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Like the statistical analysis of compositional data in general, spatial analysis of compositional data requires
specific tools. A historical overview of their development is presented in three steps: (a) the recognition of the
problem, known as spurious spatial covariance, (b) first attempts to use the logratio approach, and (c) the
application of the principle of working in coordinates using isometric logratio representations. Also mentioned
are the use of matrix-valued variation-variograms as a tool to model crossvariograms, and the simplicial
approach to indicator kriging, that solves inconsistencies in the standard approach to indicator kriging.
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1. Introduction

According to Chilès and Delfiner, (2012), the term geostatistics was
introduced by Matheron, (1962) to designate his own methodology
for ore reserve estimation. Since then, geostatistics expanded amazing-
ly, as themethodology finds application inmany fields, not only in geo-
and environmental sciences. Independently, in the 1980's, J. Aitchison
started developing compositional data analysis (CoDa) (Aitchison and
Shen, 1980; Aitchison, 1982; Aitchison, 1986) introducing what nowa-
days is known as the log-ratio approach. Although most type of data to
which geostatistics is applied are compositional, like ore grade, chemi-
cal or mineralogical composition of rocks, contaminants in air or
water, it was not recognised until 1984 that spurious spatial correlation
might be at work (Pawlowsky, 1984). We summarise in what follows
the steps that have been undertaken since then to solve the problems
derived from the compositional character of some spatially dependent
data. We limit our contribution to the historical development, omitting
most formal derivations which can be found in the references cited.

2. Spurious spatial covariance

The problem of spurious spatial covariance of regionalized composi-
tions, or r-compositions for short, was first stated in Pawlowsky, (1984).
The results are illustrative, and are therefore briefly exposed.

According to our present understanding, a random vector, Z, with D
strictly positive components representing parts of a whole, is a compo-
sition if it carries only relative information (Pawlowsky-Glahn et al.,
sky-Glahn).

, V., Egozcue, J.J., Spatial ana
15.12.010
2015c). Note that the term relative information is equivalent to informa-
tion lies in the ratios between components, not in the absolute values. The
same definition holds for a spatially distributed random vector, Z(x), at
any point x of a spatial domain R.

In 1984, r-compositions were still understood as random vectors sub-
ject to a constant sum constraint, or closed r-compositions. We know now
that compositions in general, and r-compositions in particular, are equiv-
alence classes, and that a closed composition is just a representation. This
means, that the results obtained under this assumption hold for any rep-
resentation of the equivalence classes.

For the understanding of spurious spatial covariance or correlation, it
is mathematically easier to work with a closed representation. Therefore,
in what follows, we work with a closed r-composition, i.e. with a spatially
distributed random vector, Z (x), with D strictly positive parts or compo-
nents, that is subject to a constant sum constraint for all x∈R,

XD
i¼1

Zi xð Þ ¼ κ ; ð1Þ

with κ a given positive constant depending on the units of the random
vector. The constant κ is usually 1 (parts per unit), 100 (percentages),
or 106 (parts per million).

Following Matheron, (1965), geostatistics can be used with
regionalized variables satisfying stationarity conditions. Second
order stationarity requires regionalized variables to have a constant
mean and the autocovariance only depending on the lag between
pairs of variables Z (xj) and Z (xj); a less stringent condition is the
intrinsic hypothesis, which assumes that the first order differences
are second order stationary. Under these kind of assumptions,
geostatistics builds on modelling the mean and the spatial
lysis of compositional data: A historical review, J. Geochem. Explor.
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autocovariance, or related parameters, like the variogram. The follow-
ing development handles the components of the closed r-composition
Z(x)=(Z1(x),Z2(x),… ,ZD(x)) at two spatial locations, say x and x + h in
R, where h denotes the lag between them.

From Eq. (1), for any lag h it holds

XD
i¼1

Zi xð Þ−Zi xþ hð Þð Þ ¼
XD
i¼1

Zi xð Þ−
XD
i¼1

Zi xþ hð Þ ¼ κ−κ ¼ 0: ð2Þ

Hence, multiplying both sides of Eq. (2) by (Zj(x)−Zj(x+h)),

XD
i¼1

Zi xð Þ−Zi xþ hð Þð Þ Z j xð Þ−Z j xþ hð Þ� � ¼ 0:

