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Abstract 

The effect of ageing on the small-strain shear stiffness of compacted silty-clayey sand 

following a soft biological treatment is discussed. The samples were prepared by static 

compaction adding urea-degrading bacteria in the compaction water. No nutrients were 

artificially added, relying on the natural availability of urea and Ca2+ in the humic soil 

and in the compaction water for the bacteria to precipitate calcium carbonate. After 

compaction, part of the samples were cured in a system open to vapour transfer, and 

part of them in a closed system, to replicate different environmental boundary 

conditions. The small-strain shear stiffness was periodically tracked with bender 

elements during the ageing period. Tests were run in parallel to investigate the 

unconfined compression strength, the water retention properties and the soil pore size 

distribution changes during ageing. The tests results revealed a small but consistent 

increase in the small-strain shear stiffness during the ageing period due to the 

microbiological treatment, in both the closed and the open to vapour transfer systems. 

In the latter case, the contribution of the microbiological treatment to the increase in 

stiffness could be estimated after correcting the data for the suction increase due to 

evaporation. 

 

Keywords: compacted soil, microbiological treatment, ageing, small-strain shear 
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Introduction 

Sustainable development policies and environmental concerns in earthworks impel the 

research for new low carbon footprint construction techniques. To this aim, biological 

techniques are studied to improve the hydro-mechanical behaviour of soils naturally 

available on site and allow their use in earth structures (DeJong et al. 2013). A soft 

biological improvement for compacted earth construction in the South of Spain was 

recently discussed by Morales et al. (2015). The specific bio-treatment was conceived 

by the contractor to reduce the costs and the potential impact of produced ammonia to a 

minimum, at the same time ensuring proper performance of the compacted soil. The 

suggested methodology consisted in adding urea-degrading bacteria to a humic soil, in 

which the nutrients required for the precipitation of calcium carbonate are limited by the 

natural availability of Ca2+ and urea in the natural soil and in the compaction water 

(Hammes and Verstraete 2002; Al Qabany et al. 2012). To reproduce a likely field 

procedure, Bacillaceae microorganisms were added to the compaction water, and the 

samples were compacted after seven days curing. Morales et al. (2015) reported that 

this protocol induced the breakage of most bio-cemented bonds upon compaction, and 

that the slight mechanical improvement observed in the laboratory tests was mostly due 

to the fine fraction generated by broken bonds acting as a filler of the inter-grain 

porosity. 

 

A modification to the original protocol is investigated here on the same humic silty-

clayey sand, in an attempt to better preserve the bio-cement and improve the 

effectiveness of the bio-treatment. Static compaction was performed in this test series 

before microbiological ageing started.  



The paper discusses the effects of ageing on the bio-treated soil, tracking its small-strain 

shear stiffness with bender elements, and looking at the results of some ancillary tests, 

namely unconfined compression strength and tensile splitting tests. Water retention data 

were collected to correct the information on soil stiffness for the effect of suction 

increase due to drying on the samples cured in the open environment. Mercury intrusion 

porosimetry tests, performed on selected samples at increasing curing periods, 

complement the experimental information on the effects of ageing at the microstructure 

scale.  

 

Soil properties, bio-treatment and curing 

The soil investigated is a humic silty-clayey sand from SE Spain, widely used in 

earthwork constructions (Morales et al. 2012, 2015), and a microorganism of the 

Bacillaceae family was used in the bio-treatment protocol (Morales et al. 2010, 2015). 

As schematically shown in Figure 1, a known concentration of bacteria previously 

isolated under laboratory conditions was inoculated into the natural and non-sterilised 

soil, together with a low-concentration saline solution (< 0.9%) to reach the optimum 

water content for compaction. No further nutrients were added, relying on natural 

availability of urea and Ca2+ in the soil and in the compaction water. Details of the 

procedure and availability requirements for urea and Ca+2, are discussed in Morales et 

al. (2015). The main physical and chemical properties of the natural (untreated) and of 

the treated samples are summarised in Table 1. 

