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Abstract 

Background: After several years of treatment, patients with Parkinson's disease (PD) 

tend to have, as a side effect of the medication, dyskinesias. Close monitoring may 

benefit patients by enabling doctors to tailor a personalised medication regimen. 

Moreover, dyskinesia monitoring can help neurologists make more informed decisions 

in patient’s care.  

Objective: To design and validate an algorithm able to be embedded into a system that 

PD patients could wear during their activities of daily living with the purpose of 

registering the occurrence of dyskinesia in real conditions.  

Materials and methods: Data from an accelerometer positioned in the waist are 

collected at the patient’s home and are annotated by experienced clinicians. Data 

collection is divided into two parts: a main database gathered from 92 patients used to 

partially train and to evaluate the algorithms based on a leave-one-out approach and, on 

the other hand, a second database from 10 patients which have been used to also train a 

part of the detection algorithm.  

Results: Results show that, depending on the severity and location of dyskinesia, 

specificities and sensitivities higher than 90% are achieved using a leave-one-out 

methodology. Although mild dyskinesias presented on the limbs are detected with 95% 

specificity and 39% sensitivity, the most important types of dyskinesia (any strong 

dyskinesia and trunk mild dyskinesia) are assessed with 95% specificity and 93% 

sensitivity. 

Conclusion: The presented algorithmic method and wearable device have been 

successfully validated in monitoring the occurrence of strong dyskinesias and mild 

trunk dyskinesias during activities of daily living.  

Keywords: Inertial sensors, Support Vector Machine, Parkinson’s disease, Dyskinesia, 

Ambulatory monitoring.  

 

 

 



1. Introduction 

Parkinson's disease (PD) is a chronic and second most common neurodegenerative 

disorder, behind Alzheimer's disease. The pathology of the disease is characterised by 

an insufficient activity in the neurons that produce dopamine, one of the main 

neurotransmitters involved in the control of movement [1]. First appreciable symptoms 

in PD are those related to an altered movement control, such as tremor, rigidity or 

bradykinesia (slowness of movement). These symptoms are caused by a decrease in 

dopamine levels. Presently, there is no known drug proven to have disease modifying 

effect or capable of stopping the progression of PD. Current main treatments are based 

on symptom reduction and centred in substances that increase the concentration of 

dopamine. More specifically, current treatments replace dopamine through the use of its 

precursor, Levodopa (L-Dopa), or substances that increase the neurotransmitter activity 

by stimulating dopamine receptors [2]. The main drug used in the early stages of the 

disease is L-Dopa taken as oral pills. During the first years of the disease, patients use to 

respond to oral treatment with L-Dopa in a stable way, without appreciable motor 

symptoms for most of the time. However, with the advance of the disease, the duration 

and effectiveness of the medication is reduced and patients tend to have, as a side effect 

of the medication, dyskinesias. These treatment-related motor complications appear in 

approximately 30% of patients after 2 years of L-Dopa exposure and, once established, 

they are very difficult to treat and significantly contribute to overall disability and 

disease burden [3,4]. Dyskinesia is a movement disorder that consists of involuntary 

movements that mainly occur in the limbs, hands, trunk and lingual-facial-buccal 

musculature  [5,6]. At the time that these complications occur, the neurologist should 

consider a therapeutic change as these motor complications cannot be handled by oral 

medications [4]. 

In the latter years, some research has focused on helping neurologists to make 

care decisions in an objective way. For example, in the work presented in [7], an 

algorithm that selects one of the following three treatment options for patients with 

advanced PD is reported: subcutaneous apomorphine infusion, Deep Brain Stimulation 

and intestinal infusion of L-Dopa. This algorithm is mainly based on the age of the 

patient and the presence of dyskinesia. The idea behind the pump-based treatments 

(subcutaneous apomorphine infusion and L-Dopa intestinal infusion) relies on the 



growing evidence that improvement in duration and severity of dyskinesia can be 

achieved through continuous drug administration [4]. Thus, the change of treatment in 

PD is being defined, mainly, on the appearance of dyskinesias since they drastically 

affect the quality of life of patients and they can be improved with appropriate 

treatments.   

Therefore, the gathered evidence has proven that the accurate knowledge of the 

appearance of dyskinesias during activities of daily living is indispensable for the 

neurologist in order to improve advanced PD treatment. This information can help the 

professionals to make informed decisions, on the one hand, to change the administration 

mode of the medication (oral / pump) or, on the other hand, to select another treatment 

to the patient (e.g. L-Dopa vs agonists). Furthermore, having this data available in real-

time would open up the possibility to the on-line control of the dosage administrated by 

infusion pumps according to the patients' motor fluctuations. An example of this 

hypothesis was tested under previous work, in which a proof of concept was performed, 

by remotely adjusting the apomorphine dose (administered by a modified apomorphine 

pump) based on the motor phase of the patient [8]. 

The ultimate goal of the work presented in this paper is to design and validate an 

algorithm that can be embedded into a system that PD patients could wear during their 

activities of daily living with the purpose of registering the occurrence of dyskinesias in 

real conditions. Given that the system is designed to be employed in real conditions, its 

comfort and usability are crucial since patients should wear it for several hours. In this 

sense, one should not forget that the final system, in which these algorithms will be 

embedded, must be manipulated by PD patients who are generally aged over 65 and, 

additionally, the system must be continuously worn during waking hours (between 8 

and 12 hours a day). These conditions, marked by patient's age, usage circumstances 

and PD symptoms, led us to make the system, and its method of placement in the body, 

to be very comfortable and very easy to use. To this end, as presented in the paper, the 

system is restricted to be a single device that unites sensor, processing and 

communication modules together. 

The rest of the paper is organised as follows. The next section is devoted to 

describing the background and related work on dyskinesia detection. Third section 



presents the employed methods, including the data collection and the signal processing. 

Then, results are provided and finally, discussion and conclusions are presented. 