for any j=1,2,… ,D. Taking expectations,

XD
i¼1

cov Zi xð Þ−Zi xþ hð Þð Þ; Z j xð Þ−Z j xþ hð Þ� �� � ¼ 0: ð3Þ

Given that a variance is always positive, Eq. (3) can be rewritten for
any j=1,2,… ,D, as

var Z j xð Þ−Z j xþ hð Þ� �
Z j xð Þ−Z j xþ hð Þ� �� �

¼ −
X
i≠ j

cov Zi xð Þ−Zi xþ hð Þð Þ Z j xð Þ−Z j xþ hð Þ� �� �
: ð4Þ

Note that Eq. (4) depends only on the fact that Z(x) is the closed rep-
resentation of an r-composition, and not on the type of spatial depen-
dence of its components. Eq. (4) implies that non-stochastic factors
determine the value of cross-covariances. They cannot be all null simul-
taneously, as the variance is, by definition, always positive. Also, if the
closed r-composition was generated by closure of independent random
variables, a dependence will appear, which is spurious, as it is not gen-
erated by the phenomenon itself (Pawlowsky, 1984). This result is well
known for compositional data in general as the closure problem (Chayes,
1960). It has many implications in standardmultivariate analysis which
can be directly extended to r-compositions.

For a closed intrinsic r-composition Z(x), Eq. (4) can be written in
terms of variograms, γj(h), and crossvariograms, γij(h),

γ j hð Þ ¼ −
X
i≠ j

γij hð Þ; j ¼ 1;2;…;D: ð5Þ

for any lag h. As stated in Pawlowsky, (1984), the obvious conclusion is
the need of non-zero cross-variograms for r-compositions, some of
which have to be negative—as the variogram is, by definition, positive.
It is clear that the only case in which cross-variograms could be all
null or all positive is that the variogram is null, i.e. the r-composition
is constant. The fact that variograms and cross-variograms of r-
compositions are subject to non-stochastic controls leads to the conclu-
sion that, when based on raw data, they are spurious.

Under the assumption that the sample space is the whole real
space endowed with the standard Euclidean space structure and ge-
ometry, or a subset with the induced structure and geometry, for
Z(x) satisfying the second order stationary hypothesis, the following
equalities hold:

XD
i¼1

Zi xð Þ ¼ κ ;

XD
i¼1

E Zi xð Þð Þ ¼
XD
i¼1

mi ¼ κ;

XD
i¼1

Zi xð Þ−miÞð Þ ¼ 0;

ð6Þ
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with E(Zi(x))=mi, the expected value of Zi(x), i=1,2 ,… ,D. Multi-
plying both sites of Eq. (6) by (Zj(x)−mj) and taking expectations, it
holds

XD
i¼1

cov Zi xð Þ−mið Þ Z j xð Þ−mj
� �� � ¼ 0; j ¼ 1;2;…;D; ð7Þ

and therefore, for any lag h,

C j hð Þ ¼ −
X
i≠ j

Cij hð Þ; j ¼ 1;2;…;D; ð8Þ

where Cj(h) stands for the auto-covariance of component j, and Cij(h) for
the cross-covariance of components i and j. Consequently, also the
cross-covariances cannot be all null, and some of them have necessarily
to be negative. Being subject to algebraic, non-stochastic, controls, they
are spurious.

As summarised in Pawlowsky-Glahn and Burger, (1992), the prob-
lems derived from the nature of spatially distributed compositional
data, when the raw data are analysed, are

1. The mathematical necessity of at least one non-zero cross-covariance.
2. The bias towards negative cross-covariances.
3. The singularity of the cross-covariance matrix for any lag h.
4. The distorted description and interpretation of the spatial depen-

dence between the compositional variables under study.
Nowadayswe know that the problemof spurious spatial covariance or
correlation is generated by the fact that compositional data are
analysed as real data, with the usual Euclidean geometry. In fact,
most statistical methods have been developed for real data without
constraints under the implicit assumption that the Euclidean geometry
holds. This means that the difference between observations is mea-
sured as an absolute difference, that the sum and its opposite make
sense. This holds even with constraints, i.e. restricting the support of
the sample to a subset of real space without changing the geometry.

