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Abstract

This paper presents a cell-centred model for the simulation of pla-
nar and curved multicellular soft tissues. We propose a computational
model that includes stress relaxation due to cell reorganisation (inter-
cellular connectivity changes) and cytoskeleton remodelling (intracellular
changes). Cells are represented by their cell centres, and their mechan-
ical interaction is modelled through active non-linear elastic laws with
a dynamically changing resting length. Special attention is paid to the
handling of connectivity changes between cells, and the relaxation that
the tissues exhibit under these topological changes. Cell-cell connectivity
is computed by resorting to a Delaunay triangulation, which is combined
with a mapping technique in order to obtain triangulations on curved
manifolds. Our numerical results show that even a linear elastic cell-cell
interaction model may induce a global non-linear response due to the reor-
ganisation of the cell connectivity. This plastic-like behaviour is combined
with a non-linear rheological law where the resting length depends on the
elastic strain, mimicking the global visco-elastic response of tissues. The
model is applied to simulate the elongation of planar and curved mono-
layers.

keywords:Cell-centred, Biomechanics, Morphogenesis and Delaunay

1 Introduction

The dynamics of multicellular systems is governed by a myriad of parameters,
including genetic, chemical and kinematic factors. In recent years though, it
has become apparent that cells are also highly influenced by mechanical stim-
uli, and therefore, the stress state of the cell and its neighbourhood mediate
important cell shape changes during cell migration [5, 45], embryo development
[8, 13, 39] or organogenesis [43]. These facts have motivated the development
of computational tools that allow scientists and engineers to analyse the intra-
and inter-cellular forces during tissue dynamics [11, 34, 35, 37].
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The computational models developed so far for the analysis of multicellular
systems and single cells can be classified into continuum based models [38,
30], usually discretised with finite element techniques, and discrete models that
assume ab initio a discontinuous material. The latter may be in turn subdivided
into vertex models [17, 32, 34, 44], Potts models [14, 24], cell-centred models [11,
27, 31, 37], or sub-cellular models [12, 25, 43], where particles do not represent
cells, but material points of the cell. For a discussion and overview of these
models, see for instance [10, 25].

In this paper we aim to simulate global embryogenetic cell shape changes
such as invagination or germ-band extension [9]. Motivated by the need to rep-
resent hundreds or even thousands of cells (Drosophila fly embryo for instance
is formed by around 6000 cells during gastrulation), and the self-organisation
of the tissue when undergoing topological changes, we have resorted to a cell-
centred model, where each cell is represented by a particle, and each cell-cell
interaction modelled through a bar element connecting two particles. This el-
ement carries all the interactions at the junctions between the cells, and also
the internal active and passive forces produced by the cytoskeleton. Since topo-
logical changes are commonly observed during embryo development, and may
determine the global tissue deformations [19], the proposed model aims to han-
dle these changes in a robust manner.

The cell-centred approach adopted here is substantially different from ver-
tex models, where forces are located at the cell boundaries [17, 34, 35]. In
our model, forces are exclusively acting at the cell centres, whose positions are
found resorting to mechanical equilibrium. We also present here a methodol-
ogy to compute the cell boundaries from the cell centres, which, in contrast
to standard vertex models [34, 27], is also valid for curved three-dimensional
monolayers. Our choice aims to simplify the definition of the three-dimensional
geometry when cell neighbours are dynamically changing, a task that is signif-
icantly simpler for cell-centred models. Although no equilibrium is searched at
the cell-cell boundaries, we envision to couple intra- and inter-cellular forces by
using the methodology described here.

We implement a constitutive law of the bar elements that mimics the non-
linear mechanical response of multicellular systems. This is the result of multiple
local phenomena acting at different scales. At the micro-scale, the cytoskeleton
can undergo (de)polymerisation process [22], cross-link reorganisation [7], or
affect the cytoplasm flow [28]. At the macro-scale, cell motility is driven by
cell-cell and cell-extracellular matrix adhesive forces, lamellipodia activity or
other intercalation forces. The combination of these multi-scale forces results
into global changes during embryogenesis such as convergent extension [3, 36],
or anisotropic tissue growth [4].