 

2. Related work 

Two types of dyskinesias are distinguished according to their clinical phenomenology: 

choreic and dystonic [3,6]. A choreic movement is an involuntary spasmodic twitching 

or jerking in muscles with no purpose. A dystonic movement involves contractions in 

muscle groups provoking abnormal postures. There are different classifications of 

dyskinesias but, when referring to PD, the most widespread classification is based on 

the timing of their appearance regarding the medication effect. According to this 

classification we can find, as Table 1 shows, three types: “off-phase dystonia", 

“diphasic dyskinesia" and “peak dose dyskinesia" [3]. The first type, off-phase dystonia, 

arises during off periods and is generally related to akinesia. Off periods are related to 

low dopamine levels in blood and, therefore, are often associated with periods in which 

the medication is not making the desired effect or when the plasma level of the active 

drug is low. Diphasic dyskinesias, instead, are associated to the onset and the end of 

dose, i.e. rise and fall of dopaminergic levels. Finally, peak dose dyskinesias are 

correlated with maximal plateau dopaminergic plasma levels. Each one of the three 

types of dyskinesia is associated with a specific set of involuntary movements, defining 

the way in which they are observed. First, peak-dose dyskinesias generally affect the 

trunk and consist of choreic form movements. Diphasic dyskinesias take the form of 

dystonic ballistic movements that are sometimes painful, although they commonly 

affect the lower limbs, in contrast to peak-dose dyskinesias that typically involve the 

upper limbs [4,9]. Peak-dose dyskinesias are the most common and frequent type of 

dopaminergic-induced dyskinesias [9]. Consequently, they are the most interesting type, 

from a clinical point of view, in order to assess the adverse effects of specific 

medications [10].  

 

 

 



Classification 

in PD 
Type Timing of the appearance 

Part of the 

body 

(commonly) 

off-period 

dyskinesia 
Dystonic 

During off periods  

(Low blood concentration of dopamine) 
Distal extremities 

Diphasic 

dyskinesia 

Dystonic 

and 

Choreic 

End of dose  

(Change in the blood concentration of 

dopamine) 

Lower limbs 

Peak-dose 

dyskinesia 
Choreic 

During on periods  

(High blood concentration of dopamine) 

Trunk and upper 

limbs 

Table 1: Dyskinesia classification based on appearance timing. 

 

Research on automatic detection of choreic dopaminergic-induced dyskinesia 

relies on body-worn sensors based on Micro-Electro-Mechanical Systems (MEMS) 

technology, given that MEMS provide miniaturised wearable devices capable of being 

employed in unobtrusive human movement monitoring applications [11]. Main sensors 

that have been employed in choreic dyskinesia detection are accelerometers, 

gyroscopes, magnetometers and electrogoniometers [12–18]. Among them, 

accelerometers are the most widely used sensors to detect dyskinesia. They have been 

located in different parts of the body, such as trunk, limbs, or head [6]. Locations that 

have been mostly used are arms, legs and trunk [12–14] when more than one device is 

used in data acquisition. However, when just one single accelerometer is utilised the 

choice of localisation differs, i.e. shoulder [15] or waist [16].  

Choreic dyskinesia assessment methods are commonly composed of the 

following steps. First, raw signals acquired from patients’ movement are segmented into 

time windows and signals contained in each time window are characterised through 

some specific features. Then, these features are used as the input to a machine learning 

technique. It should be noted that some studies have only evaluated feature significance 

based on statistical tests [13,15,19–21], which does not facilitate an automatic 

assessment tool. The approaches found in the literature aiming to automatically assess 

dyskinesia are described in the rest of this section. 

One of the most widely used ways to characterise MEMS sensor signals to 

detect dyskinesia is based on frequency analysis of the acquired data [12–17,21]. In 

these studies, signals were characterised by a Short Time Fourier Transform with the 

aim of representing signals in a frequency domain. Manson et al. proved that choreic 

dyskinesias increase the power spectrum density of accelerometer signals in the 



frequency band between 1-3 Hz [15]. Keijsers et al. [12] employed the frequency and 

amplitude of the signals to characterise them in the detection of dyskinesia. A similar 

approach was carried out in other studies [16,17]. Power spectrum analysis was also 

used in [13,21], however, this time on a larger bandwidth that reached 8 Hz. In another 

recent paper [14], the signal energy within 2-5 and 5-10 Hz frequency bands and 

entropy of the frequency spectrum were employed. Finally, high frequency energy 

content, frequency domain entropy and a five-bin histogram representation of the 

spectral contents over all three axes of the accelerometer have also been employed [17]. 

Besides the frequency based features, signal characterisation has also been done through 

minimum, maximum, mean and standard deviation values of the signals, RMS, 

entropies and correlations [14,17–20]. These features have been applied to other signals 

derived from the ones provided by the sensors, such as magnitude signal or velocity and 

displacement, obtained by single or double integration of the acceleration signals, 

respectively. 

Recent studies on automatic dopaminergic-induced dyskinesias assessment 

have, however, two main limitations. First, the amount of signals obtained from patients 

is limited and most of them were collected from less than 20 PD patients [12,14–18]. 

Thus, as far as the authors know, there is no precedent work in which dopaminergic-

induced dyskinesias were assessed in the daily life environment of a relevant sample of 

PD patients. In addition, it is unknown if these studies analysed any of the usability 

restrictions previously described in this article, since the great majority of them use 

some sensors distributed on the body [12–14,17,18,20,22]. As far as authors know, the 

only paper, apart from the previously submitted by authors [16], that uses a single 

sensor for dyskinesia assessment is operating from the shoulder [15], which is a position 

contrary to the restrictions that have been presented so far. In contrast to these previous 

approaches, this paper presents a new methodology to detect choreic dopaminergic-

induced dyskinesias based on the signals from a single accelerometer positioned in the 

waist.  