3. The beginning — 1986: the additive log-ratio approach

The initial approach (Pawlowsky, 1986; Pawlowsky-Glahn and Olea,
2004) was to use the additive log-ratio (alr) transformation (Aitchison,
1982; Aitchison, 1986). The r-composition is transformed into log-ratios as

W xð Þ ¼ ln
Z1

ZD
; ln

Z2

ZD
;…; ln

ZD−1

ZD

� �
; :

thus obtaining a regionalized vector of D–1 components which can be
treated using cokriging. As we are aware nowadays, this was done
under the implicit assumption that the Euclidean geometry holds for
alr transformed vectors. Under this assumption the alr-transformation
leads to BLU (Best Linear Unbiased) estimates (Pawlowsky-Glahn and
Egozcue, 2002). Nevertheless, soon problems appeared, like the fact
that cokriging seamed to lead to worse results than kriging, a fact that
stands in contradiction with theoretical results (Pawlowsky-Glahn
and Olea, 2004, p. 160–161). The reasons for these problems could not
be explained in a consistent way until the algebraic–geometric struc-
ture of the sample space of compositional data was recognised
(Aitchison et al., 2002; Billheimer et al., 2001; Pawlowsky-Glahn and
Egozcue, 2001) and the alr was understood within this framework. Es-
sentially, the problem was the computation of variances and covari-
ances using the alr coordinates, which at that moment was not clear.

The covariance structure of compositional data can be described by
the so-called variation matrix (Aitchison, 1982; Aitchison, 1986). This
matrix contains the variances of each possible log-ratio of pairs of com-
positional parts. It was shown that the variation matrix completely de-
scribes the covariance structure of the composition, independently of
which transformation is used to analyse the data. These facts inspired
the introduction of the spatial structure of r-compositions, first defined
lysis of compositional data: A historical review, J. Geochem. Explor.
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in Pawlowsky, (1986) and summarised in Pawlowsky-Glahn and Bur-
ger, (1992) and Pawlowsky-Glahn and Olea, (2004), p. 29:

DEFINITION 3.1. [Spatial covariance structure] The spatial covariance
structure of a D-part r-composition is defined as the set of functions of
the lag h.

σ ij�k‘ðhÞ ¼ Covð ln ZiðxÞ
ZkðxÞ ; ln

Z jðxþhÞ
Z‘ðxþhÞÞ; i; j; k; ‘∈1;2;…;D; x∈D:.

At a first glance, the geostatistical analysis ofW(x) can be performed
as a cokriging. This means that variograms and cross-variograms have
to be fitted to their empirical versions. However, the spatial covariance
structure allows the modelling of each component of σij⋅k‘(h) by a sim-
ple variogram, thus avoiding modelling of cross-variograms. A matrix
transformation can transform the spatial covariance structure into the
cross-variograms required for a cokriging of W(x).

As stated in Pawlowsky-Glahn and Burger, (1992), themost difficult
part—compared to a spatial analysis of several variables—is that, in addi-
tion to the usual difficulties, problems have to be reformulated in terms
of logratios, and interpretation and description of spatial dependencies
have to be made in the same terms.

4. The breakthrough 2000

Around the year 2000, compositional data analysis attains a further
maturity level. The achievements can be summarised in two main
points: (1) the simplex, as sample space of compositional data, is
endowed with a Euclidean space structure, called Aitchison geometry
(Pawlowsky-Glahn and Egozcue, 2001); and (2) compositional data
are no longer conceived as vectors constrained to a constant sum but
as equivalence classes of proportional vectorswith positive components
(Barceló-Vidal et al., 2001). These new points of view influenced the
way of identifying and analysing r-compositions and they are briefly de-
scribed in the following sections.

Subsequent developments (Tolosana-Delgado, 2006), based on the
sample space approach and the Principle of Working in Coordinates
(Mateu-Figueras et al., 2011; Pawlowsky-Glahn, 2003), proved the po-
tential for the log-ratio approach within the Aitchison geometry of the
simplex, setting the foundations for a rigorous theory. Based on the
principles of scale invariance, subcompositional dominance, and per-
mutation invariance, the operations of perturbation, powering, and
the inner product associated to the distance introduced by (Aitchison,
1982; Aitchison, 1986; Aitchison, 1997), provide, as mentioned, the
simplex with a Euclidean space structure (Billheimer et al., 2001;
Pawlowsky-Glahn and Egozcue, 2001), different, but nonetheless iso-
metric to the Euclidean space structure of real space. The Euclidean
space structure of the simplex was termed Aitchison geometry in
Pawlowsky-Glahn and Egozcue (2001). It opened up the door to a
deeper understanding of the nature of compositional data, of the
available methods to analyse them, and of the problems linked to
different approaches. In particular, the advantage of using isometric
log-ratio transformations was recognised. Within this family of trans-
formations, those known as balances (Egozcue et al., 2003; Egozcue
and Pawlowsky-Glahn, 2005) have shown a high potential based on
their interpretability, and can be used for spatial analysis of composi-
tional data.