 

As indicated in Figure 1, the samples were statically compacted before microbiological 

ageing (new protocol referred hereafter as ‘treated_NT’). The water content, dry density 

and degree of saturation of the natural material at optimum standard and modified 



Proctor compaction are summarised in Table 2. Static compaction was chosen to match 

the optimum state reached with standard Proctor energy (0.6 MJ/m3), and to better 

control the initial void ratio and degree of saturation. The maximum vertical stress and 

the initial suction corresponding to the static as-compacted state are included in the 

table. 

 

After compaction, part of the samples were cured in a system open to vapour transfer 

(‘open-system’), and part of them in a system closed to vapour transfer (‘closed-

system’), to provide ideal bounds for variable environmental conditions in the field. The 

results in Table 1 show that the calcium carbonate content systematically increased and 

reached 8.8% (Dietrich-Frühling method) after curing in this test series (NT). The 

chemical data show consistent changes in the soil properties due to the microorganism 

activity. The bacteria produced carbonates from hydrolysis of urea, and from the 

organic matter available in the soil, which decreased in the treated samples (reduction of 

0.22% for test series NT that corresponds to a demand of 4.1 kg of organic matter per 

m3 of compacted soil). Table 1 also shows that gypsum concentration in the soil 

decreased as a consequence of the alkaline pH of the bacterial environment (typically 

between 8.1 and 8.9), which leads to its dissolution and consequent release of Ca2+ 

cations (new source of Ca2+ supply for calcium carbonate precipitation). 

 

Figure 1 shows the two different procedures followed after compaction for the ageing 

period, which lasted a minimum of seven days. In the ‘open-system’ procedure, 

characterised by O2-rich conditions for microbial activity, cylindrical samples (either 38 

mm in diameter and 76 mm high or 50 mm in diameter and 20 mm high) were placed in 

a desiccator and kept under a relative humidity higher than 97%. At specified intervals, 



the samples were extracted from the vessels, weighed and tested, which induced some 

progressive evaporation. In this test series, the improvement of the mechanical 

properties could be due to both the bio-treatment and the suction increase due to drying. 

To distinguish between the two contributions, ‘blank’ tests were performed, by 

reproducing the same evaporation history on compacted samples of the original 

untreated soil. This blank series provided the reference for water content losses and soil 

stiffness changes due to suction increase during curing. The assumption was made that 

progressive drying affected both untreated and treated samples in the same way.  

 

The ‘closed-system’ curing procedure was conceived to minimise evaporation effects. A 

smaller sample (50 mm in diameter and 20 mm high) was mounted in a closed 

oedometer cell, in which bender elements were allocated in the top and bottom caps. 

One sample was enough for multi-stage testing in this case: the oedometer was opened 

at specified intervals to quickly estimate the change in water content of the bio-treated 

material by measuring the mass loss. Both the desiccator and the oedometer cell were 

placed in an oven at 30°C to facilitate the growth of microorganisms during the 

incubation stage. 

 

Water retention properties and pore size distribution: ‘open-system’ curing 

A chilled mirror dew-point psychrometer (WP4, Decagon Devices) was used to measure 

total suction during multistage drying -from suctions greater than about 0.8 MPa up to 

100 MPa- on compacted ‘NT’ samples after 7 days of ageing.  Figure 2 presents the 

water retention data in terms of degree of saturation. Since the material did not 

experience significant shrinkage on suction increase, the drying curve corresponds to an 

approximately constant void ratio (e = 0.45÷0.47). Data on untreated and treated 



samples using psychrometer readings and axis translation with volume change 

measurement from Morales et al. (2015) are also included. The three set of data do not 

differ substantially, which is consistent with the fact that the treatment hardly affects the 

specific surface of the soil (Table 1). Water retention results on drying are fitted to the 

model proposed by Romero et al. (2011), which is also plotted in the figure. 