We do not intend to include all this range of multi-scale forces in the bar
elements of our model, but just a subset of the observed mechanisms that may
be sufficient to reproduce some of the observed morphogenetic movements. In
our model we control the cell-cell reorganisation, and also implement a strain-
dependent evolution of the resting length, in a similar manner to a time-varying
reference configuration in continuum models [40, 30].
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The paper is organised as follows. Section 2 describes the ingredients of
the computational model: the bar elements being employed, the equations to
be solved, and the definition of the cell-cell connectivity. Section 3 applies the
model to a flat and to a curved monolayer, and Section 4 concludes the paper
with some final remarks.

2 Computational Model

2.1 Model definition

We will henceforth consider that the cellular system satisfies the following as-
sumptions:

(a) The system forms a monolayer, modelled as a planar or curved manifold.

(b) Cells are packed with no extracellular space in between.

(c) Cell centres are considered as dimensionless points (later mentioned as
nodes) by which the location of each cell is defined in space.

(d) Contact between two cells i and j is defined by the presence of a one-
dimensional bar element connecting the two cell centres, providing a con-
nected graph as a whole.

(e) The total number of cells (nodes) N is constant.

Assumption (a) is based on the fact that during the early stages of embryoge-
nesis, prior to any mesenchymal transformations, cells tend to form a monolayer
[9]. This may be eventually internalised and cells may turn into a cell aggregate,
but this situation is not studied here. Assumptions (b)-(d) are considered to
simplify the computations, while assumption (e) is consistent with the fact that
when cells undergo drastic deformations, no proliferation takes place, that is,
the number of cells remains approximately constant [21].

The configuration of the model at each time-step tn, denoted by Cn, is
defined by the nodal position of the N nodes, Xn = {x1

n,x
2
n, ...,x

N
n }, and

the connectivity between the nodes, indicated by a connectivity matrix, T n.
The two sets of variables, Xn and T n may vary between time-steps, and are
computed from the previous variables Cn according to the following scheme:

1. Compute nodal coordinates Xn+1 by finding mechanical equilibrium be-
tween the particles, while keeping the connectivity T n constant.

2. Update the connectivities T n+1 resorting to a Delaunay triangulation of
the new positions Xn+1.

Figure 1 shows the two-step update process. Note that according to the
scheme above, equilibrium at time tn+1 is computed for the connectivity defined
at time tn. The connectivity at T n may not be suitable for the new positions
Xn+1, and for this reason the cell-cell contacts are updated, yielding a new
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connectivity T n+1. We will next describe in detail the two steps: mechanical
equilibrium (Section 2.2) and connectivity definition (Section 2.3).

            

                                           

 

 

 

 

 

 

                        

Equilibrium Delaunay 

(a) (b) (c) 

Figure 1: A schematic view of Delaunay triangulation for a set of four nodes.
(a) Primary Delaunay triangulation. (b) New configuration in equilibrium. (c)
Recovering Delaunay triangulation for the new configuration.

2.2 Mechanical equilibrium

2.2.1 Equilibrium equations

The connectivity matrix T n defines a set of NE elements E = {1, . . . , eNE
},

each one connecting a pair of nodes i and j. In order to ease the notation, we
will drop in this section the subscript n. For each element e we have used the
elastic potential U ij

U ij =
1

2
k
(
εe,ij

)2
, (1)

with k a material parameter representing the material stiffness, and εe,ij the
scalar elastic strain between nodes i and j, and given by

εe,ij =
(lij − Lij)

Lij
,

Here, lij = ||xi−xj || is the current length between nodes i and j, and Lij is
the resting length between the two nodes, to be discussed in the next section. By
computing the traction force at the two ends of element ij, denoted respectively
by tiji and tijj and obtained as,

tiji = ∂xiU ij = kεe,ij
1

Lij lij
(xi − xj), (2)

tijj = ∂xjU ij = kεe,ij
1

Lij lij
(xj − xi), (3)

the global equilibrium of the system is computed by assembling at each node
all the confluent forces, that is solving the set of equations∑

ik∈Ii

tiki = 0, i = 1, . . . , N (4)
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where Ii ⊂ E denotes the subset of elements connected to node i. The equations
in (4) are tantamount to minimise the total elastic energy U =

∑
ij∈E U

ij . Note

that due to the non-linear dependence of lij on the positions xi and xj , the
equations are non-linear. We resort to a Newton-Raphson scheme for finding
the solution of (4).