 

 



3. Methods 

This section describes the methods used to validate the device and algorithms for the 

assessment of choreic dyskinesia. The section is organised as follows. First, the authors 

describe the selection of the sensor position and the related implications. In the next 

section, the inclusion criteria and descriptive data of the patients who participated are 

presented. In the data collection part, the data acquisition methodology is explained. In 

the last sections, the signal processing and the evaluation techniques are detailed.  

3.1. Sensor position 

In the design and generation of the algorithms to monitor dyskinesia, it is essential to 

determine the context and conditions in which they will be used. In our case, the 

algorithm should be able to evaluate the choreic dyskinesia and be embedded in one or 

more devices that patients wear during their activities of daily living. According to this 

reasoning, two necessities lead and constrict the design and the specification of the 

device: the number and position of movement sensors. 

In this work we face a compromise between the feasibility of capturing and 

recognizing a motor symptom and, on the other hand, the discomfort that can cause to 

the user wearing a sensor in certain positions or simply having to wear several sensors. 

Regarding the final wearable system, which is expected to embed the algorithm 

presented in this paper, it is essential not to be overly complex. Thus, in this paper we 

discard any system implementation that requires multiple sensors and we have focused 

the study in conducting an analysis with a single sensor. 

In this sense, some studies like those of Yang et al. and Gjoreski et al. [23,24] 

argue that placing an accelerometer on the waist is interesting from a mechanical point 

of view, because of the closeness and solidarity with the centre of mass of the human 

body, providing good ergonomics for the patient. In addition, on the same line Mathie et 

al. [25] performed a survey where volunteers chose the side of the waist, above the 

anterior superior iliac spine, as the most suitable place to carry a small inertial sensor. 

Given this reasoning and the restriction on the position and the number of 

sensors, in the work presented in this paper it has been considered that a single sensor 

must be used and, moreover, the side of the waist must be its position. All choreic 

dyskinesias are reflected, in greater or lesser extent, in the trunk (as most movements, 



even in the extremities, provoke some movement in the trunk) and, among the different 

trunk locations in which a sensor could be located, the waist is considered the optimal 

place. In this sense, it is considered that the waist is the most suitable place in the body 

that can be used to capture most of choreic dyskinesias using a single sensor. This 

consideration is a very hard restriction that appears from a usability point of view. The 

biggest problem is that, although this position enables the detection of dyskinesias 

appearing in almost any part of the body, some precision is lost in the degree of 

severity, depending on the area of occurrence; e.g. the sensed severity of an arm 

dyskinesia would be not comparable with the severity sensed from a similar dyskinesia 

in the trunk. This means that the detector will present greater sensitivity for trunk 

dyskinesia than for dyskinesias that occur in distal extremities.  

In any case, sensor placement at the waist provides a good resolution for almost 

any choreic dyskinesia, those related to peak dose dyskinesias, which are the most 

interesting to detect from a clinical point of view. It is for this reason that, in the results 

section, the behaviour of the algorithm is presented in terms of the part of the body that 

the dyskinesia appears. However, the authors are aware of the trade-off and we 

prioritised usability and viability of the final system against a minimum reduction of the 

device resolution in certain types of dyskinesias. 

 

3.2. Participants 

An international multicentre study was planned to gather the inertial signals and 

validate the developed algorithms. The study took place from 2012 through 2014 and 

was coordinated by four different clinical settings: Centro Médico Teknon (Spain), 

National University of Ireland, Galway (Ireland), Fondazione Santa Lucia (Italy) and 

Maccabi Healthcare Services (Israel). 

We included patients aged between 50 and 75 years, with idiopathic PD, 

according to the criteria of the UK PD Society Brain Bank [26]. All patients were in a 

moderate-severe phase (Hoehn and Yahr stage greater than or equal to 2.5 in their on 

state) and had motor fluctuations with bradykinesia, freezing of gait or dyskinesia. 

Table 2 presents the sociodemographic data and the distribution of the UPDRS scores, 

also the distribution of the patients' scores for dyskinesia are included. In Figure 1, a 



view of the distribution of patients according to the severity of dyskinesia, from the 

point of view of the sum of the scores of all items related to dyskinesia, is presented. 

Patients with other health problems that hamper physical activity and patients 

with dementia (DSM-IV-TR criteria) or neuropsychiatric disorders were excluded. The 

study protocol was approved by the local Ethical Committee in each country. All 

participants provided informed consent prior to their inclusion in the study.  

Sociodemographic data 
Mean age (±std)  68 (7.9) 

Num. female (percentage from total) 36 (39.1%) 

Num. male (percentage from total) 56 (60.9%) 

Parkinson's disease data 
Median Hoehn and Yahr ( ± IQR) 3   (0.5) 

Motor section UPDRS (IV)   

Median off score (± IQR) 40 (21.75) 

Median on score (± IQR) 14 (12.5) 

Median variation on-off (± IQR) 22 (17) 

 
Table 2: Sociodemographic data, distribution of the UPDRS IV score, and the distribution of the scores 

for dyskinesia items of the patients included in the study, where std is the standard deviation and IQR is 

the interquartile range. 

 

 

 

 

 

 

 

 

 

Figure 1: Distribution of patients according to the sum of UPDRS IV dyskinesia items (32,33,34,35) 

 

Dyskinesia (UPDRS IV) 
Duration  

(along the day) 

Item 32 (UPDRS-IV) 

Disability 

Item 33 (UPDRS-IV) 

Painful dyskinesias 

Item 34 (UPDRS-IV) 

Early morning 

Dystonia 

Item 35 (UPDRS-IV) 
none  31 (33.7%) Not disabling 50(54.3%) No painful 72(78.3%) No 67(72.8%) 

1-25%  40 (43.5%) Mildly  18(19.6%) Slight 13(14.1%) 

26-50%  13 (14.1%) Moderately  21(22.8%) Moderate 6  (6.5%) Yes 

 

25(27.2%) 

  51-75%  7   (7.6%) Severely  3  (3.3%) Severe 1  (1.1%) 

76-100% 1   (1.1%) Completely  0  (0%) Marked 0  (0%) 



3.3. Data collection  

Data collection is divided into two parts: on the one hand, a main database which was 

built with 92 patients was used to partially train and to evaluate the algorithms and, on 

the other hand, a second database obtained from 10 patients [16]. The second database 

has been employed to train the window-based analysis of the algorithm, while the first 

one has been used to train the minute-level (meta-analysis) and validate the method 

based on a leave-one-out methodology. Both databases are presented in the following 

subsections. 