4.1. Compositions are representatives of equivalence classes

In Aitchison, (1986), the so called principle of scale invariance of com-
positions was formulated. It states that the analysis of a composition
must remain invariant when the composition is multiplied by any pos-
itive constant. This was the motivation for preconising the use of log-
contrasts as the main tool in the analysis. Log-contrasts are combina-
tions of the logarithms of the parts such that, when all parts of the com-
position are multiplied by a positive constant, the value of the
combination remains unaltered. Also, vectors of positive components
Please cite this article as: Pawlowsky-Glahn, V., Egozcue, J.J., Spatial ana
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are reduced to constant sum by using the closure operation. These con-
cepts were clear from the beginning of compositional data analysis, but
there was a lack of mathematical formulation reflected in the wording
of compositional data analysis. For instance, when referring to the clo-
sure problemas the only origin of pitfalls in compositional data analysis.

The progress consists in thinking that all vectors having proportional
positive components are equivalent and convey the same compositional
information. A composition is then an equivalence class which can be
represented by choosing an arbitrary element of the class. Equivalence
classes can be represented in many ways and each choice defines a po-
tential sample space, whether constraint to a constant sum or not (see
explanations in Pawlowsky-Glahn et al. (2015c), ch. 2).When composi-
tional data are represented as data subject to a constant sum constraint,
their sample space is a simplex, and the simplex is nothing else but a
choice of one out of all the possible sample spaces of compositions.
This choice is not only convenient because it is the usual choice in prac-
tice, but also because it is mathematically easy to define a meaningful
and interpretable Euclidean vector space structure in the simplex
(Pawlowsky-Glahn and Egozcue, 2001).

Other representations of compositions are possible. For instance,
when compositions of air pollutants are expressed in μg/m3 or solutes
are given in Mol per litre, concentrations do not add to a constant and
they are not represented in the simplex. Simply, the representative of
the equivalence class has been taken in another way, but still the ratios
of the parts are the relevant information. In these kind of representa-
tions, perturbation is also easily interpretable. Other possibilities are
less intuitive, for instance, when compositions are represented in an
orthant of a hypersphere (e.g. Wang et al., 2007).

It is remarkable that this interpretation of compositions as equiva-
lence classes only arose in 2000. This may be the reason why, in the
decade from1980 to 1990, concentrations in units likemol/l, concentra-
tion of a single element, or just removing a large component, were
considered to be non-compositional and, consequently, free of the
difficulties of analysing compositional data.

The influence of these new concepts in geostatistics is reflected in
the identification of what is an r-composition, independently of wheth-
er the collected data are closed to a constant or not.

4.2. Aitchison geometry of the simplex and consequences

The simplex endowed with perturbation (the compositional sum),
powering (compositional multiplication by real numbers) and
Aitchison distance, constitute a (D–1)-dimensional Euclidean vector
space (Billheimer et al., 2001; Pawlowsky-Glahn and Egozcue, 2001).
The Euclidean space structure of the simplex was termed Aitchison ge-
ometry in Pawlowsky-Glahn and Egozcue, (2001). The value of this
mathematical result is supported by the fact that perturbation is an in-
terpretable operation inmost compositional scenarios. In fact, perturba-
tion can be interpreted as filtering in geochemistry or particle size
analysis; or as the Bayes formula for probabilities (for details, see
Pawlowsky-Glahn et al. (2015c), ch. 2).

The Aitchison geometry points out that orthonormal basis of the
space exist, and that the corresponding (Cartesian) coordinates can effi-
ciently represent compositions; orthogonal projections are possible; the
concepts of linear combination, linear dependence, Euclidean distances,
and all the typical geometrical elements are available. All these tools are
readily used once compositions are represented by their coordinates
with respect to a basis of the space, as perturbation is the sum in coor-
dinates, powering is scaling in coordinates, and the Aitchison distance
is the standard Euclidean distance between coordinates. This consti-
tutes the core of the Principle of Working in Coordinates (Mateu-
Figueras et al., 2011).