2.2.2 Active Rheological Model

The actin cytoskeleton is a network of protein-polymers, which is responsible
for the mechanical stability of cells and, due to its remodelling and (de)polyme-
risation of the actin filaments, may strongly affect cell rheology. Indeed, it has
been shown that inhibition of the actomyosin cytoskeleton increases the tissue
viscosity [1, 22].

From the physical perspective, when a set of cross-linked actin filaments in
the cytoskeleton is subjected to a macroscopic strain, it stretches mainly as a
result of two combined phenomena: (i) a reversible (elastic) deformation and a
(ii) non-reversible remodelling and lengthening, due to the remodelling of the
cross-links and (de)polymerisation process of the filaments. Figure 2 illustrates
schematically this two combined effects for a pair of cross-linked polymers under
a stretch process.

F F

(a) (b) (c)

Figure 2: (A) Schematic of network of actin filaments connected by flexible
cross-links. (B) Schematic of strain induced changes in the resting length L
of a reduced system with two filaments and a cross-link (white circle). (a)
Initial configuration with resting length equal to L0. (b) Configuration under
an applied load. (c) New unstrained configuration with modified resting length
L > L0.

Consistent with this observation, we propose the following evolution law for
the resting length Lij between two connected nodes i and j,

L̇ij = γεe,ijLij = γ(lij − Lij). (5)

That is, the relative changes of the resting length Lij are proportional to
the elastic strain εe, which we point out that is different from the apparent

strain εij =
(lij−Lij

0 )

Lij
0

, with Lij0 = lij0 , the initial length. The parameter γ will be
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called the remodelling rate, and represents the ability of the network to adapt its
resting length when subjected to stress. It has been shown that this evolution
law is equivalent to a Maxwell-like rheological model [29].

The evolution law in (5) is combined with a purely linear elastic constitutive
law in (1). This is implemented by discretising the differential equation in (5)
using a θ−scheme [18]

Lijn+1 − Lijn = ∆tγ(lijn+θ − L
ij
n+θ), (6)

with (•)n+θ = (1 − θ)(•)n + θ(•)n+1. Due to the varying resting length, the
nodal tractions at end i, denoted by tiji and given in (2), become now

tiji = ∂xiU ij = kεe,ij
1

Lij lij
(1− F )(xi − xj),

tijj = ∂xjU ij = kεe,ij
1

Lij lij
(1− F )(xj − xi),

with F = (1+∆tγθ)−1∆tγθlij/Lij . The elemental active length Lij can be stat-
ically condensed [31], so that only displacement degrees of freedom are globally
solved.

2.3 Cell-cell connectivity: modified Delaunay triangula-
tion

2.3.1 Triangulation of planar monolayer

We resorted to Delaunay Triangulation (DT) [2] of the set of nodes Xn+1 ob-
tained from the mechanical equilibrium described in the previous section. This
triangulation connects the nodes in such a way that the circumcircle of any
triangle does not contain any other node in it, providing triangles with optimal
aspect ratio [2, 33] . Figure 3 illustrates a schematic view of this triangulation
for a set of four nodes (cell centres).

Since Delaunay’s algorithm yields the convex hull of all the points, a basic
Delaunay triangulation T̃ n+1 = DT (Xn+1) of the cell centres may invariably
lead to distant boundary cells being unrealistically connected, i.e. covering
non-convex boundaries (see Figure 3(c)). In order to overcome this problem,
those elements with very high aspect ratio were eliminated by defining a fil-
tering process. The ratio of in-radius, r, to circumradius, R, of each triangle
in 2D problem and each tetrahedron in 3D problem has been considered as an
appropriate criterion to filter undesirable simplexes. In our case, we have used a
tolerance tol = 0.2 and imposed that wherever r

R < tol, the element is removed.
After applying this filtering process, denoted by F , a new connectivity

T n+1 = F (DT (Xn+1)) is obtained, which does not include the unrealistic el-
ements on the boundary. Figure 3 shows schematically the sequence of all the
process described in Section 2.2 and the planar triangulations described here for
a set of nine nodes. Configuration in Figure 3(b) is computed after imposing
mechanical equilibrium on the triangulation in (a). The connectivity in Fig-
ure 3(c) is obtained by basic Delaunay triangulation, and the one in 3(d) after
applying the filtering process.
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equilibrium Delaunay filtering 

Figure 3: Filtering process of Delaunay triangulation: (a) configuration at time
tn, (b) nodal positions at time tn+1, in equilibrium while holding the Delaunay
triangulation at tn, (c) Delaunay triangulation updated for the new positions,
with unrealistic connectivities on concave edges (d) unrealistic connectivities
being filtered.