 

Mercury intrusion porosimetry tests were performed on freeze-dried samples at 

increasing ‘open-system’ curing periods. Tests were performed on natural and treated 

‘NT’ samples after 2, 4 and 7 days of curing and at the same void ratio (e = 0.47). The 

cumulative distributions in terms of intruded void ratio and the corresponding pore size 

density functions of the different samples (PSD log differential intrusion) are reported 

in Figure 3. Maximum intruded void ratios were slightly below the as-compacted void 

ratio, indicated by the dashed horizontal line. The difference, which arises due to the 

non-intruded porosity for entrance pore sizes lower than 6 nm and the non-detectable 

porosity for pore sizes larger than 400 m, increases with ageing. Test results indicate 

the development of bi-modal PSD functions, in which an entrance pore size around 

5 µm was selected to separate the inter-grain (or inter-aggregate) pore sizes between 

grains and aggregates (‘Macro’ in the figure) from the intra-aggregate porosity inside 

the aggregates (‘micro’ in the figure). As indicated in the PSD plot, there are two pore 

size regions in which changes are hardly detected, namely the ranges 6-400 nm and 50-

400 m. The intra-aggregate (micro-) porosity (between 0.4 and 5 m) tends to reduce 

systematically during ageing, with a corresponding increase of the inter-aggregate 

(macro-) porosity (between 5-50 m), at almost constant void ratio. This is better shown 

in Figure 4, where the evolution of the macro-void ratio, eM, and micro-void ratio, em, 

are plotted at different ageing periods (em + eM = e). The reduction of the cumulative 



micro-void ratio is in agreement with the decrease in water content due to evaporation 

(see legend of Figure 3) although, according to Romero (2013), for an average specific 

surface of 38 m2/g (Table 1) the predicted decrease in em due to water content loss 

would be expected to be lower, around ∆e /∆w	‐0.81 (Figure 4). The difference 

between the prediction and the recorded data suggests that additional phenomena 

associated with the biological activity have to be considered. Possible mechanisms 

contributing to the reduction of the micro porosity can be identified with water 

consumption during hydrolysis of urea to CO3
2- and ammonium cation (see, for 

instance, Stocks-Fischer et al. 1999), and occlusion of some micro-pore volume by 

calcified bacteria (vital size around 1 to 3 µm). 

 

Mechanical tests: ‘open-system’ curing 

Unconfined compression tests (ASTM D2166) and splitting tensile strength tests 

(ASTM C496) were conducted on untreated and ‘NT’ samples  38 mm × h 76 mm, 

and  50 mm × h 20 mm, respectively, to get preliminary information on the 

mechanical improvement. These destructive tests were run on independent samples that 

were cured under ‘open-system’ conditions before testing. Unconfined compression 

tests on ‘NT’ samples were performed at controlled displacement rate (0.3 mm/min) 

after 2, 4 and 7 days of ageing. The axial (deviatoric) stress - axial strain curves are 

plotted in Figure 5a. The data show an increase in the peak strength of the treated 

samples with ageing. The observation is confirmed by Figure 5b, in which splitting 

tensile strength results are also plotted. The maximum value for strength after 4 ageing 

days is a possible outlier, due to some additional drying that the sample underwent after 

curing and before testing.  

 



To investigate in a more systematic way the preliminary results, and to correct for the 

suction increase due to drying, small-strain shear stiffness tests were performed on 

untreated (blank test) and treated ‘NT’ samples. A multi-stage procedure on a single 

sample was used to evaluate stiffness changes with bender elements. The small-strain 

shear modulus G along the vertical direction was tracked by measuring the shear wave 

velocity VS, and calculated as G = ρVS
2, where ρ is the bulk density of the soil, and 

VS = leff /tS. The wave travel distance leff was taken as the distance between transducer 

tips, and the arrival time tS was determined by inspection of the received trace, looking 

for the first significant amplitude excursion. A sine pulse Vpp = 20V with apparent input 

frequency 15 kHz was used as input signal. Additional details are given in Arroyo et al. 

(2010) and Pineda (2012).  

 

A general increase in G with ageing is observed in the time evolution plot presented in 

Figure 6. Nevertheless, a decrease of the shear modulus is displayed between days 7 and 

13, which is associated with the slight increase in the degree of saturation (from 70% to 

72%) shown in Figure 7. The latter figure reports the evolution of the degree of 

saturation and total suction (measured with a psychrometer) at different curing times. 