 

3.3.1. Main database of inertial signals 

Data collection was performed at patients’ home in order to gather inertial signals 

similar to those that would be obtained in the daily life of PD patients. The experiment 

was also designed with the aim of ensuring that the different motors states of each 

patient were captured; also, an additional aim was to obtain representative data of 

patients’ motor fluctuations. With the purpose of guaranteeing these points, it was used 

a widely extended method employed in clinical experiments in order to assess the worst 

symptoms of the disease by either removing or reducing the patients' antiparkinsonian 

medication, prior to the experiment, so as to force a low plasma level of dopamine. The 

study consisted on a series of tests in which the patient performed some activities that, 

although they were guided, their execution was free (e.g. patients were asked to show 

their home to the researchers), aiming to capture how motor symptoms (bradykinesia, 

dyskinesia, freezing of gait, etc.) appear in a real environment when the patients present 

different plasma dopamine levels.  The environment has been shown to be very 

important in PD since, for instance, freezing of gait frequency is commonly reduced 

during laboratory evaluations [27]. In the data collection, the gold standard was 

generated from a video recording that was used for labelling the signal (off-line) by a 

trained expert, who took charge and carried out the experimentation, as it is explained 

below.  

The data collection was performed twice, before and after the intake of the 

medication. Thus, in the morning, after removing the last antiparkinsonian drug intake 

of the previous day, specific tests for off state were performed, being its execution free. 



When the tests were finished the patient proceeded to take his/her regular 

antiparkinsonian medication and the researchers waited for the drug to take effect (for a 

minimum of one hour). Then, the researchers proceeded to perform the specific tests. 

A list of the activities performed by each patient during each motor state is 

shown in Table 3 (more details can be found in [28]). All data were collected by 

research assistants who had been specifically trained in the study procedures and 

administration of the corresponding questionnaires, on the basis of common instructions 

and clinical guidelines. The same researchers who recorded the signals also labelled 

them according to the video and symptoms presented.  

Table 3: List of tests performed by patients in each motor state 

 

A summary of the activities carried out during the data collection is presented 

below: 

Indoors walking test: the patient started sitting on a chair in the living room. Then, 

he/she stood up and showed his/her house to the researchers, showing each room and 

explaining what the room is for, just like if the house was being sold. 

Outdoors walking test: whenever it was possible, the patient went for a 10 to 15 

minute walk around the neighbourhood. 

FoG provocation test: the test started with the patient sitting on a chair, then he/she 

stood up and walked through a door or passed through a narrow place, afterwards the 

patient performed a turn of 180 degrees and turned back to the chair where he/she was 

suggested to sit. The test was performed 10 times. 

Dyskinesia test: this test was performed only when the researcher detected that 

dyskinesia appeared and it was performed only once in the entire data capture. It started 

with the patient sitting on a chair, then he/she stood up, and stayed still for 1 minute, 

Tests before the medication intake 

UPDRS 
Indoors walking 

test 

FoG provocation 

test 

Outdoors 

walking test 

Intake of 

medication 

Tests after the medication intake 

UPDRS 
Indoors walking 

test 

Outdoors walking 

test 
Dyskinesia test 

False positive 

test 



afterwards he/she sat down again and stayed at rest for another minute. This test 

allowed the researchers to capture the dyskinesia in controlled conditions, in contrast to 

the remaining activities, in which dyskinesia may be captured while performing other 

activities. 

False Positive Test: In this test, the patient was asked to perform various activities of 

daily living that are likely to be confused with motor symptoms. The first test started 

with the patient sitting on a chair in the kitchen. The patient was invited to stand up, and 

to walk from the kitchen to the furthest room in the house, carrying a full glass of water. 

Then, the patient was invited to perform the following activities: to brush the teeth, to 

shake a deodorant bottle, to erase something with a rubber, to type on a computer, to 

wipe the glasses or the furniture and to wash a glass of water. 

 Table 4: Minutes captured and labelled divided by state and symptoms 

  

Signals employed in this work were gathered by means of the 9x2 inertial 

measurement unit [29] located at the waist near the iliac crest. This waist device is 

composed of an accelerometer, a gyroscope, a magnetometer, a microcontroller, a 

Bluetooth communication module and a memory storage unit. The 9x2 maximum 

sample data rate is 200 Hz and data is saved in a SD memory card.  The approach 

presented in this paper only employs the accelerometer signals, discarding 

measurements from gyroscopes and magnetometers. In the case of gyroscopes, given 

the frequency nature of the proposed method these sensors do not provide relevant 

information and, in addition, their power consumption is much higher and they 

commonly present large drifts due to the manufacturing process and ambient 

temperature. On the other hand, magnetometers present a high sensitivity to magnetic 

disturbances. It is for these reasons that the method presented in the next sections is 

based only on accelerometer measurements.  