2.3.2 Triangulation of curved manifold

To obtain the new triangulation at step (c) in Figure 3, within the filtering
process of Delaunay triangulation, we resort to a non-linear dimensionality re-
duction method (NLDR) to embed the three-dimensional scattered set of points
describing the cell centres in a two-dimensional embedding. In general NLDR
techniques suppose that the input high-dimensional point-set either lies on or is
close enough to a low-dimensional manifold that also is an open set [6, 20, 23].

Here we use a robust and efficient variation of the well known local linear
embedding (LLE, [42]) technique, that is the modified local linear embedding
(MLLE, [46]). LLE-based methods assume that each point of the manifold can
be locally approximated by a linear combination of its k-nearest neighbours (k-
nn). LLE ignores metric information producing low-dimensional embeddings of
unit covariance through a minimisation process that involves eigenvalue decom-
position of sparse matrices. The reader is referred to [42, 41, 46] for full details,
and to [26] for a concise description and performance comparison with other
NLDR methods in the manipulation of point-set surfaces.

As we have mentioned, a remarkable feature of LLE-based methods is the
lack of a clear metric relationship between the low-dimensional embedding and
the original data (see Figure 4(b)). In the problems tackled in this work this is
not problematic as can be noticed in Figure 4(c), even when the input point-
set describes an elongated surface as that shown in Figure 4(a). Finally, the
resulting Delaunay triangulation from the filtering process is attached to the
input point-set surface as depicted in Figure 4(d).

2.3.3 Post-processing: Voronoi tessellation

To represent the cells boundaries, we resort to standard Voronoi tessellation
algorithm of the set of nodes Xn+1: each Voronoi face is perpendicular to the
connecting line of the Delaunay triangulation, and splits in half this line [2].
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Figure 4: (a) Arbitrary point-set configuration from a proof of concept example
in 3D. (b) Two-dimensional embedding obtained by using MLLE [46] (k-nn =
8). The lack of a metric related to the input data, that is, different distances
between points in the real and mapped domain, and its unit covariance (mapped
points are distributed on a squared region) are apparent from the picture. (c)
Two-dimensional embedding nodes and connectivity after applying the filtering
described in Section 2.3.1. (d) 3D initial point-set configuration with resulting
connectivity. The colour-map, which indicates the identifier of each sample of
the point-set, is provided for visual inspection.

However, when it comes to constructing the boundaries associated with the
cells at the boundary of the cell aggregate, Voronoi faces form unbounded regions
closing at infinity. To resolve this issue, a set of off-set nodes were added to the
original set of nodes at the boundary of the filtered Delaunay triangulation.
Each face (edge in two dimensions) at the boundary was duplicated by adding
nodes at a constant off-set distance.

For a curved three-dimensional monolayer configuration, the Voronoi tessel-
lation was performed at two stages. At the first stage, a set of off-set nodes were
constructed at each side of the monolayer. At the second stage, after defining
the nodes at the boundary of the monolayer, a second set of off-set nodes were
added on the plane of the monolayer.

The Voronoi tessellation was constructed taking into account the original
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Figure 5: Voronoi tessellation: (a) Delaunay triangulation of original set of
nodes, (b) open Voronoi tessellation, (c) setting up off-set nodes, (d) Voronoi
vertices set on original nodes and off-set nodes and (e) closed Voronoi boundaries
for surface nodes after eliminating off-set nodes followed by Voronoi vertex at
infinity being excluded.

and the additional off-set nodes, ensuring the formation of bounded regions
for the original nodes of the monolayer. Figure 5(a) illustrates a schematic
view of a set of three nodes primarily connected by a Delaunay triangulation.
Figure 5(b) shows the unbounded regions created by directly applying a Voronoi
tesselation. Figure 5(c) indicates the off-set nodes with smaller circles, while
Figure 5(d) shows the Voronoi regions formed by this extended set of nodes,
which after removing the unbounded regions and the off-set nodes results in the
final Voronoi regions of the cells for the original set of nodes (Figure 5(e)). The
off-set nodes are finally removed.

In summary, the steps followed to form the Voronoi tessellation are:

1. Form off-set layer of nodes. The external normal nξ to each boundary ξ

is computed and the new set of nodes xξoff−set is built according to

xξoff−set = xξ + εnξ.