An important step ahead is the construction of orthonormal
(Cartesian) coordinates in the simplex. The function assigning ortho-
normal (Cartesian) coordinates to a composition has been named
isometric log-ratio transformation (ilr) (Egozcue et al., 2003). The ilr-
lysis of compositional data: A historical review, J. Geochem. Explor.
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transformation is not unique, as there are infinitely many basis of the
space. As a consequence, it was clear that the alr-transformation is an
assignation of coordinates with respect to an oblique basis (Egozcue
et al., 2003), while the centred log-ratio transformation (clr) (Aitchison,
1986)

clr Z xð Þð Þ ¼ ln
Z1 xð Þ
g Z xð Þð Þ ; ln

Z2 xð Þ
g Z xð Þð Þ ;…; ln

ZD xð Þ
g Z xð Þð Þ

� �
;

where g(Z(x)) is the geometric mean of the Z(x) components, gives
coordinates with respect to a generating system of the simplex. The
clr-transformation was not used for geostatistical analysis, as its
covariance matrix is always singular. It is, nevertheless, extremely
useful for computation in compositional data analysis. For exam-
ple, the ilr-coordinates are readily obtained through a clr-
transformation as

ilr Z xð Þð Þ ¼ V clr Z xð Þð Þ;

where V, called contrast matrix (Egozcue et al., 2011;
Pawlowsky-Glahn et al., 2015c), is a (D,D–1)-matrix satisfying the
property that V′V is the identity matrix. An easy way of building co-
ordinates, called balances, was introduced in Egozcue et al. (2003);
Egozcue and Pawlowsky-Glahn, (2005). The procedure, called se-
quential binary partition (SBP), provides such contrast matrices,
and the resulting ilr-coordinates are called balances (Egozcue and
Pawlowsky-Glahn, 2005).

It is remarkable that ilr, alr, and clr transformations are different as-
signations of coordinates to a compositionmore than different transfor-
mations leading to different approaches. An important point is that,
within the Aitchison geometry of the simplex, the predictors used in
all classes of kriging are linear, as they are linear combinations of
coordinates. However, in the case of alr-coordinates distances and co-
variances should be handled very carefully, paying special attention to
the fact that they are representations in an oblique coordinate system.
This explains the problems detected when using cokriging on alr-
coordinates (Pawlowsky-Glahn and Olea, 2004), p. 108, where this
fact was not taken into account.

4.3. Cokriging of regionalized compositions

Initially, the problems for cokriging of r-compositions ap-
peared to be centred on the modelling of cross-variograms of
log-ratio transformed data, although it was known that a simple
matrix transformation leads from the matrix-valued variation-
variogram, the matrix of variograms of all possible simple log-ratios, to
any log-ratio representation (Pawlowsky, 1986; Pawlowsky-Glahn and
Burger, 1992; Pawlowsky-Glahn and Olea, 2004; Tolosana-Delgado,
2006; Tolosana-Delgado et al., 2011). Later, Tolosana-Delgado and
Boogaart, (2013) recognised the potential of the matrix-valued
variation-variogram, specially to model cross-variograms using first a
Linear Model of Coregionalisation for the matrix-valued variation-
variogram, followed by a matrix transformation to obtain the corre-
sponding variograms and cross-variograms for the coordinates chosen
by the scientist to represent the available data. Note that the matrix-
valued variation-variogram is a matrix with all its entries simple
variograms and no cross-variogram. Standard cokriging can then be
applied to obtain the desired predictions. In summary, spatial composi-
tional data analysis consists in the following steps (Tolosana-Delgado
and Boogaart, 2013):

1. transform the D-part compositional vectors into (D–1)-dimensional
real vectors by means of a convenient isometric log-ratio (ilr)
transformation;

2. apply any standard geostatistical technique to the vectors obtained;
Please cite this article as: Pawlowsky-Glahn, V., Egozcue, J.J., Spatial ana
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3. back-transform interpolated and/or simulated scores back using the
ilr inverse.
To model necessary variograms and cross-variograms

• compute the matrix-valued variation matrix and adjust a Linear
Model of Coregionalisation;

• apply the corresponding matrix transformation to obtain the desired
matrix-valued variogram (containing variograms in the diagonal
and cross-variograms off-diagonal) of the ilr transformation used be-
fore.
Details of the procedure can be found in Tolosana-Delgado and
Boogaart, (2013).
Note that, as stated in Tolosana-Delgado et al., (2008a), the proposed
procedure leads to BLU estimators when performing cokriging.