 TOTAL 

(minutes) 

After 

medication 

 (minutes) 

Intermediate 

(minutes) 

Before 

medication 

(minutes) 

Dyskinesia 401.23 355.48 17.57 28.18 

Bradykinesia 865.58 50.14 25.37 790.07 

Tremor 333.73 94.18 15.29 224.26 

FoG 140.52 20.55 7.18 112.79 

Symptom-free 1761.42 1377.42 63.2 320.8 



Finally, through the video recordings, the same clinicians who recorded the 

signals also labelled them with the symptoms of the patient. Regarding choreic 

dyskinesias, the signals are labelled depending on the area of occurrence (head, hand / 

arm, foot / leg, trunk) and are also classified into two groups of severity (weak or 

strong) [28]. ¡Error! No se encuentra el origen de la referencia. presents a summary 

of the overall minutes of captured signals and their labelling. 

 

3.3.2. Secondary database of inertial signals 

A second dataset, that has been employed to partially train the algorithms, included a 

total of 10 PD patients. This study was carried out during 2008 and 2009, with patients 

between 49 and 82 years of age, living in the Barcelona area, who had been diagnosed 

to have idiopathic PD according to the criteria of the Brain Bank, London [26]. Only 

patients with mild or moderate stage of the disease and motor fluctuations were 

included in the study. For security reasons, patients with implanted electronic devices 

were excluded. 

Patients performed various activities while an inertial sensor located at their waist 

registered acceleration. Signals employed in this work were gathered by means of the 

same 9x2 system  presented previously [29]. The protocol included activities in the 

laboratory and outdoors. Laboratory activities comprised walking in a straight line, 

walking over an inclined plane, carrying a heavy object, setting a table and going 

upstairs and downstairs. The outside protocol consisted of walking for, at least, 15 

minutes. Patients that had motor fluctuations repeated the experiment, excluding the 

outdoors protocol, in off state, which was induced by avoiding the first morning intake 

of medication. The experimental protocol was approved by the local Ethics Review 

Committee.  

 

3.4. Signal processing  

As described in the previous sections, the sensor position is a fundamental choice in the 

design of the algorithms that perform the signal processing associated with the 

detection. This section continues with the premise of using a single sensor positioned at 

the waist, as justified in the previous sections. Figure 2 shows the accelerometer signals 



captured from the previously presented waist device worn by a patient with and without 

dyskinesia while sitting, standing and walking. It is observed that when the patient does 

not present dyskinesia and is sitting, there are not relevant harmonics in the signal 

while, when the patient has dyskinesia, harmonics in the lower frequencies appear. 

However, it is observed that power spectrum of the lower frequencies is not only 

increased during dyskinesia but also during other activities, such as walking or climbing 

stairs, as described in [15].  

Regarding these observations, the authors developed a signal processing method 

previously presented in [16]. This preceding method considers the power spectrum of 

the frequency band composed of 1 to 4 Hz to detect dyskinesia, as long as higher 

frequencies (8 to 20 Hz) do not have a high power spectrum, which correspond to false 

positives like walking or climbing stairs. The previously presented method, however, 

does not consider posture transitions (PT), which, as Figure 2 shows, also increase the 

power spectrum of the lower frequencies. In the current paper, the signal processing 

employed is an improvement of the one presented in [16], with the aim of, mainly, deal 

with PT, although other minor enhancements are also performed.  

 

 

 

 

 

 

 

 

 

Figure 2:  On the right (b), signal from a patient without dyskinesia. Patient sat during the time period 

40-47 s., stood (47-52) and walked (52-55). On the left (a), signal from another patient with dyskinesia. 

Low frequency and amplitude harmonics are observed for dyskinetic patient. Patient remained sat (until 

51), stood (51-56) and then walked. Higher power density content is shown with white colour and lower 

power density content with black colour. 

 

(a) (b) 



Step 1: Window-based analysis 

The signal processing employed to assess the presence of dyskinesia is based on 

splitting the spectra into three different bands: 

    • Dyskinetic band. A high power spectral density in this band is an indicator that 

either the patient has dyskinesia or the patient is walking or going up/down stairs. The 

dyskinesia band is considered to cover the (0.68, 4] Hz range, where 0.68 Hz is 

considered to be the upper limit of PT band [30]. Dyskinesia band covers until 4 Hz 

since, although other studies consider 8 Hz to be the limit, frequencies higher than 4 Hz 

correspond to tremor according to a consensus of the Movement Disorders Society [31].  

    • Non-dyskinetic band is considered to be [8, 20] Hz. This band will enable us to 

know whether an increase in the dyskinetic band is due to dyskinesia appearance or due 

to walking (or similar activities). Given that walking has the 99% of its power spectral 

density below 20 Hz [32], 20 Hz is considered as the upper limit of the non-dyskinetic 

band. The lower limit of the band is provided by the maximum frequencies obtained in 

some dyskinesia research works [13]. In this way, harmonics in this non-dyskinetic 

band are used to determine the presence of gait or similar activities as the input of a 

machine learning classifier, as detailed below. A Support Vector Machine (SVM) is 

employed because of the complexity of detecting gait in PD patients through a waist 

sensor, especially when patients walk slowly. Moreover, the use of  SVMs is adopted 

since gait detection is a bi-classification problem and SVMs have provided excellent 

results in similar tasks and because they commonly present good generalisation 

performance [33]. Furthermore, SVMs have been used in investigations with very 

similar characteristics and very good results, for example the work of Shyamal et al. 

[34]. 

    • PT band is considered to be (0, 0.68] Hz where 0.68 Hz is the upper limit of PT 

[30]. This band will enable us to know whether a PT has occurred.  

Power spectrum in dyskinesia band is denoted as dP  and spectral power in the 

PT band as PTP . The amplitude of the harmonics of the non-dyskinetic band are 

represented by h1,…,hk.  

The minimum usable sample frequency ( sF ) has been determined by the 

maximum frequency of interest, which in this case is 20 Hz from the walking band. In 



consequence, sF  has been set to 40 Hz, implying that signals collected were re-sampled 

from 200 Hz to 40 Hz before applying the described algorithm. On the other hand, FFT, 

which has been employed to obtain the power spectra, requires a window whose length 

is a power of 2 in order to be executed in real-time with minimum resources. 