The new set of nodes is denoted by Ť n+1, which includes Xn+1 and the
nodes a the off-set layer xξoff−set (see Figure 5(c)). In our numerical
results we have used the value ε = 1, which gives a reasonable cell shape
for the cells at the boundaries in our examples. We note that, in general,
the choice of this parameter should be made dependent on the actual size
of the cell, and other values such as one half of the cell-to-cell distance. In
our current implementation, where the Voronoi vertices are not included
in the mechanical equilibrium, the value of ε does not affect the deformed
configurations, but just the aspect of the cell region.
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2. Build a new Delaunay triangulation from X̌n+1, i.e. Ť n+1 = DT (X̌n+1)(see
Figure 5(c)).

3. Build Voronoi tessellation of Ť n+1, that is V̌ n+1 = V oronoi(Ť n+1) (see
Figure 5(d)).

4. Remove Voronoi vertices connected to vertex at infinity (see Figure 5(e))
and remove nodes of the off-set layer.

2.3.4 Update of active length for Active Rheological Model

The time discretisation of the evolution law in (5) requires the evaluation of
the active length at times tn+1 and tn, respectively, denoted by Lijn+1 and Lijn .
However, due to the redefinition of the cell-cell connectivity, it may well be
that the element ij exists at time tn+1 but not at time tn. For this reason,
we compute a nodal Active Length Tensor Li, which will allow to compute the
active length along direction nj as

Lij = nj · Linj . (7)

This relation allows for interpreting tensor Li as a strain tensor, where the
quantity nj · Linj corresponds to the stretching along nj . Since the skew part
of Li does not affect the value of Lij in (7), and in order to keep the similarity
between Li and a deformation tensor, we will assume that Li is symmetric.

It is clear that for a given node i, the existence of an active length tensor
Li satisfying exactly relationship in (7) for all current cell-cell connections ij
may not be possible. Therefore, the tensor Li is computed by minimising the
following quadratic error function:

Ei =
1

2

N∑
j=1

||Linj − Lijnj ||2. (8)

We note that, in view of equation (7), we could alternatively aim to min-
imise the error function Ẽi =

∑
j ||nTj Linj − Lij ||2. We have not done so for

reasons that will be explained below, when commenting the uniqueness of the
minimiser.

Due to the symmetry of tensor Li, we will write this tensor in the forms

L̄i2D = {Lxx, Lyy, Lxy}T , L̄i3D = {Lxx, Lyy, Lzz, Lxy, Lxz, Lyz}T ,

so that Linj = NjL̄
i, with Nj a matrix that contains the components of the

unit vector nj . Then, the error Ei reads as

Ei =
1

2

N∑
j=1

||NjL̄
i − Lijnj ||2,
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and its derivative with respect to each one of the components of Li gives rise to
the system of equations

AL̄i = b (9)

with

A =
N∑
j=1

NT
j Nj , b =

N∑
j=1

LijNT
j nj .

The error measure Ei in (8) is a quadratic function that has a unique min-
imiser as far as the vectors nj span Rnsd , with nsd the number of space di-
mensions. Appendix A gives a proof of this fact. The symmetry of Li is not
required in the proof of uniqueness, which opens the possibility for considering
a non-symmetric tensor Li. However, in this case, the system of equations in
(9) would contain more unknowns, without any qualitative improvement in the
retrieved active lengthening Lij = nj · Linj . Furthermore, and although we
do not prove it here, we point out that other alternative error measures as the
function Ẽi mentioned above would not guarantee a unique minimiser, even if
the vectors nj span Rnsd .

3 Numerical Results

3.1 Flat Monolayer

In order to test the effects of the connectivity changes and also the active rheo-
logical law, respectively described in Sections 2.2.2 and 2.3.1, we have simulated
the stretching of a flat square monolayer with dimensions (Lx, Lz) = (10, 11),
and subjected to an increasing displacement uz, 0 ≤ uz ≤ 20 at the end Z = 11,
with the end Z = 0 fixed (see Figure 6).

We have analysed the following two material models:

M1: γ = 0. Pure elastic material with k = 0.8.

M2: γ = 0.8. Elastic material with k = 0.8 and evolving resting length L.