The data highlight a higher drying rate during the first seven days, which slows down 

afterwards. The drying rate is mainly governed by evaporation during curing, but it is 

also partially affected by the amount of water required by the microorganisms to 

precipitate CaCO3 minerals. The results of the blank test on the untreated sample, also 

reported in Figure 7, allow distinguishing the effects of evaporation form those of the 

microbiological treatment, and will be used in the following to correct the measured 

stiffness for suction. 

 



The data in the Figures 4-7 suggest that the bio-treatment effects are non-linear with 

time, due to limiting factors on the microorganism activity. The most relevant are O2 

availability for microbial respiration (which reduces in ‘closed-system’ conditions), 

water availability for the hydrolysis of urea, and carbonates precipitation in soil pores 

which limit the vital space of microorganisms. 

 

Bender element tests: ‘closed-system’ curing 

The evolution of small-strain shear modulus during ‘closed-system’ curing, measured 

with a multi-stage procedure on a single sample, is reported in Figure 6. The variation in 

the degree of saturation of the sample is almost negligible in this case (between 87% 

and 85%), and it is due to the water mass required by the microbiological reactions. The 

‘closed-system’ data are assumed to describe the stiffness increase induced only by the 

followed bio-treatment. The small-strain stiffness from a resonant column test 

performed at an isotropic confining of 0.1 MPa on an untreated sample by Morales et al. 

(2015) is presented for comparison.  

 

Interpretation of the results 

Figure 8a presents the evolution of the normalised values G/G0 with the degree of 

saturation of both ‘NT’ and untreated samples in the ‘open-system’, by combining the 

information reported in Figures 6 and 7. In this and the following figures, G0 indicates 

the small-strain shear stiffness of the untreated material before ageing. Figure 8b 

displays the evolution of the normalised values G/G0 with time. Both samples 

underwent drying during curing in the ‘open-system’, and the small shear strain 

modulus increased as a consequence of suction increase. Nonetheless, the comparison 



between the data also clearly shows the contribution of the bio-treatment to the small-

strain stiffness increase with ageing. 

 

The results of the blank test were modelled with the following expression for the small-

strain shear stiffness under partially saturated states, which uses the constitutive stress 

  

′
′

 (1)

The values of suction s and degree of saturation Sr of the blank test at a mean net stress 

0	are given in Figure 7, and  represents the constitutive stress at the as-

compacted conditions ( 0.4	MPa, according to Table 2). A value of 

α = 0.53 was obtained by least squares minimisation, which is close to the usually 

suggested value α = 0.50 (see, for instance, Suriol et al. 2014). The modelled curve is 

shown in Figure 8b. The same expression (1) was used to plot the evolution of G/G0 of 

the treated sample, again inferring the suction and the degree of saturation values from 

the data in Figure 7, but a higher value of α = 0.90 was obtained by fitting. Interestingly, 

the model correctly accounts for the reduction in G/G0 between days 7 and 13, during 

which the sample undergoes a slight increase in Sr (from 70% to 72%) with suction 

decreasing from 1.5 MPa to 1.3 MPa. 

 

The contribution of the bio-treatment to the small-strain shear stiffness is evaluated by 

calculating the difference G between the value of G at given curing times and the 

initial value G0, normalised with respect to G0. The data of the samples cured in the 

‘open-system’ were corrected for the effect of drying, by calculating the difference 

between the actual value and the corresponding blank value at the same suction and 



degree of saturation (the retention data in Figure 2 showed no appreciable differences 

between untreated and treated samples). The results presented in Figure 9 measure the 

stiffening effect produced by the bio-treatment alone. This stiffness increase with the 

time of curing t for both the ‘closed-system’ and the corrected ‘open-system’ series can 

be fitted to the curve 


1 (2)

with a reference time tr = 0.9 days and an exponent β = 0.20.  

 

Concluding remarks 

The bio-treatment presented by Morales et al. (2015), conceived to reduce costs and 

potential impact of produced ammonia to a minimum, was enhanced in this new test 

series, by slightly changing the compaction procedure. The samples with bacteria were 

cured after compaction, under two different evaporation boundary conditions. 