Possibilities taken into account are 32 (0.8 s.), 64 (1.6 s.), 128 (3.2 s.) and 256 (6.4 s.) 

samples. Given that 0.68 Hz is the minimum frequency for the dyskinetic band, the 

temporary window should be above 1.5 s. in order to capture the “slowest” dyskinetic 

cycles. However, 1.6 s are not enough to capture the PT band so, consequently, FFT 

window length is set to 128 samples and w value is set to 3.2 seconds.  

Finally, the dyskinesia algorithm’s output in a window i is defined on these 

spectral power values according to: 
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where d  and PTd  are the thresholds for dyskinetic and PT bands, respectively,            

{1,-1} ),...,( 1 khhf  is the decision function of the trained SVM and, additionally, 

provides value 1  when patient has walked, used stairs or performed a similar activity 

while, otherwise, provides value 1.  

Parameters d , PTd  and decision function f  have been set by means of specific 

procedures applied to the set of labelled signals collected from 10 patients, described in 

Section 3.3.2, and that correspond to a previous study [16].  The specific procedures 

employed to set their values are described below: 

    • First, function f  is set based on a set of vectors {p1,…,pn}, pi=[h1,…,hk] 

obtained from several windows of the previously collected signals [16]. Each one of 

these vectors pi is associated with a label yi={1,-1} according to the labels given by 

clinicians to that window: yi=1 corresponds to those windows labelled with walking or 

going up/down stairs and yi=-1 to the remaining windows. Dataset elements are denoted 

as {(p1,y1),…,(pn,yn)} and were employed to train a SVM with a radial basis function 

kernel: 
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, b is the hyperplane bias, w is the hyperplane that separates 

both classes and i  are the slack variables. Parameters C  and   are determined as the 

values that maximise the accuracy among the values 22 ,10,10   in a 10-fold Cross-

Validation [35]. The final form that f gets in order to determine the output value for a 

new window represented by p is: 

f =  

















bKy

l

i

iii

1

,sgn pp     (5) 

where the set of alphas are the Lagrangian multipliers of the dual problem formulated 

by the SVM.  

    • Second, PTd  was set also through a similar optimisation method applied to 

specific values obtained from the previous study [16]. In this case, the dataset was 

composed of PTP  values computed from window signals that satisfied f ( h1,…,hk) = –1, 

that is, the patient neither walked nor went up/down stairs. A label was obtained for 

each PTP  and consisted in whether the patient performed a PT or not in the 

corresponding window. Given the set of PTP  values and their associated labels, a linear 

kernel iiK pwpw =),(  was used to find the hyperplane that separates both classes 

based on Equation (4). In this case, given that ip  is actually a scalar, w  value obtained 

from Equation (4) is also scalar. Thus, the value found through the optimisation process 

is used as PTd . The obtained value is PTd = 0.95.  

    • Third, d  was set through the same method than PTd  although, in this case, 

the dataset was composed of dP  values computed from those windows that satisfied 

PTPT dP <  and f ( h1,…,hk) = –1 (windows in which the patient neither walked, went 

up/down stairs and did not performed a PT). The label consisted in the presence or 

absence of dyskinesia. The value obtained is d = 1.75.  



This way, for activities such as walking, using stairs or PT, in which                 

f ( h1,…,hk) = –1 or PTPT dP  are satisfied, respectively, the algorithm’s output will be 

unknown despite the patient has dyskinesia or not. This behaviour is actually associated 

with visual appreciation: when a patient has dyskinesia and walks, commonly it cannot 

be distinguished in the waist since walking hides the involuntary movement. 

Step 2: Meta-analysis 

Dyskinesia detection described by Equations (1) (2) and (3) enables us to know 

whether, in a given time window, a patient has dyskinesia. However, dyskinesia is a 

symptom which may last minutes. The most suitable window to examine the appearance 

of dyskinesia is, then, of several windows length. Thus, it is proposed to aggregate the 

output obtained in windows of w -seconds length overlapped at 50%, similarly to [36], 

along a longer period of .60= sT  seconds. The algorithm provides, then, a single output 

obtained from the wT/2  windows included in the 1-minute period according to: 

    • Dyskinesia if:  
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    • No dyskinesia if:  
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    • Unknown, otherwise, i.e.:  
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where wTss /21 ,,  are the algorithm outputs represented in Equations (1) (2) and (3), 

being 1=is  in case of dyskinesia detection and 0=is  otherwise; dn  is the number of 

time windows in which the condition 1=),...,( 1  kPTPT hhfdP  were not held (i.e. 

number of windows analysed), 
pt  is the threshold which sets the dyskinesia detection 

rate needed to consider the T -seconds period as dyskinetic and ct  sets the minimum 

amount of analysed windows in the period of T  seconds. 



The logic behind the algorithm consists in considering a T -seconds period to be 

dyskinetic if the summation in Equation (6) is greater than a certain threshold 
pt . 

However, this value might not be enough by itself since it could not be reliable if the 

patient walked during most of the analysed period. Then, a confidence index is defined 

as Tnw d /2 , which represents, from the total of wT/2  analysed windows, the number of 

windows that were not rejected because of the condition 1=),...,( 1  kPTPT hhfdP  . 

In this manner, a low confidence index is considered to provide an unreliable dyskinesia 

assessment and, then, an undetermined evaluation, since few windows could be 

analysed. Consequently, the confidence index is required to be greater than a certain 

threshold ct . 

Values for tp and tc were found based on an ‘leave one-patient-out’ approach on 

the signals collected from 92 patients. Accordingly, these two thresholds are set as those 

values that maximize SpecifityySensitivit ·  and that use at least half of the samples 

analysable based on the data from 91 patients and, then, the resulting values are 

evaluated with the data from the remaining patient. This process is repeated 92 times, 

one for each patient. More specifically, tested values for ct have been (0, 0.1, 0.2, …, 1) 

and for 
pt  have been (0.01, 0.02, …, 1). The evaluation of the obtained threshold values 

has been carried out by considering the same weight for each minute analysed.  