We have measured the sum of all the reactions along direction Z for the nodes
that are initially at the boundary Z = 11. The evolution of this sum, denoted
by RTOT , is plotted in Figures 7(a) and 7(b) for the two material choices M1
and M2. We have also tested the effect of allowing cell-cell remodelling. When
remodelling is allowed, we have in turn implemented two possible regimes: with
stress relaxation and with no relaxation, which corresponds to update the resting
length of the new elements according to the expressions in Table 1.

It can be drawn from the trends of the curves in Figure 7 that the stress
relaxation does not have a strong effect on the total reaction, while the remod-
elling rate γ does have an impact in the non-linear response, introducing by
itself an apparent stress relaxation. Figures 7(a) and 7(b) also indicate with the
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γ = 0 γ = 0.8

Stress relaxation: Lijn = lijn Lijn = lij0
No relaxation: Lijn = Lij0 Ln = 0.5(nTi L

i
nni + nTj L

j
nnj)

Table 1: Update of length L for new bar elements when remodelling is activated,
with and without stress relaxation. The case with γ = 0.8 and with stress
relaxation, the active length tensors Lin and Ljn (time tn and at nodes i and j)
are computed according to the description in Section 2.3.4.

(a)

(b)

Figure 6: Example of flat monolayer. Top: Initial geometry. Bottom: deformed
geometry.

symbols (×, no relaxation) and (+, with relaxation) the number of connectivity
changes that take place during the simulation for the cases when remodelling
is activated. The height of the symbol corresponds to the number of connec-
tivity changes divided by 10 for each time-step. It is clear that the jumps of
the response are directly correlated with the changes of neighbours between
cells. Since these are in general independent on the relaxation regime of the
remodelling, it can be inferred that the relaxation of RTOT is mostly due to
the presence of these new connections, which has a stronger contribution on the
minimisation of the stored elastic energy than the reduction of the stretching
onto the new directions when relaxation is allowed.

In order to demonstrate the equivalence between the active rheological model
and the Maxwell model, we have applied the displacement history shown in
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Figure 7: Total reaction at the boundary with increasing imposed displacements
for the flat monolayer. (a) Purely elastic model, (b) rheological model with ac-
tive lengthening. The symbols (×) and (+) indicate the number of connectivity
changes per time-step for the two simulations with remodelling.

Figure 8(a), and plotted the corresponding total reaction in Figure 8(b), which
indeed relaxes to zero. It has been observed in laboratory experiments that
monolayers do relax, but to a non-zero stress level [15]. This is associated to
the elastic component of the polymeric structure of the cytoskeleton, and its
inherent contractility. In our active model, which mimics the Maxwell model,
the reactions tend to a zero value. In future works we envision to include this
elastic character of the response with more sophisticated rheological laws.
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Figure 8: (a) Time history of the applied strain. (b) Evolution of the total
reaction as a function of time for the flat tissue and active rheological law.
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We have compared in Figure 9 our numerical results with the experimental
measurements in [16]. This Figure shows the non-linear response of the tis-
sue during an increasing applied displacement, which induced a loss of cell-cell
integrity. In our case, this tissue rupture is represented by a decrease in the num-
ber of cell-cell connectivities. The trend of the two curves agree qualitatively
up to the measured experimental extension. Due to the adopted linear elastic
model, our simulations do not capture the initial stiffening of the material. This
may be recovered by modifying the quadratic potential in (1).
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Figure 9: Comparison between the averaged stress value in the experimental
results [16] and using the numerical model with a linear elastic material (k = 9)
and connectivity changes.

3.2 Curved Monolayer

We have tested a curved monolayer that has the shape of half a cylinder, with
the axis on the Z direction, and with the same number of nodes and similar
dimensions: the projected area occupies the same domain D = {(X,Z)|0 ≤ X ≤
10, 0 ≤ Z ≤ 11} (see Figure 10). The monolayer is stretched along direction Z,
up to the diplacement uz = 20.

The same material models and the mapping of the surface described in Sec-
tion 2.3.2 has been employed in order to apply the Delaunay triangularisation.
Figure 11 shows the evolution of the total reaction RTOT and the number of
connectivity changes. Similarly to the previous case, the trend of the curves
is hardly affected by the update of the active length. However, in the three-
dimensional case, the effect of remodelling has a more acute effect on the reduc-
tion of the total reaction than in the two-dimensional case, although this effect
is only observed for larger imposed displacements.

