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Abstract 

To prevent process interruption and eventual losses, the need for a reliable fault detection and 

diagnosis system (FDD) is completely acknowledged. Besides the capability to recognize known 

faults automatically, a further requirement for a FDD is adaptability. If the model cannot be 

adapted to deal with changes, variations due to external changes, decaying performance, 

Poisoning of catalyst etc. the FDD system could perform misleadingly.This paper presents an 

advantageous of incremental learning algorithm for fault diagnosis, when a support vector 

machine algorithm are implemented as a classifier. The method which is followed in order to use 

the incremental learning algorithm is based on hyperplane-distance (HD)[1] . In the continues 

reactor which is studied, two cases are compared in order to clarify the role and importance of 

incremental learning algorithm. Result show the effectiveness of this method 

Introduction 

Fault detection and diagnosis (FDD) is an important first step in abnormal events management 

(AEM). Fault diagnosis in industrial processes are challenging tasks that demand effective and 

timely decision making procedures under the extreme conditions of noisy measurements, highly 

interrelated data, large number of inputs and complex interaction between the symptoms and 

faults. When it comes to data-driven models it could be seen that there is an increasing interest 

in the development of fault detection and diagnosis systems based on them. 

Venkatasubramanien [2], reviews and discusses fault diagnosis methods that are based on 

historic process knowledge. Qin [3], reviewed many basic and advanced issues in data-driven 

process monitoring, including fault detection, identification, reconstruction, and diagnosis. 

With the increase in the size of the real-world data set, there are ever-increasing requirements 

to scale up the inductive learning algorithms. Incremental learning techniques are one of the 

possible solutions to the scalability problem. Various methods have been presented in the 

literatures about incremental learning, such as Schlimmer and Granger[4] , Schlimmer and Fishe 

[5]. Incremental learning for SVM was first introduced by Syed et al.[6] , who presented 

incremental strategies and proved that the support vector set, is a minimum set of the data set 

through experiments.. 
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Among different methods for machine learning, support vector machine(SVM) is a method 

developed by Vapnik and co-workers [7]. There have been many researches about the theory 

and applications of SVM, and it has become one of the most useful methods of solving the 

problems in machine learning with good generalization performance. The key to construct 

optimal hyperplane, in SVM, is to collect more useful data as support vectors during the 

incremental learning. Most incremental learning algorithms improve SVM training process 

through collecting more useful data as support vectors [8][9]. As opposed to other learning 

methods such as neural networks, they are strongly theoretically founded, and have been shown 

to enjoy excellent performance in several applications. 

Li, research on geometric character of support vector machine and proposes hyperplane 

distance-support vector machine (HD-SVM)[1]. According to the geometric character of support 

vector, the algorithm uses Hyperplane-Distance to extract the samples, selects samples which 

are most likely to become support vector to form the vector set of edge, and conducts the 

support vector machine training on the vector set. Using this method reduces the number of 

training samples and effectively improves training speed of incremental learning.  
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