Mechanical improvement was tracked through the evolution of small-strain stiffness, 

measured by bender elements, and ancillary tests were performed to interpret and 

confirm the previous results. The test results revealed consistent increase in the small-

strain shear stiffness during the ageing period due to the microbiological treatment, 

which could be appreciated following the ‘closed-system’ curing technique, and also on 

the ‘open-system’ cured samples after correcting the data for the suction increase due 

to evaporation. The results of this investigation show that even a soft biological 

treatment can provide some improvement to soils available on site, in order for them to 

become eligible for earth structures, provided appropriate protocols are followed during 

the construction. The actual improvement effects can be quantified in the laboratory by 

trying to replicate the possible field protocol. 
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TABLES: 

Table 1. Physical and chemical properties of untreated and treated samples. 

Sample 
Consistency 

limits 
Particle size 

Density 
solids 

Specific 
surface 

CaCO3  
Organic 
matter 

Gypsum 

     wL    PI  <425m <75m <2m s 
Ss (m

2/g) 
% dry 
mass 

(%) (%) 
  (%) (%) (%) (%) (%) (Mg/m3) 

Untreated 48 30 70 50 23 2.73 33-46 1.1a-4.5b 0.39 0.91 

Treated* 49 29 40+ 2+ 0+ 2.74 32-44 1.8a-6.4b 0.16 0.12 

Treated_NT 41 24 - - - 2.73 - 4.7a-8.8b 0.17 0.24 

* Morales et al. (2015) 
  + With aggregations created on treatment 

a Bernard 
b Dietrich-Frühling 

 

Table 2. Proctor compaction data of the untreated material. Initial state of the statically 
compacted soil matching standard Proctor at optimum conditions.  

Standard Proctor (0.6 MJ/m3)                                   
Modified Proctor         

(2.7 MJ/m3) 

d w Sr Suction,s Max. vertical stress* d w Sr 

(Mg/m3) (%) (%) (MPa) (MPa) (Mg/m3) (%) (%) 

1.85 15.0 87 0.5 1.0 2.05 11.4 94 

* Equivalent  static  compaction  stress  to achieve  the  same dry density  (at  the  same water  content) of 
standard Proctor at optimum conditions 

 

  



 

FIGURES: 

Figure 1. Steps followed on soil samples preparation. 

 

 

   



 

Figure 2. Water retention data upon drying for the new samples (‘NT’), compared with 

data from Morales et al. (2015). 

 

 

   



Figure 3. Cumulative distributions and pore size density functions for untreated and 

‘NT’ samples derived from MIP data. 

 

  



Figure 4. Micro- and macro-void ratio evolution during ageing for treated ‘NT’ samples 

cured under ‘open-system’ conditions. 

 

 

  



Figure 5. (a) Deviatoric stress-axial strain curves for treated ‘NT’ soils at different 

ageing periods. (b) Time evolution of peak unconfined compression strength and 

splitting tensile strength during the incubation process. 

 
 



Figure 6. Evolution of small-strain shear moduli with ageing for the ‘open-system’ and 

‘closed-system’ protocols. Initial and final degrees of saturation. Resonant column test 

on untreated sample (Morales et al. 2015). 

 

 

   

 
 

S
m

al
l-s

tr
ai

n 
sh

ea
r 

m
od

ul
us

, G
 (

M
P

a)



Figure 7. Degree of saturation and suction changes during ‘open-system’ curing. Blank 

test results following ‘open-system’ curing on untreated sample. 

 

 

   

 



Figure 8. (a) Evolution of normalised values G/G0 with degree of saturation for ‘NT’ 

and blank test samples following the ‘open-system’ curing protocol.(b) Time evolution 

of G/G0 along ‘open-system’ curing (‘NT’ and blank test samples). 
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Figure 9. Variation of G/G0 during ‘open-system’ and ‘closed-system’ curing. 

Corrected values for ‘open-system’ curing. Solid line: Eq.(2) with tr = 0.9 days and 

β = 0.20. 
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