The reduction of RTOT may be attributed to two contributions. First, the
sides Z = 0 and Z = 11 are fixed on the X − Y plane, and since Delaunay
triangulation minimises the aspect ratio of the resulting triangles, no elongated
triangles can be created. As a result, larger cells are built in the middle of the
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Figure 10: Example of curved monolayer. Top: Initial geometry. Bottom:
deformed geometry.

monolayer, which reduces the number of bars per cross-section and consequently
also the resulting stiffness of the monolayer. Second, and although the number
of cells is constant, these are intercalated as the stretching process takes place:
new connections are being created transversally to the stretching direction (X
axis), which replace bars aligned on the Z direction. We recognise that the
first contribution is unrealistic, and we are currently extending the model in
order to imposing kinematic constraints that preserve the total volume of each
cell. The second contribution, the intercalation process, has been observed
in real embryogenetic movements of curved monolayer such as the endoderm
of Drosophila Melanogaster during germ band extension [19]. We notice that
this effect is more pronounced in the three-dimensional case than in the flat
monolayer, which is restrained to remodel on a flat surface.

We finally point out that the stress relaxation, due to either the active rheo-
logical model or the intercalation process, solely takes place along the direction
of stretching. The material thus remodels anisotropically, as it has been ob-
served on tissues during cell motility [45].

4 Conclusions

We have shown that the non-linear response of epithelial cells can be simulated
by modelling the relative position of cell centres and their topological changes
without unnecessarily dealing with complicated rheological laws at the cells
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Figure 11: Total reaction at the boundary with increasing imposed displace-
ments for the curved monolayer. (a) Purely elastic model, (b) rheological model
with active lengthening.

boundaries. In the tests analysed here, the plastic response of tissues has been
reproduced by implementing a cell reorganisation of monolayers (connectivity
changes) in two and three dimensions, and also by adding a strain dependent
intra-cellular active lengthening. In addition, and as a result of the stretch-
ing process, anisotropy emerges due to the unsymmetrical boundary conditions
being applied.

In the examples analysed here, it has been shown that even with a purely
elastic material, the tissue relaxes due to the intercalation process. Although
this relation between tissue relaxation and cell intercalation is experimentally
well known [19, 39], the model described here may help to quantify this rela-
tionship, and also predict significant differences when it occurs on a flat or on
a curved monolayer.

Further mechanical analysis of the cell-cell boundaries and implementation of
the kinematic constraints is currently being investigated. This may be achieved
by imposing mechanical equilibrium and the volumetric constraints onto the
Voronoi tessellation. We also aim to include more sophisticated rheological
laws in order to simulate the observed softening and hardening response of
monolayers, in conjunction with cell proliferation. The latter may be simulated
by adding new cells (particles) to stretched bar elements or elongated Voronoi
regions.
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A Proof of the uniqueness of active length ten-
sor Li

We will here prove that the solution of the system of equations in (9) at a given
node i is unique if the vectors nj that define the cell-cell connectivities at node
i and that form matrix A span Rnsd .

By definition, matrix A is semi-positive definite (SPD) and symmetric. We
will here prove that matrix A is in fact positive definite (PD) when the vectors
nj span Rnsd , and hence gives a unique solution. Matrix A is PD if the following
implication holds:

L̄iTAL̄i = 0⇒ L̄i = 0. (10)

But, by setting lij = Linj , we have that,

L̄iTAL̄i =

n∑
j=1

Linj · Linj =

n∑
j=1

||lij ||2.

So,

n∑
j=1

Linj · Linj = 0⇒ lij = 0,∀j, (11)

i.e., implication in (10) may be also expressed as,

n∑
j=1

Linj · Linj = 0⇒ Linj · ek = 0,∀j, k.

Setting nj = αljel we have that,

Linj · ek = αljL
iel · ek =

∑
l

αljL
i
kl

with Likl = Liel · ek the component kl of tensor Li. Therefore, equation (11) is
equivalent to, ∑

l

αljL
i
kl = 0,∀k, j.

By denoting by Lik the k-th row of the tensor Li, this condition may be also
expressed as,

nj · Lik = 0,∀k, j,

that is, the vectors nj are orthogonal to each one of the rows of Li. If the
vectors nj span the whole space Rnsd , this is only possible when Lik = 0, as we
wanted to prove. If the tensor L̄i is not assumed symmetric, the uniqueness of
the solution can be also proved by considering an alternative matrix Nj in the
definition of matrix A, but following very similar steps.
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