL, 2014.
[10] J. Castro, A specialized interior-point algorithm for multicommodity network flows, SIAM J. Optim., 10 (2000),

pp. 852–877.
[11] J. Castro, An interior-point approach for primal block-angular problems, Comput. Optim. Appl., 36 (2007), pp.

195–219.
[12] J. Castro, Interior-point solver for convex separable block-angular problems, Optim. Method. Softw., 31 (2016),

pp. 88–109.
[13] J. Castro and J. Cuesta, Quadratic regularizations in an interior-point method for primal block-angular

problems, Math. Prog., 130 (2011), pp. 415–445.
[14] J. Castro and N. Nabona, An implementation of linear and nonlinear multicommodity network flows, Eur. J.

Oper. Res., 92 (1996), pp. 37–53.
[15] J. Castro and S. Nasini, Mathematical programming approaches for classes of random network problems, Eur.

J. Oper. Res., 245 (2015), pp. 402–414.
[16] A. Frangioni, and G. Gallo, A bundle type dual-ascent approach to linear multicommodity min cost flow

problems, INFORMS J. Comput., 11 (1999), pp. 370–393.
[17] A. Frangioni and C. Gentile, New preconditioners for KKT systems of network flow problems, SIAM J.

Optim., 14 (2004), pp. 894–913.
[18] G.H. Golub and C.F. Van Loan, Matrix Computations, Third Ed., Johns Hopkins Univ. Press, Baltimore,

MD, 1996.
[19] J. Gondzio, Convergence analysis of an inexact feasible interior point method for convex quadratic programming,

SIAM J. Optim., 23 (2013), pp. 1510–1527.
[20] J. Gondzio and R. Sarkissian, Parallel interior-point solver for structured linear programs, Math. Prog., 96

(2003), pp. 561–584.
[21] A. Manca, G. Sechi, and P. Zuddas, Water supply network optimisation using equal flow algorithms, Water

Resour. Manag., 24 (2010), pp. 3665–3678.
[22] R.D. McBride, Progress made in solving the multicommodity flow problem, SIAM J. Optim., 8 (1998), pp.

947–955.
[23] E. Ng, and B.W. Peyton, Block sparse Cholesky algorithms on advanced uniprocessor computers, SIAM J.

Sci. Comput., 14 (1993), pp. 1034–1056.
[24] A.R.L. Oliveira, and D.C. Sorensen, A new class of preconditioners for large-scale linear systems from

interior point methods for linear programming, Linear Algebra Appl., 394 (2005), pp. 1–24.
[25] J.M. Ortega, Introduction to Parallel and Vector Solutions of Linear Systems, Plenum Press, New York, NY,

1988.
[26] A. Ouorou, A proximal cutting plane method using Chebychev center for nonsmooth convex optimization, Math.

Prog., 119 (2009), pp. 239–271.
[27] M.G.C. Resende and G. Veiga, An implementation of the dual affine scaling algorithm for minimum-cost

flow on bipartite uncapacitated networks, SIAM J. Optim., 3 (1993), pp. 516–537.
[28] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, PA, 1996.