4.4. Simplicial Indicator Kriging

The recognition of the Euclidean vector space structure of the
sample space of compositional data and the understanding that
probabilities can be considered to be a composition allowed to
solve the problems intrinsic to Indicator Kriging (Pawlowsky-Glahn
et al., 2006; Tolosana-Delgado, 2006; Tolosana-Delgado et al.,
2008c; Tolosana-Delgado et al., 2008b). By construction, Simplicial
Indicator Kriging avoids all the known problems associated with
usual Indicator Kriging (Journel, 1983), namely negative predictions,
order relation violations, or predictions larger than one.

4.5. Further developments — 2015: cokriging r-compositions with a total

As mentioned before, compositional data are multivariate positive
real data that carry only relative information, and can be represented
simply taking closure, i.e. taking proportions or concentrations. In this
case, the information about their total sum is lost. In some cases, in ad-
dition to the composition, the sum of some of the positive variables,
called total, can be informative or of interest. Consequently, the need
of a joint analysis of composition and total arises. Some possibilities
were studied in Pawlowsky-Glahn et al., (2015a) which concluded
that the chosen total can be included as an additional coordinate to
those coming from the composition. This applies to r-compositions
where some regionalized total is of interest. The geostatistical analysis
can be conducted by cokriging of compositional ilr-coordinates, jointly
with the coordinate of the total.

A first application of this procedure was performed in Pawlowsky-
Glahn et al., (2015b) although the main goal was dimension reduction
of a geochemical data set. The problem appears when applying compo-
sitional techniques of dimension reduction since, after orthogonal pro-
jections, the original units of the composition are lost. In order to
recover original units, cokriging of ilr-coordinates of the composition
is carried out jointly with the sum of initial concentrations. This joint
cokriging of ilr-coordinates with supplementary real variables appears
to be a promising technique in compositional geostatistics.

5. Other approaches

Not many attempts have been made to find spatial interpolation
methods for regionalized compositional data. Methods that comply
with nonnegativity and the representation as data constraint to a con-
stant sum include nearest neighbour interpolation, triangulation, local
sample (arithmetic) mean, and inverse distance interpolation, which
are described in (Isaaks and Srivastava, 1989). Another approach, called
compositional kriging, was introduced by (Walwoort and de Gruijter,
2001). All of them are implicitly based on the assumption that the
sample space of compositional data is the simplex as a constraint
subset of real space, and that they obey the induced geometry, i.e.
the standard Euclidean geometry. This fact implies the assumption
lysis of compositional data: A historical review, J. Geochem. Explor.
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that compositional data carry absolute and not relative information,
a decision that lies with the researcher analysing the data. Further-
more, as stated by Walwoort and de Gruijter, (2001), the former
methods do not take the spatial structure into account, but neither
does compositional kriging completely, as it does not take into ac-
count cross-correlations, and thus cross-variograms, to avoid prob-
lems with spurious correlation. As shown by Pawlowsky-Glahn and
Egozcue, (2002), even using the alr representation of compositional
data leads to BLU estimators within the Aitchison geometry of the
simplex (Pawlowsky-Glahn and Egozcue, 2001), and numerical
comparisons of results based on different assumptions for the struc-
ture of the sample space make no sense. Whichever is the assump-
tion made by the scientist, spatial interpolation using cokriging will
be optimal within the assumed geometry.

6. Conclusions and comments

Reviewing the early developments in the spatial analysis of composi-
tional data, and in the analysis of compositional data in general, one can
see the evolution of the way of thinking on that type of data. One typical
example is the statement in Pawlowsky, (1984) that Z(x) – Z(x+ h) is an
r-composition for any x∈R and any lag h. This is clearly not true, as it
always yields at least some non-positive numbers.

Another hurdle were the problems related to the alr transformation.
After understanding that the alr represents the data in an oblique basis
of the simplex, one can recognise two ways of proceeding: (1) to avoid
the alr and use only isometric log-ratio transformations, or (2) to take
into account the oblique nature and use appropriatematrix transforma-
tions to obtain consistent results. The first approach is straightforward
and safe, the second requires more care. It is up to the researcher to
choose which transformation is better suited for the case he or she is
dealing with.

One of the characteristics of cokriging ilr-coordinates is that the
modelling of cross-variograms can be afforded modelling the variation
variograms, thus avoiding the always difficult cross-variogrammodelling.

The main conclusion is that analysing compositional data, regional-
ized or not, is nowadays summarised by the principle of working on
coordinates; it transforms the compositional analysis into a standard
geostatistical problem where well known procedures can be applied
without additional difficulties.
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