3.5.  Evaluation  

Signals gathered are employed to evaluate the method presented above in non-

overlapped periods of T=60 seconds, resulting in sensitivity and specificity values. Each 

evaluated interval of T=60 seconds is required not to contain any sample labelled with 

any type of dyskinesia or to contain at least N=Fs·T/2 samples (i.e. 30 sec.) of the 

dyskinesia type under analysis. Depending on the output of the algorithm and the labels 

of the samples, each interval is considered a true/false positive/negative case. This way, 

signals labelled with at least N samples of dyskinesia are then either false negatives 

(FN) or true positives (TP). On the other hand, those signals without any labelled 

dyskinesia are evaluated as true negatives (TN) or false positives (FP)  

The value used for N  is half the period of analysis, i.e. Fs·T/2, requiring at least 

30 s. to be labelled as dyskinetic. Those periods in which the number of samples 



labelled with dyskinesia is not zero and lower than 30 s. are considered to be 

indeterminate and not evaluated. Finally, it should be noted that minutes in which 
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


<

2
are considered like undetermined since patients mostly walked during them, 

as stated in previous sections. These restrictions reduce significantly the number of 

minutes used in the analysis but the veracity of the signals used for evaluation algorithm 

is ensured. 

4. Results and discussion 

Among the 92 patients included in the database, 35 presented some type of choreic 

dyskinesia. A total of 3228 minutes of labelled signals were collected, from which 401 

minutes (12%) were labelled with choreic dyskinesia.  

Table 5: Results on dyskinesia assessment. 

An overview of the results in choreic dyskinesia assessment based on a leave-

one-out approach on the data collected from 92 patients is provided in Table 5. The 

table also presents, for each dyskinesia type analysed, the best values of 
pt and ct found 

in the leave-one-out procedure. Assessment results are presented according to the 

severity and the body part where the dyskinesia was presented, thus, the analysis is split 

into three sub-analysis. In the first sub-analysis (first row), results on detecting any 

choreic dyskinesia in any part of the body are presented. The second sub-analysis 

requires the algorithm to detect any strong dyskinesia from any part of the body adding 

weak dyskinesias in the trunk. Finally, in the third sub-analysis, the results correspond 

to evaluate the algorithm in detecting only strong trunk dyskinesias.  In the third column 

of Table 5, the average sensitivity and specificity among all minutes is presented 

regarding the detection of each kind of dyskinesia. In the columns under “Analysis 

details”, TP, TN, FP and FN values are shown, as defined in previous Section 3.5. Also, 

Type of choreic 

dyskinesia 
Number of 

patients 

with this 
type of 

dyskinesia 

Threshold 

selected 

Equal weight per 

minute 
Analysis details Not analysed minutes 

Severity 
Body 

part 
tc tp Specificity Sensibility TP TN FP FN 

Total 

minute 

0 < 

Label 

dysk     

< 30s. 

Walk or 

Posture 

Transition 

detected 

Un-

matched 

dysk.  

All All 35 0.3 0.06 81% 57% 119 765 179 89 1152 82 1994 0 

Weak Trunk 

19 0.3 0.25 95% 93% 66 910 48 5 1029 35 1885 

 

  + 279 

Strong All  

Strong Trunk 4 0.3 0.53 98% 100% 7 870 18 0 895 5 1940 388 



the amount of minutes used in the analysis (summation of TP, TN, FP and FN) and the 

number of not analysed minutes are presented. It should be noted that, in the 

calculations of each row,  those minutes labelled as dyskinesias, but that were not 

labelled with 30 s. of the type of dyskinesia under analysis, were withdrawn from the 

analysis. The number of these minutes is presented in the last column as ‘Unmatched 

dyskinesia’. 

 

 

 

 

 

 

Table 6: Total of minutes labelled on the database. 

 

Results presented in Table 5 show that, depending on the severity and location 

of dyskinesia, specificities and sensitivities higher than 90% can be achieved using a 

leave-one-out methodology. Although mild dyskinesias presented on the limbs are 

detected with 95% specificity and 39% sensitivity, the most important types of 

dyskinesia (any strong dyskinesia and trunk mild dyskinesia) are assessed with 95% 

specificity and 93% sensitivity. If strong trunk dyskinesia is considered in an isolated 

way, they are detected with 98% and 100% of specificity and sensitivity, respectively. 

These results confirm that the algorithm is very sensitive to trunk dyskinesia, this fact is 

confirmed by the behaviour of the method which is very good for all strong and weak 

trunk dyskinesias; however, it presents a worse response when weak dyskinesias in the 

extremities are included in the analysis.   

It should be noted that the different types of dyskinesia analysed and presented 

in Table 5 are presented in an aggregated order: the first one of the three types include 

the other two types (e.g., all dyskinesias with any severity includes the weak trunk 

dyskinesia and all the strong ones), in the same way than the second kind of dyskinesia 

analysed comprises the third one. Table 5, on the other hand, presents a decrease in the 

time analysed along with the more specific dyskinesia analysed. This occurs because the 

evaluation of more specific types of dyskinesia permits to evaluate fewer labelled 

Type of choreic 

dyskinesia  Minutes 

labelled 
Severity 

 Body 

part 

Weak Trunk 95 

Strong Trunk 24 

Weak No-trunk 306 

Strong No-trunk 48 



episodes since those minutes which are labelled without the specific type of dyskinesia 

are not analysed.  In Table 5, the number of unanalysed minutes is also relevant since 

patients were asked to walk in most activities of the protocol; however, in real life 

monitoring these walking minutes would be drastically reduced, increasing the analysis 

time. 

 Table 6 shows the number of labelled minutes of each type of dyskinesia 

divided into weak and strong, and trunk and no-trunk (distal). Note that this type of 

dyskinesias are not exclusive, for example, a minute of signal presenting weak trunk 

dyskinesia and, at the same time, weak dyskinesia in a hand can be found.  On the other 

hand, it should be mentioned that, in this sum, dyskinesia labels are globally considered, 

including labelled dyskinesias while patients are walking, which are extracted from the 

analysis based on Equation (3). 

 

 

 

 

 

Table 7: Results on dyskinesia assessment for the thresholds 
pt = 0.25 and ct = 0.3. 

In addition, in order to evaluate the performance of the algorithm against various 

types and severities of dyskinesias, a further analysis has been done. Due to the 

particularity of the measurement position, a low sensitivity for weak dyskinesias of the 

distal extremities is expected. For this reason, the most interesting case presented in 

Table 5 is the row that jointly evaluates weak trunk with strong all dyskinesias (middle 

row). According to this premise, Table 7 shows the results of the algorithm on each type 

of dyskinesia divided into weak/strong and trunk/no-trunk (distal) for the optimal 

thresholds 0.25 and 0.3 for 
pt  and ct , respectively, found for the mentioned case 

(middle row of Table 5). Note that this type of dyskinesias are not exclusive so, for 

instance, a patient with weak trunk dyskinesia could be found at the same time with 

weak dyskinesia in a hand. Results show how the algorithm presented is highly 

sensitive to dyskinesias labelled as strong. We also find that a high sensitivity is 

Type of choreic 

dyskinesia 

Num. of 

patients with 

this type of 

choreic 

dyskinesia 

Equal weight per 

minute  

Severity 
 Body 

part 
Specificity Sensibility 

Total 

minutes 

Weak Trunk 16 95% 78% 953 

Strong Trunk 4 95% 100% 895 

Weak No-trunk 32 95% 39% 1110 

Strong No -trunk 7 95% 90% 917 



maintained for mild trunk dyskinesia, whereas the sensitivity drops in assessing weak 

dyskinesias in distal extremities. Notably, in both Table 5 and Table 7, the method 

presents a high specificity, meaning that confidence when the algorithm output 

diagnoses dyskinesia is very high. 

Comparing the results of the presented algorithm to those obtained in previous 

works, it is observed that, first, the performance obtained on detecting the presence or 

absence of dopaminergic-induced dyskinesia in 1-minute periods by Keijsers et al. 

through a single sensor located on the trunk provided 82% of accuracy [12]. In the 

approach presented in this paper, a 95% of accuracy on trunk dyskinesia and any severe 

dyskinesia from any part of the body is obtained, surpassing by more than 10 % the 

previous results. Results from Keijsers et al. were obtained following a ‘leave one-

patient-out’ approach with 12 patients. In contrast, the method proposed in this paper 

has been tested on data from 92 patients following the same ‘leave one-patient-out’ 

approach. Results from Tsipouras et al. [14] achieved a 93% of accuracy through the 

same leave-one-patient out approach. However, these results were obtained based on 6 

sensors and with signals from 16 volunteers. Finally, the study from Chelaru et al. [18] 

provided an accuracy of 100% on dopaminergic-induced dyskinesia detection. 

Nonetheless, signals were collected with patients standing and refraining from making 

voluntary movements. 

In summary, results obtained by the presented approach either outperform 

previous studies or are similar. However, it should be noted that signals used in this 

study to evaluate the proposed method posed a higher challenge given that they come 

from a single sensor and they belong to a population of 92 PD patients. Thus, the device 

and algorithm presented here, as far as authors are aware, and compared to the 

previously presented works, is the only set-up that meets the specifications raised: an 

algorithm to evaluate dyskinesias that can be embedded in a single device worn in the 

waist in the daily life environment of patients. 

5. Conclusion 

The ultimate goal of this work is to develop the necessary algorithms to evaluate the 

occurrence of dyskinesias in a patient while performing the activities of daily life. 

Moreover, these algorithms must be embedded in hardware with some physical and 

computational restrictions. These restrictions are not only related with the memory and 



computing resources, but also with the position and location of the sensor. These 

restrictions, as shown in this paper, affect the process of development, generation and 

accuracy of the algorithm. This type of device would provide relevant information to the 

clinicians in tailoring treatment and, furthermore, it is now available.   

The algorithm presented in this paper has been evaluated on a database of 

signals gathered in the daily life environment of 92 PD patients, under a multicenter 

study that took place in 4 different countries. The approach provides specificities and 

sensitivities above 90%, showing that choreic dyskinesia is able to be monitored 

through a single sensor during daily life of patients. However, the results also show that 

the restrictions imposed on the final system heavily penalise its accuracy for some types 

of dyskinesias, since weak dyskinesias in the distal extremities are not correctly 

recognised. The consequence of these constraints, based on the physical limitations of 

the users and the usability characteristics of the system, result in a trade-off between 

sensitivity in detecting weak dyskinesias on the distal limbs and the specificity of the 

method. From the beginning of this work, it has been taken into account that the 

ultimate objective of the system is to provide information on the dyskinetic states, 

which should be considered when the neurologists are making a decision in the 

treatment for patients with advanced PD. Thus, the most important state to be detected 

is severe choreic dyskinesia, which is detected with excellent sensitivity and specificity 

with the current system. 

From a clinical point of view, the correct identification of dyskinesia is a very 

significant issue for patients with PD since it significantly affects patient’s functional 

autonomy and is associated to a greater risk of falls. Moreover, dyskinesia detection, in 

addition to other motor symptoms detection, relies on objective tools, such as the 

proposed in this paper, that enable treatment adjustment of PD patients. The information 

that these systems are capable of providing to neurologists will contribute to a better 

understanding of PD and, combined with other tools such as behavioural patterns, will 

contribute to timely intervention and will prevent patient deterioration based on fine 

adjustments of PD treatment. 
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